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Orthogonal hypercubes and n-ary operations

Galina B. Belyavskaya and Gary L. Mullen

Abstract

We study connections between orthogonal hypercubes and n-ary operations and quasi-

groups.

1. Introduction

The notion of a Latin square is well known in combinatorial analysis. A
permutation cube is a generalization of a Latin square to higher dimensions;
see [5] beginning on page 181. A hypercube is an even more general ob-
ject. All of these objects and their corresponding orthogonal sets have many
applications in various areas including affine and projective geometries, de-
sign of experiments, error-correcting and error-detecting coding theory, and
cryptology, as well as in the theory of (t,m, s)-nets; see for example [7].

It is known that a binary quasigroup is an algebraic equivalent of a
Latin square. In particular, the multiplication table of a finite quasigroup
containing n elements gives a Latin square of order n, and conversely, a
Latin square of order n determines a quasigroup containing n elements.

The algebraic approach is useful for research on Latin squares and sets
of mutually orthogonal Latin squares. In this article we consider connec-
tions between hypercubes (sets of orthogonal hypercubes) and algebraic
n-ary operations (orthogonal sets of such operations). We recall some use-
ful but little-known results with respect to orthogonal n-ary operations, and
establish some of their connections with orthogonal hypercubes. We also
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introduce a more general version of orthogonality for n-ary operations (hy-
percubes) in order to distinguish the known types of orthogonality in the
combinatorial and algebraic approaches. We also establish some criterion
for orthogonality of n-ary operations.

2. d-dimensional hypercubes and d-ary operations

For d > 2, a d-dimensional hypercube (briefly, a d-hypercube) of order n
is an n x n x --- x n array with n¢ points based upon n distinct symbols.
N—_———

Such a d—hyp(ércube has type j with 0 < j < d — 1 if, whenever any j of the
d coordinates are fixed, each of the n symbols appears n¢ =1 times in that
subarray (see [8]).

A hypercube is a generalization of a Latin square, which in the case
of squares of order n, is an n X n array in which n distinct symbols are
arranged so that each symbol occurs once in each row and column. A Latin
square is a 2-dimensional hypercube of type 1.

Before we establish some connections between d-hypercubes and (al-
gebraic) d-ary operations, we recall some necessary definitions and results
from [3]. By x] we will denote the sequence ;, Tjy1,...,z;,1 < j. If j <4,
then xf is the empty sequence. Let ) be a finite or infinite set, d > 2 a
positive integer, and let Q% denote the d-th Cartesian power of the set Q.

We begin by recalling the definition of a binary operation. A binary
operation on a set @ is a mapping A : Q* — Q defined by A(x,y) — =z
and in this case we write A(z,y) = z. A set @) with a binary operation
A defined on @Q is called a binary quasigroup (Q,A) if for any two given
elements a,b € Q, the equations A(a,z) = b and A(y,a) = b each has
exactly one solution.

If a set @ has order n then a binary operation A is said to be of order n
and can be given by an n x n multiplication table with elements of @) and
with a bordered row and a bordered column. In such a table the element

¢ € @ is located at the intersection of the row a and the column b (i.e. in
the position (a, b)) if A(a,b) = c.

Example 1. In Table 1 are given the multiplication tables of two binary
operations A and B defined on the set @ = {1,2,3,4}. The operation B is
a quasigroup operation. The unbordered part of its multiplication table is
a Latin square of order 4.
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A1 2 3 4 B|l1 2 3 4
1{1 1 2 3 1|1 2 3 4
24 2 1 4 2 3 1 4 2
3012 1 3 4 304 3 2 1
413 2 4 1 402 4 1 3

Table 1: Multiplication tables of operations A and B

A d-ary operation A (briefly, a d-operation) on a set @ is a mapping
A Q% — Q defined by A(z{) — 2441, and in this case we write A(x%) =
xg+1- Thus a l-ary (unary) operation is simply a mapping from @ into Q.

A d-groupoid (Q, A) of order n is a set ) with one d-ary operation A
defined on @, where |Q| = n. An i-invertible d-operation A defined on @ is
a d-operation with the property that the equation

A(ai_la% af+1) = Qd+1

has a unique solution for each fixed d-tuple (a}™, agﬂrl, agy1) of Q4.

A d-ary quasigroup (or simply a d-quasigroup) is a d-groupoid (Q, A)
such that the d-operation A is i-invertible for each ¢ = 1,2,...,d. Thus a
l-ary quasigroup (@, A) = (Q, «), where « is a permutation on Q.

Another equivalent definition of a d-quasigroup is the following. A d-ary
quasigroup is a d-groupoid such that in the equality

A(xil) = Xd+1

each set of d elements from z¢*! uniquely defines the (d 4 1)-th element.
Sometimes a quasigroup d-operation A is itself considered as a d-quasigroup.

The d-operation E;, 1 < i < d, on Q with E;(z{) = =; is called the
i-th projection (or the i-th selector) of arity d. Let 1 < iy,1a,...,1; < d,

iy s Aigs - -+, i, € Q, and A be a d-operation on Q. Fixing in A values of j
variables x;,,®i,, ..., z;;, we obtain
A(xill—lvail,:vﬁﬁ,ah, . ,:L"Z:i,aij,mzﬂ) =
Al a2y Dt ) = Bt ),
where @ = (a;,, @iy, - - -, ai;), if we rename the remaining d — j variables in

the following way:

-1 -1 d =1 ia—1 d d—j
(33711 aIfZi?_t,_lv cee 7$7jj+1) = (yil 7y;f a"')yij) = (yl ])~
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Then B is a (d — j)-ary operation, which is called the (d — j)-ary retract of
A, defined by the positions iy, g, ..., i; with the elements a;,, a;y, ..., a;; in
these positions.

Let H be a d-dimensional hypercube based on a set () of order n. If we
introduce a system of coordinates by d directions x1, xo, ..., x4 with values
from (), we obtain naturally the multiplication table of a d-ary operation
Ap on @ defined in the following way:

AH(al, ag, ..., ad) = Qd+1

if in the position (a1, ag, ...,aq) of H, we place the element aq1.

Conversely, the multiplication table of a d-ary operation A is a d-dimensional
cube H 4 (with a system coordinates) such that the element a4 is situated
in the position (a1, ag, ..., aq) if A(a1,ag,...,aq) = ag+1-

Example 2. The ternary operation A(x,y, z) given on the set Q = {1,2, 3,4}
with the multiplication table in Table 3 corresponds to the 3-dimensional
hypercube in Table 2. For example, if z = 2,y = 3,2 = 2, then A(x,y,2) =
A(2.3.2) = 2.

17111
22 22
333 3
1234 4 4 4 4
3412
4 2341 i
221 3 3423
34 4 1
A12 22 T
1 2 3 4 141 1 3
2 2 1 1 |
3 4 2 2
4 3 2 1
Table 2: A 3-hypercube of order 4
z=1|1 2 3 4 z=2|1 2 3 4
1 1 2 3 4 1 2 2 1 3
2 12 2 1 1 2 |3 4 4 1
3 |3 4 2 2 3 1 2 2 2
4 |4 3 2 1 4 |4 1 1 3
r=3|1 2 3 4 z=4 |1 2 3 4
1 1 2 3 4 1 11 1 1
2 [3 4 1 2 2 |2 2 2 2
3 |2 3 4 1 3 |3 3 3 3
4 3 4 2 3 4 4 4 4 4

Table 3: A 3-operation corresponding to the 3-hypercube in Table 2
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Remark 1. Below we consider a hypercube H with a fixed system of co-
ordinates. In this case exactly one d-operation Apy corresponds to this
hypercube.

Proposition 1. A d-hypercube H (a d-operation Ap) defined on a set Q
of order n has type j with 0 < j < d—1 if and only if for any (d— j)-retract
B(yilij) of the corresponding d-operation Ap, the equation B(yffj) =a
has ezactly n?=7~1 solutions for each a € Q.

Proof. Assume H is a d-hypercube of type j and a d-operation Ay corre-
sponds to H. Then every element of Q appears n? 7~ times in a subarray
whenever any j of the coordinates i1, 2, ..., 4; and elements a;,, a;,, ..., a;;
on these places are fixed. This implies that in the respective (d — j)-retract
B (yf_j ) of Ay defined by these positions and these elements, each element
a of Q arises n? =1 times so that the equation B(yffj) = a has exactly
n=3=1 solutions. The converse is evident. O

Corollary 1. A d-hypercube H has type j = d — 1 if and only if the d-
operation Ag corresponding to H is a d-quasigroup.

Proof. By Proposition 1 a d-hypercube H has type j = d—1 if and only if for
any (d—j) = (d—(d—1)) = 1-retract the equation Ag(a’™', 2, at, ) = agi1
has nd—(@-1)-1 — 1 golution for any 1 < ¢ < d and for any fixed d-tuple
(ali_l, afﬂ, agy1) € Q. This implies that the d-operation Ay is i-invertible
for each i =1,2,...,d. Thus Ap is a d-quasigroup. O

Note that in the case when a d-hypercube H has type j = d — 1, it
is a d-dimensional permutation cube of order n (see |5, p. 181]), that is
a d-dimensional n X n X --- X n matrix of n elements with the property
that every column (that is, every sequence of n elements parallel to an
edge of the cube) contains a permutation of the elements. In particular, a
two-dimensional permutation cube is simply a Latin square of order n.

We now recall some useful information from [1] (for the d = 2 case, see
[2]). Let < Ay, Ag, ..., Ag > (briefly, < A? >) be a d-tuple of d-operations
defined on a set Q. This d-tuple defines the unique mapping 6 : Q¢ — Q¢
in the following way:

0 (z9) — (A1(z9), As(zD), ..., Ag(z))),

(or briefly, 0 : (z¢) — (A9)(x9)).
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Conversely, any mapping Q¢ into Q¢ uniquely defines a d-tuple < A‘f >
of d-operations on Q: if 8(z{) = (y{), then we define A;(z¢) = y; for all i =
1,2,...,d. Thus we obtain 6 = (A¢), where 0(x¢) = (A9)(z¢) = (A¢(x9)).

If C is a d-operation on Q and @ is a mapping Q? into Q%, then the oper-
ation Cf defined by the equality CO(z{) = C(0(x%)) is also a d-operation.
Let CO = D and 0 = (A¢), then D(z¢) = C(A{(z%)) or briefly, D = C(A{).
If § = (Bf) and ¢ = (A¢) are mappings Q¢ into Q9, then

@0 = (AN = (A;0), = (A10, A0, ..., As).

If § = (BY) is a permutation on Q%, then B; = E;f and B;0~! = B;(B{)™! =
E, i=12 ... .4

Definition 1. (cf. [1]) A d-tuple < A¢ > of different d-operations on @ is
called orthogonal if the system {A;(z¢) = a;}¢_, has a unique solution for
all af € Q4.

The d-tuple < Efl > of selectors of arity d is the identity permutation
on Q% and is orthogonal.

There is a close connection between orthogonal d-tuples of d-operations
on Q and permutations on Q% by virtue of the following:

Proposition 2. (cf. [1]) A d-tuple < A% > of d-operations is orthogonal if
and only if the mapping 0 = (A) is a permutation on Q°.

Some properties of d-operations can be expressed by means of orthogo-
nality. For example

Proposition 3. (cf. [1]) A d-operation A is i-invertible (1 < i < d) if
and only if the d-tuple < E{_I,A, Efa_1 > is orthogonal (or equivalently, the
mapping (Efl,A, Eidﬂ) is a permutation).

Proposition 4. (cf. [1]) A d-operation A is a d-quasigroup if and only if
the d-tuple < E*~1, A,EidJrl > is orthogonal for all i =1,2,...,d.

Definition 2. (cf. [9]). Two d-operations A and B on a set () are said to
be of one-type if there exists a permutation @ on Q¢ such that A = Bg.

It is easy to check that this relation is an equivalence relation.

Definition 3. (cf. [9]) A d-operation A defined on a set Q) is called complete
if it is one-type with the selector Ej (or with the selector E; for some
i=1,2,...,d), that is A = F@ for some permutation @ on Q<.



Orthogonal hypercubes and n-ary operations 79

For d = 2 these definitions were given in [2]. A complete d-operation
is always a component of a permutation ¢: if ¢ = (By,Bs,...,By) and
A = E1¢, then A = B;. The converse is also true: if a d-operation A is a
component of some permutation, then it is complete (see [9]). So, we have

Proposition 5. A d-operation A can be embedded in an orthogonal d-tuple
if and only if it is complete.

From Definition 3 it follows that the completeness of a d-operation A of
order n defined on @ implies that each of the n elements appears as a value
of A exactly n9~! times, that is the equation A(z¢) = a has n?~! solutions
for any a € @. Now we can reformulate Proposition 1 as follows.

Proposition 6. A d-hypercube H of order n has type j with 0 < j < d—1 if
and only if any (d — j)-retract of the respective d-operation Ap is complete.

Indeed, in this case each of the n elements appears n(*=9)~1 times.

Corollary 2. A d-hypercube H has type j = 0 if and only if the respective
d-operation Ap is complete.

3. Orthogonal d-hypercubes and orthogonal d-operations

Two d-hypercubes H; and Hy of order n are orthogonal if when super-
imposed, each of the n? ordered pairs appears n% 2 times, and a set of
s = 2, d-hypercubes is orthogonal if every pair of distinct d-hypercubes is
orthogonal (see [6], [8]). This notion of orthogonality for d-hypercubes leads
naturally to the notion of orthogonality for d-operations.

Definition 4. Two d-operations A and B of order n defined on a set ) are
said to be orthogonal if the pair of equations A(x¢) = a and B(z¢) = b has
exactly n9~2 solutions for any elements a,b € Q.

Definition 5. A set ¥ = {4, Ao, ..., A} of d-operations, with s > 2, is
called orthogonal if every pair of distinct d-operations from ¥ is orthogonal.

It is easy to see that two d-hypercubes H; and Hy are orthogonal if
and only if the respective d-operations Ap, and Ap, are orthogonal. A
set of (pairwise) orthogonal d-operations corresponds to a set of (pairwise)
orthogonal d-hypercubes.

In [1] another concept of an orthogonal set of d-ary operations was given.
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Definition 6. (cf. [1]) A set {A;, Aa,..., As}, s = d, of d-operations is
called orthogonal if every d-tuple of these d-operations is orthogonal (see
Definition 1).

We point out that a similar notion for sets of d-hypercubes to be d-
orthogonal was considered in [8]. In order to distinguish distinct notions of
orthogonality of d-operations and of d-hypercubes we give the following

Definition 7. A k-tuple < A1, Ao, ..., A >, 1 < k < d, of distinct d-
operations defined on a set @ is called orthogonal if the system
{Ai(2]) = aitiy

has exactly n¢~* solutions for any a’f € Q"

For k = 1 we say that a d-operation A is itself orthogonal (the same A
is complete).

Definition 8. A set ¥ = {4, Ay, ..., A} of d-operations is called k-wise
orthogonal, 1 < k < d, s >k, if every k-tuple A;,, A;,, ..., A;, of distinct
d-operations of ¥ is orthogonal.

ik

A k-wise orthogonal set of d-hypercubes corresponds to a k-wise or-
thogonal set of d-operations. A 1-wise orthogonal set of d-operations is any
set of complete operations. Taking into account Definition 8 we conclude
that an orthogonal set of d-operations (or d-hypercubes) from Definition 5
(Definition 6) is a 2-wise orthogonal set (a d-wise orthogonal set).

Theorem 1. If a set ¥ = {A1, Ag, ..., As}, s>k, of d-operations of order
n defined on a set Q) is k-wise orthogonal with 1 < k < d, then the set ¥ is
l-wise orthogonal for any | with 1 <1 < k.

Proof. Let ¥ be a k-wise orthogonal set of d-operations. Consider any k,
d-operations from Y. Let these be denoted by A1, As,..., Ax. Then the
System

{Al(xii) :al,...,Ak(xil) = ak} (1)

has n¢~F solutions; that is every k-tuple a’f € QF appears n%F times, since
¥ is k-wise orthogonal. Fix [, d-operations A;,, As,, ..., A; from A’f. Then
the system

{Ail (xcll) = A4y, Ai2 (ajcll) = Ay -y Ail (xd) = ail} (2)
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must have n?=* solutions for every fixed (k —I)-tuple from the n*=!, (k—1)-

tuples of elements a;,,aj,,...,a;, , which correspond to the remaining d-
operations of A¥ in (1). Thus the system (2) has n?=*.n*~! = nd=! solutions.
It follows that any [-tuple (a; a;,,...,a;) € Q' appears n? times and the
set X is [-wise orthogonal since we can take any k-tuple of d-operations in
(1). O

A combinatorial interpretation of this proof may be made along the
following lines. If d-hypercubes Hy, Hs, ..., Hy of order n defined on a set
@ are k-orthogonal (that is by their superimposing every k-tuple of elements
appears exactly n?* times), then by superimposing any I, 1 <1 < k, of
them, each [-tuple of elements must appear n?~* times for each of the n*~
distinct (k — I)-tuples of Q*~L.

Theorem 2. A d-operation A has type j with 0 < j < d — 1 if and only if
the set ¥ = {A, E{} is (j + 1)-wise orthogonal.

Proof. Let A be a d-operation of type j. By Theorem 1 any (j + 1)-tuple
of distinct selectors is orthogonal since the d-tuple < E{ > is orthogonal.
Consider a (j 4+ 1)-tuple of d-operations from ¥, which contains the d-
operation A, and the respective of equations

d d d
{A(2]) = a1, B (29) = a2, ..., E;j(z]) = ajt1} (3)
This system corresponds to the (d — j)-retract of A defined by the places
i1,%2,...,1; and elements ag,...,aj41 on these places and has nd=i-1 =

nd=(+Y golutions for any a; € @ by Proposition 1. Thus, the set ¥ is
(j + 1)-wise orthogonal.

Conversely, if a set 3 is (j + 1)-wise orthogonal, then system (3) has
nd=G+1)  solutions for any distinct i1,92,...,1; € {1,2,...,d} and any
as,...,aj+1 € Q. This implies that every element a; appears in each (d—j)-
retract of A exactly n4=7~1 times, that is, A has type j by Proposition 1. [J

We note that if j = d — 1, this result reduces to Proposition 4. From
Theorems 1 and 2 we have

Corollary 3. A d-operation of type j with 0 < j < d—1 has type j1 for all
J1 with 0 < j1 < j.

We now provide a method to construct orthogonal d-tuples of d-operations
(and by Theorem 1, a k-wise orthogonal set with d, d-operations, 2 < k <
d), using properties of d-operations.
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Let Ay, As, ..., Ag be d-operations defined on a set () and assume that
the operation A;, 1 <7 < d, is (d — i+ 1)-invertible. Recursively define the
following d-operations:

Theorem 3. The d-tuple < By, Ba, ..., By > defined by (4) is orthogonal.

Proof. Consider the system of equations {B;(z{) = a;}%_, and substitute
the values of By, Bo, ..., B4_1 into the last equation:

Bd(xff) = Ad<$1, A1,0a92, ..., ad,l) = ad-.
From this equation we obtain a unique x; = by since the d-operation By is
d — d + 1=1-invertible. Now substitute this value of z; and the values of
By, Bs, ..., B4_5 into the (d — 1)-th equation:
Bd—l(bh ."L‘g) = Ad—l(bh 2,001,042, ..., ad_g)
from which we obtain a unique zo = by by virtue of the d — (d — 1) +1 = 2-
invertibility of A;_1. In the same way at the last step we would obtain

By (b1, b, ..., b4-1,24) = A1(b1, b2, ..., 041, 74) = a1
whence we obtain a unique x4 = by using the d-invertibility of A;.

Thus, the given system has a unique solution 1 = by, z9 = by, ...,xq =
bgq and the d-tuple < By, Bo, ..., By > is orthogonal. O

The above theorem generalizes Theorem 2 of [4], in which all d-opera-
tions A;, 1 < i < d, are parastrophes |3] of one d-quasigroup.

As a particular case we can take A1 = Ay = --- = A; = A where
A is an arbitrary d-quasigroup (it is, by definition, i-invertible for any 4,
1 < i < d). Then all of the d-operations B;,i < d, are expressed by means
of the d-quasigroup A:
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Bd(xtli) = A($17 By (xcll)v BQ(x(lj)v ) Bd—l(Icli))’
where each B; is determined by A.
We shall illustrate this situation when
Bi(z,y,2) = A(z,y,2) =+ y+ 4{mod n), n >4
In this case
B(,y,2) = Alz,y, Az, y, 2))
=z4+y+(x+y+z2)=2r+2y+ z (mod n),
B3($, Y, Z) = A($, A(l’, Y, Z): A($, Y, A($, Y, Z)))
=z+(x4+y+2)+2r+2y+2) =4x+ 3y + 2z (mod n).
By Theorem 1 the 3-tuple < By, By, B3 > of 3-operations is orthogonal. In
this example all of these 3-operations are 3-quasigroups if n is not divisible
by 2 or 3; otherwise Bs or Bj is not a 3-quasigroup.

For the ternary case we can prove the stronger statement than in the
above theorem.

Proposition 7. Let A be a 3-quasigroup and ¥ = { By, B2, Bs, B4} be a set
of 3-operations where

B1(x,y,z) :A(l‘,y72)7
Bg(:v,y,z) = A(x,y,Bﬂx,y,z)),
B3(‘T7yvz) = A(:L’, Bl(flf,y,Z),BQ(.T,y,Z)),

B4(a?,y,z) = A(Bl(x7y7 Z),BQ(.’L’,Z/,Z),B?,(%’,?J,Z))-
Then X 1s a 3-wise orthogonal set.

Proof. Orthogonality of the 3-tuple < By, Bo, Bs > follows from the above
theorem.
For the triple < Bj, B3, B4 > we have the system

{Bi(z,y,2) = a, Bs(z,y,z)=b, By(z,y,z)=c}.

From the third equation taking into account the first one and the form of
By we obtain A(a, A(x,y,a),b) = ¢, whence it follows that

A(z,y,a) = (Q)A(a,c, b) = dp, (5)
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where (A4 is the 2-th inverse 3-quasigroup for A (by the definition
A(af) = zapr = DA@ zap, o) =2, 1<i<d 3)).

Using (5) and the first equation of the system in the second one we obtain
A(z,a, A(x,y,a)) = A(z,a,dy) = b and so we obtain a unique z = xg.
Substituting xp in (5) we obtain a unique y = yo. Finally from the first
equation we have A(xg,yo,2) = a and z = z.

Consider the 3-tuple < Bs, B3, B4 > and the corresponding system

{B2<‘ray7 Z) =a, Bg(l',y, Z) =b, B4([L',y, Z) - C}‘
Using the first and the second equations in the third: A(A(z,y, 2),a,b) = ¢
whence it follows that

Alz,y,z) = (I)A(c, a,b) = dy. (6)

Then from the second with the first equation we have A(x,d;,a) = b and
x = xo. Now use the first equation: A(zg,y,d1) = a, whence we obtain
y = yo. Finally from (6), using o and yo, we obtain a unique z = z5. [

4. Complete k-tuples of d-operations and embeddings

From Proposition 5 it follows that a complete d-operation (Definition 3) can
always be extended, or completed, to an orthogonal d-tuple of d-operations.
We shall show that any orthogonal k-tuple (1 < k < d) of d-operations can
be embedded in an orthogonal d-tuple of d-operations.

We first generalize the concept of a complete d-operation in the following
way. As was indicated above, any mapping Q% into Q? uniquely defines a d-
tuple < By, Ba, ..., By > such that @(z¢) = (B1(2$), Ba(x9), ..., Ba(z%)),
or briefly, ¢ = (B, Ba, ..., Bg). Moreover, by Proposition 2 ¢ is permuta-
tion on Q¢ if and only if the d-tuple < By, Bs, ..., By > is orthogonal.

Definition 9. A k-tuple < Ay, Ao, ..., A >, 1 < k < d, of distinct d-
operations given on a set @ is called complete if there exists a permutation
@ = (B1, Ba, ..., By) on Q% such that

(Al,AQ,...,Ak)(JIil) = (El,EQ,...,Ek)@(CEil) (7)
where E;, i = 1,2, ..., k, is the i — th selector of arity d on Q.
For k = 1 we obtain the definition of a complete d-operation.

Theorem 4. A k-tuple of d-operations (1 < k < d) is orthogonal if and
only if it is complete.
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Proof. Let < Alf > be an orthogonal k-tuple of d-operations. We will show
that it is complete. Define a mapping ¢ on Q% in the following way

P(x1, 22, .., Ta) (k) = (af, v ),
where (z1,..., xd)(a;f) denotes all n?~* collections of coordinates such that
(Al, AQ, ey Ak)(a?l,l'g, e ,a:d)(a/f) = ((Il, as, ... ,ak), (8)

and where yg 41 runs through all different nd=* (d — k)-tuples from Q=%
(arbitrarily associated to the distinct collections (x1,xa, ... ,xd)(a;f) for a
fixed (a})), when (8) holds.

It is easy to see that @¢(x%) is a permutation on Q¢ since (a'f,y,‘fH)
(blf,ng) if a¥ # b¥ (there is an 7 such that a; # b;) and (a’f,ng)
(af, z,f+1) if y,‘jH #+ z,‘f_H by the definition of @. In this case

(A17A27 ERR) Ak)($cll) = (E17E27 cee aEk)¢($Cll)

Conversely, assume that a k-tuple < A’f > of d-operations is complete
so that equality (7) holds. Then (Aq, As,..., Ax)(z{) = (E1, Ea, ..., E)
(B1, Ba,...,By)(x{) = (B1Ba,. .., By)(x%). Hence, A; = B;, i =1,2,...,k,
and the permutation @ has the form

Y= (Ala'--aAkaBk‘-i-lv"'aBd)'
By Proposition 2 the d-tuple < A%, BgH > of d-operations is orthogonal

4
4

and because of Theorem 1, the k-tuple < A} > is also orthogonal. O

Remark 2. Let <_A]f > be a k-tuple of d-operations on Q. This k-tuple
defines a mapping 6;: Q% in QF in the following way:
gk($cll) = (Alv A27 e Ak)($cll)
Conversely, any mapping 0r: Q% into QF defines a k-tuple < A’f > of
d-operations on Q: if Ox(z¢) = (y}), then we define A;(x¢) = y; for all
i=1,2,..k

Consider the following notion: &(z¢) = (E1, B, ..., Ex)(2$), where E;
is the i-th selector on (). Then Definition 9 and Theorem 4 imply that a
k-tuple < A¥ > is orthogonal if and only if for the mapping ) there exists
a permutation @ on Q% such that

O (21) = erp(a9). (9)

Thus, any k-tuple of orthogonal d-operations given on a set @ is defined
by some permutation on Q% by (9) and conversely, any permutation on Q%

gives a k-tuple of orthogonal d-operations given on () for each k, 2 < k < d.
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Corollary 4. Any orthogonal k-tuple < Alf >, 1 <k <d, of d-operations
can be embedded in an orthogonal d-tuple < A]f, Bgﬂ > of d-operations.

Proof. An orthogonal k-tuple < A¥ > is complete by Theorem 4 and so it
follows from the proof of that theorem that the d-operations Ay, Ao, ..., Ay
are components of a permutation @ = (Alf,B,‘cl +1). Taking into account
Proposition 2 it follows that the k-tuple < A’f > is embedded in the ortho-
gonal d-tuple < A¥, Bgﬂ >. O
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