Affine regular dodecahedron in GS-quasigroups

Zdenka Kolar-Begović and Vladimir Volenec

Abstract

The concept of the affine regular dodecahedron is defined in any $G S$-quasigroup by means of twelve $A R P$ relation which are valid for five out of twenty points. A number of statements about the connection of the corresponding vertices of the dodecahedron will be proved. Quaternary relations Par, GST, DGST can be found in these statements. The theorem of the unique determination of the affine regular dodecahedron by means of its four vertices which satisfy certain conditions will be proved. The geometrical interpretation of all mentioned concepts and relations will be given in the $G S$-quasigroup $C\left(\frac{1}{2}(1+\sqrt{5})\right)$.

$G S$-quasigroups are defined in [2]. In [3], [1] and [4] different geometric structures in $G S$-quasigroups are defined and investigated. In this paper some new "geometric" concepts in the general $G S$-quasigroup will be defined.

A quasigroup (Q, \cdot) is said to be GS-quasigroup if it is idempotent and if it satisfies the (mutually equivalent) identities

$$
a(a b \cdot c) \cdot c=b, \quad a \cdot(a \cdot b c) c=b
$$

If C is the set of all points in Euclidean plane and if groupoid (C, \cdot) is defined so that $a a=a$ for any $a \in C$ and for any two different points $a, b \in C$ we define $a b=c$ if the point b divides the pair a, c in the ratio of golden section. In [2] it is proved that (C, \cdot) is a $G S$-quasigroup. We shall denote that quasigroup by $C\left(\frac{1}{2}(1+\sqrt{5})\right)$ because we have $c=\frac{1}{2}(1+\sqrt{5})$ if $a=0$ and $b=1$. The figures in this quasigroup $C\left(\frac{1}{2}(1+\sqrt{5})\right)$ can be used for illustration of "geometrical" relations in any $G S$-quasigroup.

2000 Mathematics Subject Classification: 20N05
Keywords: GS-quasigroup, affine regular dodecahedron.

From now on let (Q, \cdot) be any $G S$-quasigroup. The elements of the set Q are said to be points. The points a, b, c, d are said to be the vertices of a parallelogram and we write $\operatorname{Par}(a, b, c, d)$ if the identity $a \cdot b(c a \cdot a)=d$ holds. In [2] numerous properties of the quaternary relation Par on the set Q are proved. Let us mention just the following lemma which we shall use afterwards.

Lemma 1. From $\operatorname{Par}(a, b, c, d)$ and $\operatorname{Par}(c, d, e, f)$ follows $\operatorname{Par}(a, b, f, e)$.
In [3] the concept of the $G S$-trapezoid is defined and explored. The points a, b, c, d successively are said to be the vertices of the golden section trapezoid and it is denoted by $\operatorname{GST}(a, b, c, d)$ if the identity $a \cdot a b=d \cdot d c$ holds. In [3] different characterizations of that relation are investigated, we shall mention the following lemmas.

Lemma 2. $\operatorname{GST}\left(a_{1}, b_{1}, b_{2}, a_{2}\right), \operatorname{GST}\left(a_{2}, b_{2}, b_{3}, a_{3}\right), \ldots, \operatorname{GST}\left(a_{n-1}, b_{n-1}, b_{n}, a_{n}\right)$ $\Rightarrow \operatorname{GST}\left(a_{n}, b_{n}, b_{1}, a_{1}\right)$.

Lemma 3. $\operatorname{GST}(a, b, c, d), \operatorname{GST}\left(a, b, c^{\prime}, d^{\prime}\right) \Rightarrow \operatorname{GST}\left(d, c, c^{\prime}, d^{\prime}\right)$.
Lemma 4. Any two of the three statements $\operatorname{GST}(a, b, c, d), G S T\left(a^{\prime}, b, c, d^{\prime}\right)$, $\operatorname{Par}\left(a, a^{\prime}, d^{\prime}, d\right)$ imply the remaining statement.

Lemma 5. Any two of the three statements $\operatorname{GST}(a, b, c, d), \operatorname{GST}\left(a, b^{\prime}, c^{\prime}, d\right)$, $\operatorname{Par}\left(b, b^{\prime}, c^{\prime}, c\right)$ imply the remaining statement.

In [3] it is proved that any two of the five statements

$$
\begin{equation*}
G S T(a, b, c, d), G S T(b, c, d, e), G S T(c, d, e, a), G S T(d, e, a, b), G S T(e, a, b, c) \tag{1}
\end{equation*}
$$

imply the remaining statements.
In [4] the concept of the affine regular pentagon is defined. The points a, b, c, d, e successively are said to be the vertices of the affine regular pentagon and it is denoted by $\operatorname{ARP}(a, b, c, d, e)$ if any two (and then all five) of the five statements (1) are valid. In [4] the next properties of the affine regular pentagon are proved.

Lemma 6. Affine regular pentagon is uniquely determined by any three of its vertices.

Lemma 7. If the statement $\operatorname{GST}(a, b, c, d)$ is valid then there is one and only one point e such that the statement $\operatorname{ARP}(a, b, c, d, e)$ is valid.

The concept of the DGS-trapezoid is introduced in [1]. Points a, b, c, d are said to be the vertices of the double golden section trapezoid or shorter $\mathrm{D} G S$-trapezoid and we write $\operatorname{DGST}(a, b, c, d)$ if the equality $a b=d c$ holds. In [1] it is proved the next connection between $G S$-trapezoids and $\mathrm{D} G S_{-}$ trapezoids in $G S$-quasigroups.

Lemma 8. Any two of the three statements $\operatorname{GST}(a, e, f, d), G S T(e, b, c, f)$ and $\operatorname{DGST}(a, b, c, d)$ imply the remaining statement.

1. Affine regular dodecahedron in GS-quasigroups

Definition 1. We shall say that the points $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$, $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}$ are the vertices of an affine regular dodecahedron and we shall write

$$
A R D\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right)
$$

if the following twelve statements are valid (Figure 1)

$$
\begin{array}{ll}
A R P\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right), & A R P\left(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right) \\
A R P\left(a_{3}, b_{3}, c_{1}, b_{4}, a_{4}\right), & A R P\left(d_{3}, c_{3}, b_{1}, c_{4}, d_{4}\right), \\
A R P\left(a_{4}, b_{4}, c_{2}, b_{5}, a_{5}\right), & A R P\left(d_{4}, c_{4}, b_{2}, c_{5}, d_{5}\right), \\
A R P\left(a_{5}, b_{5}, c_{3}, b_{1}, a_{1}\right), & A R P\left(d_{5}, c_{5}, b_{3}, c_{1}, d_{1}\right), \\
A R P\left(a_{1}, b_{1}, c_{4}, b_{2}, a_{2}\right), & A R P\left(d_{1}, c_{1}, b_{4}, c_{2}, d_{2}\right), \\
A R P\left(a_{2}, b_{2}, c_{5}, b_{3}, a_{3}\right), & A R P\left(d_{2}, c_{2}, b_{5}, c_{3}, d_{3}\right) .
\end{array}
$$

Figure 1.

Let $\operatorname{ARD}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right)$ be valid further.

For each $i \in\{1,2,3,4,5\}$ the vertices a_{i} and d_{i}, respectively b_{i} and c_{i} are called the opposite vertices.

Theorem 1. 30 statements of the form $\operatorname{Par}\left(a_{2}, a_{5}, c_{3}, c_{4}\right)$ are valid (Figure 2).

Figure 2.
Proof. The given statement follows from $\operatorname{GST}\left(a_{2}, a_{1}, b_{1}, c_{4}\right)$ and $\operatorname{GST}\left(a_{5}, a_{1}, b_{1}, c_{3}\right)$ according to Lemma 4.

For opposite vertices of the ARD the following statement is valid.
Theorem 2. If x and x^{\prime}, respectively y and y^{\prime} are opposite vertices of the ARD then $\operatorname{Par}\left(x, y, x^{\prime}, y^{\prime}\right)$ is valid.

Proof. It is sufficient to prove that, along with the standard symbols, for example the statements $\operatorname{Par}\left(a_{1}, b_{1}, d_{1}, c_{1}\right)$ (Figure 3) and $\operatorname{Par}\left(a_{1}, a_{3}, d_{1}, d_{3}\right)$ are valid (Figure 4). As $\operatorname{GST}\left(a_{2}, a_{1}, b_{1}, c_{4}\right)$ is valid and according to Theorem $1 \operatorname{Par}\left(a_{2}, b_{3}, d_{5}, c_{4}\right)$ too, so by Lemma $4 \operatorname{GST}\left(b_{3}, a_{1}, b_{1}, d_{5}\right)$ follows which together with $\operatorname{GST}\left(b_{3}, c_{1}, d_{1}, d_{5}\right)$, based on Lemma 5 , implies $\operatorname{Par}\left(a_{1}, c_{1}, d_{1}, b_{1}\right)$.

According to Theorem 1 we have $\operatorname{Par}\left(a_{1}, a_{3}, c_{5}, c_{4}\right)$ and $\operatorname{Par}\left(c_{5}, c_{4}, d_{3}, d_{1}\right)$ from which by Lemma $1 \operatorname{Par}\left(a_{1}, a_{3}, d_{1}, d_{3}\right)$ follows.

Figure 3.
Figure 4.

Theorem 3. 60 statements of the form $G S T\left(b_{3}, a_{1}, b_{1}, d_{5}\right)$ are valid (see Figure 5).

Figure 5.
Proof. The statement is proved in the proof of the previous theorem.
Theorem 4. 60 statements of the form $\operatorname{GST}\left(b_{1}, a_{1}, a_{3}, b_{3}\right)$ are valid (see Figure 6).

Figure 6.
Proof. The statements follow from $\operatorname{GST}\left(b_{2}, a_{2}, a_{1}, b_{1}\right)$ and $\operatorname{GST}\left(b_{2}, a_{2}, a_{3}, b_{3}\right)$ according to Lemma 3.

Theorem 5. 60 statements of the form $\operatorname{DGST}\left(a_{3}, a_{1}, b_{1}, d_{4}\right)$ are valid (see Figure 7).

Figure 7.

Proof. According to Theorem $4 \operatorname{GST}\left(a_{3}, a_{2}, c_{4}, d_{4}\right)$ is valid which together with $\operatorname{GST}\left(a_{2}, a_{1}, b_{1}, c_{4}\right)$ according to Lemma 8 results in $\operatorname{DGST}\left(a_{3}, a_{1}, b_{1}, d_{4}\right)$.

It is possible to prove that the affine regular dodecahedron is uniquely determined by its four independent vertices i.e. vertices which are not in the relation Par, GST or DGST. We shall prove only the following theorem.

Theorem 6. For any points $a_{1}, a_{2}, a_{5}, b_{1}$ the points $a_{3}, a_{4}, b_{2}, b_{3}, b_{4}, b_{5}$, $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}$ are uniquely determined so that $\operatorname{ARD}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right)$ is valid.

Proof. Let $a_{3}, a_{4}, b_{5}, c_{3}, b_{2}, c_{4}$ be such points that $\operatorname{ARP}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$, $\operatorname{ARP}\left(a_{5}, b_{5}, c_{3}, b_{1}, a_{1}\right)$ and $\operatorname{ARP}\left(a_{1}, b_{1}, c_{4}, b_{2}, a_{2}\right)$ and then let the points $b_{4}, c_{2}, b_{3}, c_{5}$ be such points that $\operatorname{ARP}\left(a_{4}, b_{4}, c_{2}, b_{5}, a_{5}\right)$ and $\operatorname{ARP}\left(a_{2}, b_{2}, c_{5}, b_{3}, a_{3}\right)$ are valid.

From $\operatorname{GST}\left(b_{4}, a_{4}, a_{5}, b_{5}\right), \operatorname{GST}\left(b_{5}, a_{5}, a_{1}, b_{1}\right), \operatorname{GST}\left(b_{1}, a_{1}, a_{2}, b_{2}\right)$ and $\operatorname{GST}\left(b_{2}, a_{2}, a_{3}, b_{3}\right)$ according to Lemma $2 \operatorname{GST}\left(b_{3}, a_{3}, a_{4}, b_{4}\right)$ follows. According to Lemma 7 there is the point c_{1} such that $\operatorname{ARP}\left(a_{3}, b_{3}, c_{1}, b_{4}, a_{4}\right)$ is valid, and then according to Lemma 6 there are such points d_{3}, d_{4} that $\operatorname{ARP}\left(d_{3}, c_{3}, b_{1}, c_{4}, d_{4}\right)$ is valid. From $\operatorname{GST}\left(c_{2}, b_{5}, a_{5}, a_{4}\right), \operatorname{GST}\left(a_{4}, a_{5}, a_{1}, a_{2}\right)$, $\operatorname{GST}\left(a_{2}, a_{1}, b_{1}, c_{4}\right)$ and $\operatorname{GST}\left(c_{4}, b_{1}, c_{3}, d_{3}\right)$ according to Lemma 2 the statement $\operatorname{GST}\left(d_{3}, c_{3}, b_{5}, c_{2}\right)$ follows. In the same way from $\operatorname{GST}\left(c_{5}, b_{2}, a_{2}, a_{3}\right)$, $\operatorname{GST}\left(a_{3}, a_{2}, a_{1}, a_{5}\right), \operatorname{GST}\left(a_{5}, a_{1}, b_{1}, c_{3}\right)$ and $\operatorname{GST}\left(c_{3}, b_{1}, c_{4}, d_{4}\right)$ the statement $\operatorname{GST}\left(d_{4}, c_{4}, b_{2}, c_{5}\right)$ follows. Therefore according to Lemma 7 there are such points d_{2}, d_{5} that $\operatorname{ARP}\left(d_{2}, c_{2}, b_{5}, c_{3}, d_{3}\right)$ and $\operatorname{ARP}\left(d_{4}, c_{4}, b_{2}, c_{5}, d_{5}\right)$ are valid. From $\operatorname{GST}\left(d_{5}, d_{4}, c_{4}, b_{2}\right), \operatorname{GST}\left(b_{2}, c_{4}, b_{1}, a_{1}\right), \operatorname{GST}\left(a_{1}, b_{1}, c_{3}, b_{5}\right)$ and $\operatorname{GST}\left(b_{5}, c_{3}, d_{3}, d_{2}\right)$ according to Lemma $2 \operatorname{GST}\left(d_{2}, d_{3}, d_{4}, d_{5}\right)$ follows so according to Lemma 7 there is such a point d_{1} that $\operatorname{ARP}\left(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right)$ is valid.

With the repeated application of Lemma 2 from $\operatorname{GST}\left(d_{2}, c_{2}, b_{5}, c_{3}\right)$, $\operatorname{GST}\left(c_{3}, b_{5}, a_{5}, a_{1}\right), \operatorname{GST}\left(a_{1}, a_{5}, a_{4}, a_{3}\right), \operatorname{GST}\left(a_{3}, a_{4}, b_{4}, c_{1}\right)$ follows $\operatorname{GST}\left(c_{1}\right.$, $\left.b_{4}, c_{2}, d_{2}\right)$, from $\operatorname{GST}\left(d_{1}, d_{2}, d_{3}, d_{4}\right), \operatorname{GST}\left(d_{4}, d_{3}, c_{3}, b_{1}\right), \operatorname{GST}\left(b_{1}, c_{3}, b_{5}, a_{5}\right)$ and $\operatorname{GST}\left(a_{5}, b_{5}, c_{2}, b_{4}\right)$ follows $\operatorname{GST}\left(b_{4}, c_{2}, d_{2}, d_{1}\right)$, from $\operatorname{GST}\left(d_{5}, c_{5}, b_{2}, c_{4}\right)$, $\operatorname{GST}\left(c_{4}, b_{2}, a_{2}, a_{1}\right), \operatorname{GST}\left(a_{1}, a_{2}, a_{3}, a_{4}\right), \operatorname{GST}\left(a_{4}, a_{3}, b_{3}, c_{1}\right)$ follows $\operatorname{GST}\left(c_{1}\right.$, $\left.b_{3}, c_{5}, d_{5}\right)$, and from $\operatorname{GST}\left(d_{1}, d_{5}, d_{4}, d_{3}\right), \operatorname{GST}\left(d_{3}, d_{4}, c_{4}, b_{1}\right), \operatorname{GST}\left(b_{1}, c_{4}, b_{2}\right.$, $\left.a_{2}\right)$ and $\operatorname{GST}\left(a_{2}, b_{2}, c_{5}, b_{3}\right)$ follows $\operatorname{GST}\left(b_{3}, c_{5}, d_{5}, d_{1}\right)$ so that we have the final statements $\operatorname{ARP}\left(d_{1}, c_{1}, b_{4}, c_{2}, d_{2}\right), \operatorname{ARP}\left(d_{5}, c_{5}, b_{3}, c_{1}, d_{1}\right)$.

References

[1] Z. Kolar-Begović and V. Volenec: DGS-trapezoids in GS-quasigroups, Math. Communications 8 (2003), 215 - 218.
[2] V. Volenec: GS-quasigroups, Čas. pĕst. mat. 115 (1990), $307-318$.
[3] V. Volenec and Z. Kolar: GS-trapezoids in GS-quasigroups, Math. Communications 7 (2002), 143 - 158.
[4] V. Volenec and Kolar-Begović; Affine regular pentagons in GS-quasigroups, Quasigroups Related Systems 12 (2004), 103 - 112.

Received January 6, 2005
Zdenka Kolar-Begović
Department of Mathematics, University of Osijek, Gajev trg 6, HR-31 000 Osijek, Croatia
e-mail: zkolar@mathos.hr
Vladimir Volenec
Department of Mathematics, University of Zagreb, Bijenička c. 30, HR-10 000 Zagreb, Croatia,
e-mail: volenec@math.hr

