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A new construction of Bol loops: The �odd� case

Orin Chein and Edgar G. Goodaire

Abstract

In [2], the authors presented a new construction of Bol loops as extensions of a loop B

by Cm × Cn, in the case that B contains a central element of order 2 and that m and n

are even. In the �nal section of that paper, the authors remark that the assumption that
m and n are even is important and promise to investigate this question in more detail in
a future paper. This is that paper.

1. Introduction

A loop is Moufang if it satis�es the identity (xy · z)y = x(y · zy) and (right)
Bol if satis�es (xy · z)y = x(yz · y). A loop is left Bol if it satis�es the
re�ection of the right Bol identity, namely, y(z ·yx) = (y ·zy)x. Throughout
this paper, whether or not we say so explicitly, we assume that Bol loops
are right Bol. In the recent literature (see [4] and many of the references in
its bibliography), there has been much interest in Bol loops that satisfy the
automorphic inverse property, which is expressed by the additional identity
(xy)−1 = x−1y−1. Such loops are known by various names, including Bruck

loops, K-loops and gyrogroups.
The theory of Moufang loops is now quite mature, but such is far from

the case for Bol loops. For instance, whereas the 158 (nonassociative) Mo-
ufang loops of order less than 64 have been known for quite a while [3], our
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knowledge of the non-Moufang Bol loops of some relatively �small� orders
(e.g., 24 and 30) is far from complete. For sure, Bol loops are much more
abundant than Moufang loops. There are, for example, 2033 non-Moufang
Bol loops of order 16 (constructed computationally by Eric Moorhouse [5])
but only �ve Moufang loops that are not groups. It is therefore always of
interest to the subject whenever �new� ways to produce Bol loops are found.

Theorem 1.1. Let m and n be positive integers, let B be a loop, let r, s,
t, z and w be (not necessarily distinct) elements in Z(B), the centre of B,

such that rm = rn = s2 = t2 = 1. Let L = B×Cm×Cn with multiplication

de�ned by

[a, i, π][b, j, ρ] = [abrjπsijρtjπρzpwq, (i + j)?, (π + ρ)′],

where, for any integer i, i? and i′ denote the least nonnegative residues of i

modulo m and n, respectively, p = i+j−(i+j)?

m and q = π+ρ−(π+ρ)′

n . Then L
is a loop which we denote L(B,m, n, r, s, t, z, w).

Remark 1.2. In this paper, and in the proof of Theorem 1.1 in particular,
we use frequently and implicitly that for any integers i and j,

1. (i + j∗)∗ = (i + j)∗,

2. i∗ = j∗ if and only if m
∣∣ (i− j) and

3. (−i)∗ = (−i∗)∗,

with analogous properties holding for ′.

Proof. Let [a, i, π] and [b, j, ρ] be elements of L. Let

k = (j − i)?, σ = (ρ− π)′,

p =
i + k − (i + k)?

m
, q =

π + σ − (π + σ)′

n

and x = dr−kπs−ikσt−kπσz−pw−q, where d is the unique element of
B such that ad = b. Then [a, i, π][x, k, σ] = [b, j, ρ]. Let y =
er−iσs−ikπt−iπσz−pw−q, where e is the unique element of B such that
ea = b. Then [y, k, σ][a, i, π] = [b, j, ρ]. Thus, L is a quasigroup. Clearly,
[1, 0, 0] is an identity element, so L is a loop.

Before continuing, we explain our rationale for the notation in Theo-
rem 1.1. We think of the elements of the loop as being of the form (aui)vπ



A new construction of Bol loops: The �odd� case 89

(hence the notation [a, i, π]), where a ∈ B, u generates Cm and v generates
Cn, and where um = z ∈ Z(B) and vn = w ∈ Z(B). Thus, for example,
ui+j = zpu(i+j)?

, where i+ j = pm+(i+ j)?. We used a mix of Roman and
Greek characters to indicate the source from which an exponent comes�
Roman for the exponents of u, the second coordinate, and Greek for the
exponents of v, the third coordinate. The elements r, s and t represent
commutators and associators. Speci�cally, r represents the commutator of
v and u, and the exponent jπ indicates that we are considering the commu-
tator of vπ and uj . Similarly, s and t, respectively, represent the associators
(u, u, v) and (v, u, v), and the exponents ijρ on s and jπρ on t indicate that
we are associating (ui, uj , vρ) and (vπ, uj , vρ), respectively.

In [2], where m and n were assumed to be even, we showed that L is a
right Bol loop if B is a right Bol loop and, moreover, that the conditions
rm = rn = s2 = t2 = 1 are necessary to ensure this is the case. In this
paper, we consider the possibility that m or n is odd and show that this
condition implies s = t = 1. Thus the following theorem becomes relevant.

Theorem 1.3. Let L = L(B,m, n, r, s, t, z, w) be the loop constructed in

Theorem 1.1 and assume that B is a right Bol loop. If s = t = 1, then L is

a right Bol loop.

Proof. Let x1 = [a, i, π], x2 = [b, j, ρ], x3 = [c, k, σ]. Then

x1x2 = [abrjπzp1wq1 , (i + j)?, (π + ρ)′],

where i + j = p1m + (i + j)? and π + ρ = q1n + (π + ρ)′. Further,

(x1x2)x3 = [(ab · c)rjπ+k(π+ρ)′zp1+p2wq1+q2 , ((i + j)∗ + k)∗, ((π + ρ)′ + σ)′],

where

(i + j)∗ + k = p2m + ((i + j)∗ + k)∗

and (π + ρ)′ + σ = q2n + ((π + ρ)′ + σ)′.
(1.1)

Now ((i + j)∗ + k)∗ = (i + j + k)∗ and ((π + ρ)′ + σ)′ = (π + ρ + σ)′. Then,
making the substitutions (i+j)∗ = (i+j)−p1m and (π+ρ)′ = (π+ρ)−q1n,
equations (1.1) become

i + j + k = (p1 + p2)m + (i + j + k)∗

and
π + ρ + σ = (q1 + q2)n + (π + ρ + σ)′.
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Similar observations and calculations give

[(x1x2)x3]x2 = [{(ab·c)b}rγ1zp1+p2+p3wq1+q2+q3 , (i+2j+ k)?, (π+ 2ρ + σ)′],

where
i + 2j + k = (p1 + p2 + p3)m + (i + 2j + k)?,

π + 2ρ + σ = (q1 + q2 + q3)n + (i + 2j + k)′

and γ1 = jπ + k(π + ρ)′ + j(π + ρ + σ)′.

Similarly,

x2x3 = [bcrkρzp4wq4 , (j + k)?, (ρ + σ)′],

where j + k = p4m + (j + k)? and ρ + σ = q4n + (ρ + σ)′,

(x2x3)x2 = [(bc · b)rkρ+j(ρ+σ)′zp4+p5wq4+q5 , 2j + k, 2ρ + σ],

where 2j + k = (p4 + p5)m + (2j + k)? and 2ρ + σ = (q4 + q5)n + (2ρ + σ)′,
and

x1[(x2x3)x2] = [a{bc · b}rγ2zp4+p5+p6wq4+q5+q6 , (i + 2j + k)?, (π + 2ρ + σ)′],

where
i + 2j + k = (p4 + p5 + p6)m + (i + 2j + k)?,

π + 2ρ + σ = (q4 + q5 + q6)n + (π + 2ρ + σ)′,

and γ2 = kρ+j(ρ+σ)′+(2j+k)∗π. It follows that p1+p2+p3 = p4+p5+p6

and q1+q2+q3 = q4+q5+q6 . Also, rd∗ = rd′ = rd for any integer d because
rm = rn = 1, so rγ1 = rjπ+k(π+ρ)+j(π+ρ+σ) = r2jπ+kπ+kρ+jρ+jσ = rγ2 . We
have shown that the right Bol identity holds in L.

2. Properties of the loop L(B, m, n, r, s, t, z, w)

Let L = L(B,m, n, r, s, t, z, w) be a loop as in Theorem 1.1.

Theorem 2.1. Regardless of the values of m and n, if d is in the centre of

B, then [d, 0, 0] is in the centre of L.

Proof. Let x1 = [a, i, π], x2 = [b, j, ρ] and x3 = [c, k, σ]. Then

x1x2 = [a, i, π][b, j, ρ] = [abrjπsijρtjπρzpwq, (i + j)?, (π + ρ)′]

and

x2x1 = [b, j, ρ][a, i, π] = [bariρsijπtiπρzpwq, (i + j)?, (π + ρ)′].



A new construction of Bol loops: The �odd� case 91

Setting j = ρ = 0, it is clear that if b commutes with every element of B,
then [b, 0, 0] commutes with every element of L.

Similarly,

(x1x2)x3 = ([a, i, π][b, j, ρ])[c, k, σ]

= [abrjπsijρtjπρzp1wq1 , (i + j)∗, (π + ρ)′][c, k, σ]

= [(ab · c)rjπ+k(π+ρ)′sijρ+(i+j)∗kσtjπρ+k(π+ρ)′σzp1+p2wq1+q2 ,

(i + j + k)∗, (π + ρ + σ)′]

and

x1(x2x3)=[a, i, π]([b, j, ρ][c, k, σ])

=[a, i, π][bcrkρsjkσtkρσzp3wq3 , (j + k)?, (ρ + σ)′]

=[(a·bc)rkρ+(j+k)∗πsjkσ+i(j+k)∗(ρ+σ)′tkρσ+(j+k)∗π(ρ+σ)′zp3+p4wq3+q4 ,
(i + j + k)∗, (π + ρ + σ)′],

where p1, p2, p3, p4 are de�ned by the equations

i + j = p1m + (i + j)∗,
i + j + k = (p1 + p2)m + (i + j + k)∗,

j + k = p3m + (j + k)∗,
i + j + k = (p3 + p4)m + (i + j + k)∗

(2.1)

and q1, q2, q3, q4 by the equations

π + ρ = q1n + (π + ρ)′,
π + ρ + σ = (q1 + q2)n + (π + ρ + σ)′,

ρ + σ = q3n + (ρ + σ)′,
π + ρ + σ = (q3 + q4)n + (π + ρ + σ)′.

(2.2)

(Consequently, p1 + p2 = p3 + p4 and q1 + q2 = q3 + q4.) Setting k =
σ = 0, it is clear then that, if (ab)c = a(bc) for every a, b ∈ B, then
([a, i, π][b, j, ρ])[c, 0, 0] = [a, i, π]([b, j, ρ][c, 0, 0]) for every [a, i, π] and [b, j, ρ]
in L. In other words, if c is in the right nucleus of B, then [c, 0, 0] is in the
right nucleus of L. Similarly, if c is the middle (respectively left) nucleus of
B, then [c, 0, 0] is in the middle (respectively left) nucleus of L. So if c is
in the nucleus of B, then [c, 0, 0] is in the nucleus of L. This completes the
proof.

Corollary 2.2. If B is centrally nilpotent of class at most 2, then so is L.
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Proof. If B is centrally nilpotent of class at most 2, then all commutators
and associators in B are central. But it is clear from the proof of The-
orem 2.1 that any commutator or associator in L is of the form [d, 0, 0],
d ∈ Z(B), the centre of B. Therefore, by Theorem 2.1, all commuta-
tors and associators in L are central, so L is centrally nilpotent of class at
most 2.

Corollary 2.3. Let M be the loop L(Z,m, n, r, s, t, z, w), Z = Z(B). As-

sume at least one of r, s, t is di�erent from 1. Then M is centrally nilpotent

of class 2.

Proof. Let u = [1, 1, 0] and v = [1, 0, 1]. Then u and v are in M . Setting
i = ρ = 1 and j = π = 0 in the expressions for x1x2 and x2x1 in Theorem 2.1
gives (u, v) = [r−1, 0, 0]. Setting i = j = σ = 1 and k = π = ρ = 0 in the
expressions for (x1x2)x3 and x1(x2x3) gives (u, u, v) = [s−1, 0, 0] and setting
i = ρ = k = 0 and π = j = σ = 1 gives (v, u, v) = [t−1, 0, 0]. Since Z is an
abelian group, M is centrally nilpotent of class at most 2 by Corollary 2.2.
Since (u, v), (u, u, v) and (v, u, v) are not all the identity element, [1, 0, 0],
M is not an abelian group. Therefore, M is centrally nilpotent of class
2.

In the proof of the theorem that follows, we use the facts that if x and
y are elements of a centrally nilpotent Bol loop of class 2 and if k is any
integer, then (x, x, y)k = (xk, x, y) and (x, y, x) = (x, x, y)−1 [1, Corollary
2.7 and Lemma 2.2].

Let u = [1, 1, 0] and v = [1, 0, 1] be as above. It is not hard to show by
induction that, for k < m, uk = [1, k, 0], and that um = [1,m−1, 0][1, 1, 0] =
[z, 0, 0] ∈ Z(L). Similarly, vn = [w, 0, 0] ∈ Z(L).

Theorem 2.4. If L(B,m, n, r, s, t, z, w) is a right Bol loop, then sm =
tn = 1.

Proof. Let M be as in Corollary 2.3, u = [1, 1, 0] and v = [1, 0, 1]. Since
M is a centrally nilpotent Bol loop of class 2, we have [s−m, 0, 0] =
(u, u, v)m = (um, u, v) = [1, 0, 0] (since um ∈ Z(L)) and, similarly,
[t−n, 0, 0] = (v, u, v)n = (v, v, u)−n = (v−n, v, u) = [1, 0, 0].

Corollary 2.5. Suppose L(B,m, n, r, s, t, z, w) is a right Bol loop. If m is

odd, then s = 1 and if n is odd, then t = 1.

Proof. This follows from sm = s2 = 1 and tn = t2 = 1.
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Corollary 2.6. Let x1 = [a, i, π], x2 = [b, j, ρ] and x3 = [c, k, σ] be elements

of the loop L = L(B,m, n, r, s, t, z, w). If L is a right Bol loop, then the

commutator of x1 and x2, and the associator of x1, x2, and x3 are as

follows:

(x1, x2) = [(a, b)rjπ−iρsij(π+ρ)tπρ(i+j), 0, 0] (2.3)

(x1, x2, x3) = [(a, b, c)sijρ+ikσ+i(j+k)(ρ+σ)′tjπρ+kπσ+(j+k)∗π(ρ+σ), 0, 0]. (2.4)

Proof. The expression for the commutator follows from the expressions for
x1x2 and x2x1 given in the proof of Theorem 2.1 using the fact that s2 =
t2 = 1. Now rm = 1 = sm, so rk∗

= rk and sk∗
= sk for any integer k, and

rn = 1 = tn, so rk′
= rk and tk

′
= tk for any integer k. With reference

again to the proof of Theorem 2.1, it follows that

(x1x2)x3 = [(ab · c)rjπ+kπ+kρsijρ+ikσ+jkσtjπρ+kπσ+kρσzp1+p2wq1+q2 ,

(i + j + k)∗, (π + ρ + σ)′]

and

x1(x2x3)

= [(a · bc)rkρ+jπ+kπsjkσ+i(j+k)(ρ+σ)′tkρσ+(j+k)∗π(ρ+σ)zp1+p2wq1+q2 ,

(i + j + k)∗, (π + ρ + σ)′].

So the associator (x1, x2, x3) is as stated.

3. The case s = t = 1

In the remaining sections of this paper, it turns out to be the case that
s = t = 1, so we �nd it convenient to summarize here facts about loops of
the form L(B,m, n, r, 1, 1, z, w).

First note that when s = t = 1, the multiplication rule in L becomes

[a, i, π][b, j, ρ] = [abrjπzpwq, (i + j)?, (π + ρ)′]

with p and q de�ned by

i + j = pm + (i + j)∗ and π + ρ = qn + (π + ρ)′. (3.1)
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Let x1 = [a, i, π] and x2 = [b, j, ρ]. Setting s = t = 1 in (2.3), the
commutator of x1 and x2 is

(x1, x2) = [(a, b)rjπ−iρ, 0, 0]. (3.2)

In particular, L is commutative if and only if B is commutative and r = 1.
With x3 = [c, k, σ] (and x1, x2 as above), setting s = t = 1 in (2.4)

shows that the associator of x1, x2 and x3 is

(x1, x2, x3) = [(a, b, c), 0, 0]. (3.3)

In particular, L is associative if and only if B is associative.
With x1, x2, x3 as above, we have

(x1x2 ·x3)x2 = [[(ab ·c)b]rjπ+k(π+ρ)′+j(π+ρ+σ)′ , (i + 2j + k)∗, (π + 2ρ + σ)′]

and

x1(x2x3 ·x2) = [[a(bc·b)]rkρ+j(ρ+σ)′+(2j+k)∗π, (i + 2j + k)∗, (π + 2ρ + σ)′].

Since rm = rn = 1, the ′s and ∗s can be dropped in the exponents of r. The
exponents then become the same and it is clear that L is Moufang if and
only if B is Moufang.

Can L be a Bruck loop? It is a straightforward computation to see that,
for [a, i, π] ∈ L,

[a, i, π]−1 = [a−1riπzpwq, (−i)?, (−π)′], (3.4)

where p =
{

0 if i = 0
−1 otherwise

}
and q =

{
0 if π = 0

−1 otherwise

}
.

Let x = [1, 0, 1] and y = [1, 1, 0]. Then xy = [r, 1, 1] and (xy)−1 =
[z−1w−1,m− 1, n− 1]. Also x−1 = [w−1, 0, n− 1] and y−1 = [z−1,m− 1, 0],
so x−1y−1 = [z−1w−1r, m−1, n−1]. Thus, if L is a Bruck loop, then r = 1,
the subloop B = {[b, 0, 0] | b ∈ B} ∼= B is Bruck, and the multiplication
rule becomes

[a, i, π][b, j, ρ] = [abzpwq, (i + j)?, (π + ρ)′], (3.5)

with p and q de�ned by equations (3.1).
Conversely, suppose B is a Bruck loop and r = 1 so that multiplication

in L is de�ned by (3.5). Let x = [a, i, π] and y = [b, j, ρ].
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Then

xy = [a, i, π][b, j, ρ] = [abzp1wq1 , (i + j)?, (π + ρ)′],

with

i + j = p1m + (i + j)∗ and π + ρ = q1n + (π + ρ)′.

so

(xy)−1 = [(ab)−1z−p1+p2x−q1+q2 , (−(i + j)∗)∗, (−(π + ρ)′)′]

where

p2 =

{
0 if (i + j)∗ = 0
−1 otherwise

and q2 =

{
0 if (π + ρ)∗ = 0
−1 otherwise.

Now x−1 = [a−1zp3wq3 , (−i)∗, (−π)′] where

p3 =

{
0 if i = 0
−1 otherwise

and q3 =

{
0 if π = 0
−1 otherwise

and y−1 = [b−1zp4wq4 , (−j)∗, (−ρ)′] where

p4 =

{
0 if j = 0
−1 otherwise

and q4 =

{
0 if ρ = 0
−1 otherwise

so

x−1y−1 = [a−1b−1zp3+p4+p5wq3+q4+q5 , ((−i)∗ + (−j)∗)∗, ((−π)′ + (−ρ′)′],

where

(−i)∗ + (−j)∗ = p5m + ((−i)∗ + (−j)∗)∗,

(−π)′ + (−ρ)′ = q5n + ((−π)′ + (−ρ)′)′.

Now (−(i + j)∗)∗ = (−(i + j))∗ = (−i − j)∗ and ((−i)∗ + (−j)∗)∗ =
((−i)+(−j))∗ = (−i−j)∗, so the second components of (xy)−1 and x−1y−1

are equal. Similarly, so are the third. That the �rst components are also
equal follows from the table below which shows that −p1 +p2 = p3 +p4 +p5
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in all cases (and a similar table showing that −q1 + q2 = q3 + q4 + q5 in all
cases as well).

i j (i + j)∗ p1 p2 p3 p4 p5

0 0 0 0 0 0 0 0
0 6= 0 6= 0 0 −1 0 −1 0

6= 0 0 6= 0 0 −1 −1 0 0
6= 0 6= 0 0 1 0 −1 −1 1

6= 0 6= 0 6= 0
{

0 i + j < m

1 i + j > m
−1 −1 −1

{
1 i + j < m

0 i + j > m

Thus L is a Bruck loop. In summary, L is Bruck if and only if B is Bruck
and r = 1.

Now let Comm(S), Ass(S) and S′ respectively denote the subloop of
a loop S generated by all commutators, the subloop of S generated by all
associators, and the commutator/associator subloop of S. Let C(S) and
N(S) denote, respectively, the centrum and the nucleus. Then

1. Comm(L) = 〈Comm(B), r〉,
2. Ass(L) = Ass(B),
3. L′ = 〈B′, r〉,
4. N(L) = {[c, k, σ] | c ∈ N(B)}, (In particular, the nucleus of L can

never be trivial.)

5 C(L) = {[a, i, π] | a ∈ C(B), ri = rπ = 1},
6. Z(L) = {[a, i, π] | a ∈ Z(B), ri = rπ = 1},
7. N(L) = Z(L) if and only if N(B) = Z(B) and r = 1, and
8. N(L) C L if and only if N(B) C B.

Properties (1)�(7) follow directly from the expressions for commutator
and associator in (2.3) and (2.4). Property (8) require a bit more compu-
tation but essentially follows from the multiplication law and Property (4).

4. The case that m or n is odd

Suppose m = 2k + 1, k ≥ 1, is odd. Then s = 1 by Corollary 2.5.

If n is odd, then t = 1 using Corollary 2.5 a second time. Suppose
n = 2`, ` ≥ 1, is even. Let g = gcd(m,n) and let x1 = [1, 0, 1], x2 = [1, k, 0]
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and x3 = [1, 1, 1]. With q de�ned by 2 = qn + 2′, we �nd

(x1x2 · x3)x2 = {([1, 0, 1][1, k, 0])[1, 1, 1]}[1, k, 0]

= ([rk, k, 1][1, 1, 1])[1, k, 0]

= [rk+1twq, k + 1, 2′][1, k, 0] = [rk+1+2′ktzwq, 0, 2′]

whereas

x1(x2x3 · x2) = [1, 0, 1]{([1, k, 0][1, 1, 1])[1, k, 0]}
= [1, 0, 1]([1, k + 1, 1][1, k, 0])

= [1, 0, 1][rkz, 0, 1] = [rkzwq, 0, 2′],

so rk+1+2′kt = rk, giving r2′k+1t = 1. Since rm = rn = 1, rg = 1 so, if
n = 2, then g = 1. This implies r = 1 and t = 1. If n 6= 2, then 2′ = 2 and
the equation r2′k+1t = 1 reads rmt = 1 so, again, t = 1. Thus, if n is even,
we again have t = 1 and, if n = 2, r = 1 as well.

We summarize.

Theorem 4.1. Let m and n be positive integers with either m or n odd.

Let B be a loop satisfying the right Bol identity. If m 6= 2 and n 6= 2, then
L = L(B,m, n, r, s, t, z, w) is a Bol loop if and only if s = t = 1. If m = 2
or n = 2, then L is a right Bol loop if and only if r = s = t = 1.

Remark 4.2. Let u = [1, 1, 0] and v = [1, 0, 1]. Since um = [z, 0, 0] and
vn = [w, 0, 0] are central, in the case that s = t = r = 1, L is just the
quotient of the direct product B×Cm×Cn by the normal (central) subgroup
generated by umz−1 and vnw−1, where z = [z, 0, 0] and w = [w, 0, 0].

Acknowledgement. We would like to thank the referee for noting that
our construction may be viewed as a special case of the following, more
general, construction: Let B be a loop, let G be an abelian group, and let
ζ be a map from G × G → Z(B). De�ne multiplication on L = B × G
by (a, α) ◦ (b, β) = (abζ(α, β), α + β). If we place appropriate conditions
on ζ, then L becomes a Bol loop, and many of our proofs and calculations
become less messy.

Nevertheless, we prefer our notation for two reasons�it is the notation
that was used in [2] and it makes more clear how the multiplication in L
depends only on the multiplication in B, the elements z = um and w = vn,
the commutator r = (v, u) and the associators s = (u, u, v) and t = (v, u, v).
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