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Fuzzy isomorphism and quotient of fuzzy

subpolygroups

Reza Ameri and Hossein Hedayati

Abstract

The aim of this note is the study of fuzzy isomorphism and quotient of fuzzy subpoly-
groups. In this regards �rst we introduce the notion of fuzzy isomorphism of fuzzy sub-
polygroups and then we study the quotient of fuzzy subpolygroups. Finally we obtain
some related basic results.

1. Introduction

Hyperstructure theory was born in 1934 when Marty de�ned hypergroups,
began to analyse their properties and applied them to groups, rational alge-
braic functions. Now they are widely studied from theoretical point of view
and for their applications to many subjects of pure and applied properties
and applied mathematics. In 1981 Ioulidis introduced the notion of poly-
group as a hypergroup containing a scalar identity ([14]). Polygroups are
studied in [5, 6] were connections with color schemes, relational algebras,
�nite permutation groups and Pasch geometry.

Following the introduction of fuzzy set by L. A. Zadeh in 1965 ([20]), the
fuzzy set theory developed by Zadeh himself and others in mathematics and
many applied areas. Rosenfeld in 1971 de�ned and studied the concept of
a fuzzy subgroups [19]. Zahedi and others introduced and study the notion
of fuzzy hyper-algebraic structures ( for example see [1, 2, 3, 8, 11, 13, 21]).
In this note by considering the notion of polygroups, �rst we introduce the
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notions of isomorphism, quotient and composition of fuzzy subpolygroups.
Finally we study the relation of isomorphism and level subpolygroups.

2. Preliminaries

Let H be a nonempty set by P∗(H) we mean the family of all nonempty
subsets of H. A map · : H×H −→ P∗(H) is called a hyperoperation or join
operation. A hypergroup is a structure (H, ·) that satis�es two axioms:

(Associativity) a(bc) = (ab)c for all a, b, c ∈ H,

(Reproduction) aH = H = Ha for all a ∈ H.

Let H be a hypergroup and K a nonempty subset of H. Then K is a
subhypergroup of H if itself is a hypergroup under hyperoperation restricted
to K. Hence it is clear that a subset K of H is a subhypergroup if and only
if aK = Ka = K, under the hyperoperation on H (See [7]).

A hypergroup is called a polygroup if
(1) ∃e ∈ H such that e ◦ x = x = x ◦ e∀x ∈ H,
(2) ∀x ∈ H there exists an unique element, say x′ ∈ H such that

e ∈ x ◦ x′ ∩ x′ ◦ x (we denote x′ by x−1),
(3) ∀x, y, z ∈ H, z ∈ xoy =⇒ x◦y =⇒ x ∈ z◦y−1 =⇒ y ∈ x−1◦z.

A canonical hypergroup is a commutative polygroup. A nonempty subset
A of a polygroup (H, ·) is called a subpolygroup if (A, ·) is itself a polygroup.
In this case we write A <P H. A subpolygroup A is called normal in H if

xNx−1 ⊆ N, ∀x ∈ H.

In this case we write N CP H.

Lemma 2.1 [21]. Let A <P H. Then

(1) ∀a ∈ A Aa = aA = A,
(2) AA = A,

(3) (a−1)−1 = a.

Lemma 2.2 [6]. Let N CP H. Then

(1) Na = aN ∀a ∈ H,
(2) (Na)(Nb) = Nab.

Let A ≤P H, x ∈ H. Then Ax is called a right coset of A and we denote
the set of all right costs of A in H by H/A, that is H/A = {Ax |x ∈ H}.

De�ne on H/A two hyperoperations:

Ax ◦Ay = {Az | z ∈ Ax ·Ay}, Ax⊗Ay = {Az | z ∈ xy}.
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Lemma 2.3. Let H be a polygroup and A a normal subpolygroup of H.

Then (H/A,⊗) and (H/A, ◦) are polygroups, which are coincide together.

Proof. Indeed, for x, y ∈ H, we have xN � yN = {zN | z ∈ xy} = xyN =⋃
z∈xy zN = xyN = xN ⊗ yN .

De�nition 2.4 [16]. Let H1 and H2 be two polygroups. A function
f : H1 −→ H2 is called

(1) a homomorphism if f(xy) ⊆ f(x)f(y),
(2) a good homomorphism if f(xy) = f(x)f(y),
(3) a homomorphism of type 2, if f−1(f(x)f(y)) = f−1f(xy),
(4) a homomorphism of type 3, if f−1(f(x)f(y)) = f−1f(x)f−1f(y),
(5) a homomorphism of type 4, if

f−1(f(x)f(y)) = f−1f(xy) = f−1f(x)f−1f(y),
(6) a good isomorphism if it is an isomorphism and good homomor�

phism.

Proposition 2.5 [16]. Every homomorphism (one-to-one homomorphism)
of any of type 1 through 4 is a homomorphism (isomorphism).

De�nition 2.6. Let (G, ·) be a group, FS(G) the set of all fuzzy subset
of G. Then µ ∈ FS(G) is a fuzzy subgroup of G if ∀a, b ∈ G the following
conditions are satis�ed:

(i) µ(z) > min(µ(x), µ(y)),
(ii) µ(x−1) > µ(x).
We denote the fuzzy subgroup µ by µ <F G.

De�nition 2.7 [21]. Let (H, ·) be a polygroup and µ ∈ FS(H) . Then µ
is a fuzzy subpolygroup of H if

(i) µ(z) > min(µ(x), µ(y)), ∀x, y ∈ H and ∀z ∈ xy,
(ii) µ(x−1) > µ(x).

In this case we write µ <FP H.

De�nition 2.8. A fuzzy subpolygroup µ of H is called fuzzy normal if for
every x, y ∈ H, z ∈ xy, z′ ∈ yx we have µ(z) = µ(z′). We denote this fact
by µ CFP H.

Lemma 2.9 [21]. Let µ <FP H. Then

(i) µ(e) > µ(x) for all x ∈ H,

(ii) µ(x−1) = µ(x) for all x ∈ H.
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Theorem 2.10 [21]. Let µ be a fuzzy subset of H. Then µ <FP H (resp.
µ CFP H ) if and only if µ(e) > µ(x) for all x ∈ H and µt <FP H (resp.
µt CFP H ) for all t ∈ [0, µ(e)].

Let µ CFP H. Then we de�ne fuzzy subset xµ̂ by

xµ̂(g) = sup
z∈x−1g

µ(z),

which is called a fuzzy left coset of µ. Similarly a fuzzy right coset, µ̂x of µ
is de�ned.

Suppose that µ is a fuzzy subset of X. Then for t ∈ [0, 1] the level subset
µt is de�ned by µt = {x ∈ X |µ(x) > t}. The support of µ, is de�ned by

Supp(µ) = {x ∈ H |µ(x) > 0}.
If G is a group and µ is a fuzzy subset of G, then we de�ne µa as follows:

µa = {x ∈ G |µx = µa}.
Also we de�ne aµe and µaµb by

aµe = {ax |x ∈ µe}, µaµb = {xy |x ∈ µa, y ∈ µb}.

Theorem 2.11 [1]. Let G be a group and µ be a fuzzy subset of G. De�ne

oµ : G×G −→ P∗(G) by aoµb = µaµb. Then oµ is a hyperoperation on G.

Moreover, if µ is a fuzzy normal subgroup of G, then (G, oµ) is a polygroup.

Extension Principal: Any function f : X −→ Y induces two functions

f : FS(X) −→ FS(Y ) and f−1 : FS(Y ) −→ FS(X),

which are de�ned by

f(µ)(y) = sup{µ(x) | y = f(x)}
for all µ ∈ FS(X), and

f−1(ν)(x) = ν(f(x))
for all ν ∈ FS(Y ).

3. Main results

In the sequel by H we mean a polygroup.

Theorem 3.1.

(i) If µ <FP H, then Supp(µ) <P H.

(ii) If µ CFP H, then Supp(µ) CP H.
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Proof. It is easy to verify that Supp(µ) =
⋃

t∈Im(µ)\{0} µt. Then, by Theo-
rem 2.11 and the fact that the sets of level subsets of µ constitute a totally
ordered set, Supp(µ) is a subpolygroup of H.

Remark 3.2. The converse of Theorem 3.1 is not true. For example the
set H = {e, a, b} with the hyperoperation

. e a b
e e a b
a a e b
b b b {e, a}

is a polygroup. De�ne a fuzzy subset µ on H by µ(e) = 1, µ(a) = 1/4,
µ(b) = 1/3. Then µ is a fuzzy subpolygroup, but µ1/3 = {e, b} is not a
subhypergroup of H, since b ∈ µ1/3, but b · b = {e, a} 6⊆ µ1/3. Thus, by
Theorem 2.15, µ1/3 is not a subpolygroup of H. So, µ1/3 is not normal in
H, but supp(µ) = H is a normal subpolygroup of H.

Theorem 3.3. Let H be a fuzzy polygroup and µ <FP H. Then the set

Iµ = {xµ̂ |x ∈ H} with the hyperoperation xµ̂ · yµ̂ = {zµ̂ | z ∈ xy} is a

polygroup.

Proof. The associativity immediately follows from the associativity. Ob-
viously eµ̂ is the identity element. The inverse of xµ̂ is (x−1)µ̂. Now, if
xµ̂, yµ̂, zµ̂ ∈ Iµ, then from zµ̂ ∈ xµ̂ · yµ̂ it is concluded that z ∈ xy. Thus
x ∈ zy−1 and hence xµ̂ ∈ (x−1)µ̂ · yµ̂. Therefore Iµ is a polygroup.

De�nition 3.4. Let µ <FP H. Then µ is called Abelian if µt is Abelian
(or a canonical hypergroup) for every t ∈ [0, µ(e)].

Theorem 3.5. Let µ <FP H. Then µ is Abelian if and only if Supp(µ) is

Abelian.

Proof. Suppose that Supp(µ) is Abelian. Then for every t ∈ (0, µ(e)] we
have µt ⊆ Supp(µ). Thus µt is Abelian for every t ∈ [0, µ(e)]. Therefore µ
is Abelian.

Conversely, suppose that for every t ∈ (0, µ(e)], µt is Abelian. Let
a, b ∈ Supp(µ). Thus there are µt1 and µt2 such that a ∈ µt1 and b ∈ µt2 ,
t1, t2 ∈ (0, µ(e)]. Suppose that t1 6 t2, then µt2 6 µt1 , and hence a, b ∈ µt1 .
Thus ab = ba. This complete the proof.

De�nition 3.6. Let H1 and H2 be polygroups. If µ <FP H1 and ν <FP H2,
then a good isomorphism f : Supp(µ) −→ Supp(ν) is called a fuzzy good

isomorphism from µ to ν if there exists a positive real number k such that
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µ(x) = kν(f(x)), ∀x ∈ Supp(µ) \ {e}.
In this case we write µ ' ν and say that µ and ν are isomorphic. It is clear
that ' is an equivalence on the set of all fuzzy subpolygroups of H.

Remark 3.7. Note that if two fuzzy polygroups are isomorphic it dose not
imply that the underling polygroups are being isomorphic. For instance
consider S3 = {e, a, a2, b, ab, a2b} and Z6 = {0, 1, 2, 3, 4, 5}. De�ne the
fuzzy subsets µ and ν on S3 and Z6 respectively as follows:

µ(e) = 1, µ(a) = 1/2 = µ(a2), µ(b) = 0 = µ(ab) = µ(b2),
ν(0) = 1, ν(2) = 1/3 = ν(4), ν(1) = ν(5) = ν(3) = 0.

Then (S3, ◦µ) and (Z6, ◦ν) are polygroups by Theorem 2.14.
Now we de�ne the mapping f : Supp(µ) −→ Supp(ν) by f(e) = 0,

f(a) = 2, f(a2) = 4. It is easy to verify that µ ' ν, µ <FP S3 and
µ <FP Z6. Thus µ ' ν, but (S3, oµ) 6' (Z6, oν).

Theorem 3.8. Let µ <FP H1 and ν <FP H2. If µ ' ν, then µ is Abelian
if and only if ν is Abelian.

Proof. Let µ be Abelian. We show that also ν is Abelian. By Theorem 3.6
it is enough we show that Supp(ν) is Abelian. Let x, y ∈ Supp(ν). Then
there are a, b ∈ Supp(µ) such that x = f(a) and y = f(b). On the other
hand by hypothesis there exists a positive number k such that

µ(a) = kν(f(a)), µ(b) = kν(f(b)).
Since k > 0, then ν(f(a)) > 0, so µ(a) > 0, µ(b) > 0 and, in the

consequence a, b ∈ Supp(µ). Thus ab = ba and f(ab) = f(ba). Then
f(a)f(b) = f(b)f(a). Thus xy = yx. Therefore ν is Abelian.

Conversely, suppose that ν is Abelian. Let a, b ∈ Supp(µ). Then
f(a), f(b) ∈ Supp(ν), henceforth f(a)f(b) = f(b)f(a), that is ab = ba.
Therefore ν is fuzzy Abelian.

Theorem 3.9. Let µ <FP H1 and ν <FP H2. If µ ' ν, then for every

t ∈ (0, µ(e)] there exists an element s ∈ (0, ν(e)] such that µt ' νs.

Proof. Let f : Supp(µ) −→ Supp(ν) be a fuzzy isomorphism such that
µ(x) = kν(f(x)) for all x ∈ Supp(µ)\{e} and for some positive real number
k. Let s = t/k. Consider g : µt −→ νs, as the restriction of f to µt. Let
x ∈ µt, then µ(x) > t, and hence kν(f(x)) > t. Thus f(x) ∈ νs and so g is
well-de�ned. Clearly g is injective and g(ab) = g(a)g(b), ∀a, b ∈ µt. Now
suppose that y ∈ νs. Then ν(y) > s. On the other hand there exists an
element x ∈ Supp(µ) such that y = f(x), thus kν(f(x)) > t, and hence
x ∈ νt. Therefore g is surjective and hence µt ' νs.
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Theorem 3.10. Let µ <FP H1, ν <FP H2, µ ' ν and µ /FP supp(µ).
Then ν /FP supp(ν).

Proof. We must prove that for all x, y ∈ Supp(ν) we have:
ν(z) = ν(z′) ∀z ∈ xy, z′ ∈ yx.

For x, y ∈ Supp(ν) there are a, b ∈ Supp(µ) such that f(a) = x, f(b) = y.
Then xy = f(ab) and yx = f(ba). Now let z ∈ xy = f(ab) and z′ ∈ yx =
f(ba), thus there are t, t′ ∈ Supp(ν) such that z = f(t), z′ = f(t′), hence
t′ ∈ ba and, by hypothesis, µ(t) = µ(t′). But we have µ(t) = kν(z) and
µ(t′) = kν(z′). Thus ν(z) = ν(z′). Therefore µ is fuzzy normal.

De�nition 3.11. Let µ <FP H1, ν <FP H2 and Supp(µ) ⊆ Supp(ν). We
de�ne the quotient of µ/ν as follows:

µ/ν : H/Supp(ν) −→ [0, 1],
(µ/ν)(xSupp(ν)) = Sup{µ(a) | aSupp(ν) = xSupp(ν)}.

Remark 3.12. Note that in general µ1/ν = µ2/ν dose not implies that
µ1 = µ2. For example, consider the polygroup H = {e, a, b} from Remark
3.2 and de�ne the fuzzy subsets µ1 and µ2 on H as follows:

µ1(e) = 1, µ1(a) = 1/2, µ1(b) = 1/4,
and

µ2(e) = 1, µ2(a) = 1/3, µ2(b) = 1/4,
and

ν(e) = 1, ν(a) = 1/4, ν(b) = 0.

Clearly µ1, µ2 <FP H, ν E H and µ1/ν = µ2/ν, but µ1 6= µ2.

Theorem 3.13. If µ <FP H1, then µ/µe ' µ and µ/µ ' µe, where

µe(t) = µ(e), if t = e and 0, otherwise.

Proof. De�ne f : Supp(µ/µe) −→ Supp(µ) putting f(xSupp(µe)) = x.
Since Supp(µe) = {e} and µ/µe(xSupp(µe)) = µ(x), then we conclude that
f is a fuzzy isomorphism. Now de�ne g : Supp(µe) −→ Supp(µ/µ), by
g(e) = Supp(µ). Clearly µ(e) = (µ/µ)(g(e)). Thus µ/µ ' µe.

Proposition 3.14. Let H be a polygroup and N its normal subpolygroup.

Then the map φH : H −→ (H/N, ◦) de�ned by φH(x) = xN is an onto

homomorphism of type 3.

Proof. Clearly φH is onto. In view of De�nition 2.5 we must show that

φ−1
H (φH(x)) ◦ φH(y)) = φ−1

H (φH(x)) ◦ φ−1
H (φH(y)) ∀x, y ∈ H.



182 R. Ameri and H. Hedayati

Let t ∈ φ−1
H (φH(x) ◦ φH(y)), then φH(t) ∈ φH(x) ◦ φH(y), yields t ∈ xy

by Lemma 2.4, and hence t ∈ φ−1
H (φH(x)) ◦ φ−1

H (φH(y)).
Conversely, suppose that z ∈ φ−1

H (φH(x))◦φ−1
H (φH(y). Then there exist

u ∈ φ−1
H (φH(x)) and v ∈ φ−1

H (φH(y)) such that z ∈ uv. Thus φH(z) ⊆
φH(uv) ⊆ φH(u) ◦ φH(v) = φH(x) ◦ φH(y). Therefore z ∈ φ−1

H (φH(x)) ◦
φ−1

H (φH(y)). So, φH is a homomorphism of type 3.

The map φH is called a canonical epimorphism and for simplicity will
be denoted by φ.

Let µ be a fuzzy subpolygroup of H and N its normal subpolygroup.
Then we can de�ne on H/N the fuzzy set µ putting

µ(z) = sup
xN=zN

µ(x).

In fact, by the principal extension, we have µ = φ(µ). So, from just proved
results we conclude

Corollary 3.15. Let µ <FP H1, ν <FP H2 and Supp(µ) ⊆ Supp(ν).
Then φ(µ) = µ/ν, where φ : H −→ H/Supp(ν) is the canonical epimor-

phism.

The composition of fuzzy subpolygroups µ and ν of H is de�ned by

µν(x) = sup
x∈uv

min(µ(u), ν(v)).

Lemma 3.16. If µ 6F PH, then µ2 = µ, and hence µn = µ.

Proof. For every x ∈ H we have µ2(x) = sup
x∈uv

min(µ(u), µ(v)) 6 µ(x), since

µ is a fuzzy polygroup. On the other hand, µ2(x) > min(µ(x), µ(e)) =
µ(x). Thus µ2 = µ and, by induction, µn = µ.

Theorem 3.17. Let µ ∈ FS(H). Then µ is a fuzzy subpolygroup of H if

and only if µ2 = µ and µ(x) = µ(x−1) for all x ∈ H.

Proof. If µ is a fuzzy subpolygroup, then by Lemma 3.16 and De�nition 2.8
we have µ(x) = µ(x−1) for all x ∈ H.

Conversely, let x ∈ uv. Then by the hypothesis we have

µ(x) = µ2(x) = sup
x∈uv

min(µ(u), µ(v)) > min(µ(u), µ(v)).

Thus µ is a fuzzy subpolygroup of H.

Corollary 3.18. If µ and ν are fuzzy subpolygroups of H and νt E µt, for

all t ∈ Im(µ), then Supp(µ) E Supp(ν).
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Proposition 3.19. Let µ and ν are fuzzy subpolygroups of H such that

µν = νµ . Then µν is a fuzzy subpolygroup of H.

Proof. First we show that µν(x) = µν(x−1). Indeed,

µν(x) = sup
x∈x1x2

(µ(x1)µ(x2)) = sup
x−1∈x−1

2 x−1
1

min(µ(x1), ν(x2))

= sup
x−1∈x−1

2 x−1
1

min(ν(x1), µ(x2)) = νµ(x−1) = µν(x−1).

On the other hand µν = µ2ν2 = µ[(µν)ν] = µ[(νµ)ν] = (µν)(µν) = (µν)2.
Then, by Theorem 3.17, µν is a fuzzy subpolygroup.

Proposition 3.20. If µ 6FP H and K EH. De�ne ν(x) = µ(x), if x ∈ K
and ν(x) = 0 otherwise. Then νt E µt for all t ∈ (0, 1].

Proof. We must show that xνtx
−1 ⊆ νt, ∀x ∈ µt and ∀t ∈ (0, 1].

Let z ∈ xax−1 ⊆ xνtx
−1. If a 6∈ K, then ν(a) = 0 > t > 0, which is a

contradiction. Thus a ∈ K and hence µ(a) = ν(a) > t.

If a ∈ K, then µ(a) = ν(a) and µ(z) > min(µ(x), µ(a)) > t. Hence
ν(z) > t, i.e. z ∈ νt. Therefore νt E µt.
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