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Parastrophic-orthogonal quasigroups

Valentin D. Belousov

Abstract

Annotated translation of Parastrophic-orthogonal quasigroups, Acad. Nauk Moldav.
SSR, Inst. Mat.s Vychisl. Tsentrom, Kishinev, 1983, prepared by A.D.Keedwell and
P.Syrbu based on the original Russian and on an earlier English translation supplied to
the �rst author by Belousov himself.

The notion of orthogonality plays an important role in the theory of
Latin squares, and consequently also in the theory of quasigroups, because
every �nite quasigroup has a Latin square as its Cayley table and, con-
versely, every Latin square is the multiplication table of a certain quasi-
group.

The concept of orthogonality can be described very easily in algebraic
language. Two quasigroups Q(A), Q(B) (i.e. quasigroups with operations A
and B de�ned on the same set Q) are orthogonal if the system of equations
A(x, y) = a, B(x, y) = b has a unique solution for every pair of elements
a, b ∈ Q.

There is signi�cant interest in the investigation of quasigroups orthog-
onal to their parastrophes (for the de�nitions see below). However, in the
past, the questions mainly considered have been some combinatorial ones
which have arisen in connection with these investigations. We mention, for
example, the Phelps papers (for example [6]) which are devoted to the study
of the spectrum of α-orthogonal quasigroups, i.e. quasigroups A which are
orthogonal to their parastrophe αA.

Special cases of such quasigroups were considered earlier in connection
with other problems having purely algebraic character. For example, Stein
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[8] studied quasigroups with the identity x · xy = yx. It is easy to see
that such a quasigroup Q(·) is orthogonal to its parastrophe Q(∗), where
x ∗ y = yx.

Indeed, let us consider the system of equations xy = a, yx = b. If there
exists a solution then, by the identity x · xy = yx, it must be xa = b,
whence we obtain x uniquely: x = b/a. The element y also is uniquely
determined: y = x\a = (b/a)\a. In this way, if a solution exists, it is
uniquely determined. It remains to show that the obtained values of x, y
satisfy the given system of equations. We have xy = (b/a)((b/a)\a) = a,
because in the quasigroup Q(·) the basic identity x(x\y) = y is satis�ed.
Further we have yx = [(b/a)\a](b/a). Let b/a = c, c\a = d, then b = ca,
a = cd and yx = dc. But b = ca = c · cd = dc, by the Stein identity.
Therefore yx = dc = b.

Thus, from the fact that the above identity holds in a quasigroup Q(·), it
follows that a pair of orthogonal parastrophes is related to this quasigroup.

As will be shown below, other identities also have this property: that is,
they imply the existence of orthogonal parastrophes. Such identities, in par-
ticular ones which are minimal in some sense, will be completely described.
It will be shown that, up to a certain kind of equivalence, there are ex-
actly seven types of such identities (including the Stein identity mentioned
above).

Of course, it would be important to give a description of the seven types
of quasigroup obtained , i.e. a description of loops isotopic to them. But
a search for such a description of isotopic loops was unsuccessful because
these quasigroups are de�ned by identities containing only two variables.
Nevertheless, if we make the assumption that quasigroups satisfying the
minimal identities are isotopic to groups, then we can obtain some additional
information about such groups.

�0. Necessary preliminaries from the theory of quasigroups

10. The set Q with one binary operation (·) is called a quasigroup if the
equations ax = b, ya = b have unique solutions for all a, b ∈ Q. A quasi-
group with an identity, i.e. with an element e such that ae = ea = a for all
a ∈ Q, is called a loop. We shall denote quasigroups and loops by Q(·) or,
if the operation is denoted as a function, say A(a, b) = c, by Q(A). Also
the operations (·) and A will be called quasigroups (or loops).

20. A quasigroup (◦) is isotopic to a quasigroup (·), where (◦) and (·)
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are de�ned on the same set Q, if there exists a triplet T = (α, β, γ) of
permutations of the set Q such that x ◦ y = γ−1(αx · βy). The relation of
isotopy determines an equivalence on the set of all quasigroups de�ned on
the set Q.

30. Let Q(·) be a quasigroup, La : x → ax, Ra : x → xa. The mappings
La, Ra are permutations of the set Q. The isotope Q(◦), where x ◦ y =
R−1

a x · L−1
b y, of the quasigroup Q(·) is a loop with the identity ba.

40. Let Q(·) be a quasigroup. The solution of the equation ax = b is de-
noted by x = a\b and the solution of the equation ya = b by y = b/a.
The operations so de�ned are called inverses of (·), or, more precisely, the
right (respectively, left) division for (·). The operations ( \ ) and ( / )
also de�ne quasigroups. If a quasigroup is denoted by A, then the oper-
ations of right and left division will be denoted by A−1 and −1A, respec-
tively. The latter operations also have inverses: (A−1)−1 = A, −1(A−1)
and −1(−1A) = A, (−1A)−1. Moreover, one can consider the operations[−1(A−1)

]−1
, −1

[
(−1A)−1

]
, but these operations are identical with A∗,

where A∗(x, y) = A(y, x).
The following equalities are equivalent:

A(x, y) = z ←→ A−1(x, z) = y ←→ −1A(z, y) = x←→
−1(A−1)(y, z) = x←→ (−1A)−1(z, x) = y ←→ A∗(y, x) = A(x, y).

In what follows, we shall use the following notations for cycles: (1 2) = s,
(1 3) = l, (2 3) = r. The cycles l, r generate the group S3. Moreover, we
have rlr = lrl = s. Thus A−1 = rA, −1A = lA, A∗ = sA.

50. The operations A, A−1, −1A, −1(A−1), (−1A)−1, A∗ are called the
parastrophes1 of the operation A. Parastrophes of a quasigroup A are fre-
quently denoted by σA, where σ ∈ S3 � the symmetric group of degree 3.
More exactly, we have the equivalences:

σA(x′, y′) = z′ ←→ A(x, y) = z,

1Editors' Note: These operations have also been called conjugates of the operation
A by other authors, especially in the U.S.A. The word parastrophe dates back to 1915
and was used by Sade(1959)[14] and Artzy(1963)[9] before its adoption by Belousov. The
name �conjugate� seems to have originated with Stein in the 1950s and was used in [8].
It has the disadvantage that its use in the present context con�icts with its more usual
meaning in the context of group and loop theory for describing equivalence relative to
inner automorphisms. [The reader should note that footnotes labelled a, b, ... were in the
original Russian text and in the English version sent to Keedwell by Belousov himself
but footnotes numbered 1, 2, ... have been inserted by the Editors.]
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where (x′, y′, z′) = σ(x, y, z). For example, −1(A−1) = αA, where α(x, y, z)
= (y, z, x), i.e. α = (1 2 3).

The relations:

τ (σA) = τσA, B = σA←→ A = σ−1
B

hold for the parastrophes.

60. The quasigroup operation (·) and its inverses ( \ ) and ( / ) are inter-
connected by the following identities:

x(x\y) = y, x\(xy) = y,

(y/x)x = y, (yx)/x = y.

The quasigroup Q(·) can be considered as a universal algebra Q(·, \, / ).

70. Two operations A and B (not necessarily quasigroup operations), de-
�ned on the set Q, are orthogonal if the system of equations

A(x, y) = a, B(x, y) = b

is uniquely soluble for all a, b ∈ Q. We use the notation A⊥B to express
this. It is clear that A⊥B implies B⊥A.

80. If ϕ̄ is a mapping of the set Q 2 into itself, then there are two operations
C, D such that ϕ̄(x, y) = (C(x, y), D(x, y)). The mapping ϕ̄ is a permuta-
tion if and only if C⊥D. The mapping ϕ̄ is denoted by (C,D): ϕ̄ = (C,D).
The pair of operations C, D is uniquely determined by the mapping ϕ̄. The
following theorem is valid (see [2]): if A⊥B, where A, B are quasigroup

operations, and θ̄ = (A,B), then the inverse permutation θ̄−1 has the form

θ̄−1 = (A′, B′), where A′ and B′ are also quasigroup operations.
The identity permutation ε̄ on Q 2 de�nes a pair F , E of operations on

Q such that F (a, b) = a, E(a, b) = b for all a, b ∈ Q: that is, ε̄ = (F,E).
If ϕ̄, ψ̄ are two permutations on the set Q 2, then, by de�nition, (Aϕ̄)ψ̄ =

A(ϕ̄ψ̄), and (A,B)ϕ̄ = (Aϕ̄,Bϕ̄) for all A, B, ϕ̄, ψ̄. Also, by de�nition, we
have (Aϕ̄)(x, y) = A(ϕ̄(x, y)).

90. A system Σ = {A1, A2, . . . , Ak} is called an orthogonal system of quasi-

groups (or, for brevity, an OSQ), if
1) Ai⊥Aj for all i, j ∈ {1, 2, . . . , k}, i 6= j, and
2) A1 = F , A2 = E.
We remark that the operations {A3, A4, . . . , Ak} must be quasigroups

because A⊥E and A⊥F imply that A is a quasigroup.
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�1. Minimal identities and connections with orthogonalities

Let us consider the algebra Q(Σ), where Σ is some system of quasigroup
operations (quasigroups) de�ned on the set Q, and let w1 = w2 be an
identity in Q(Σ). We denote the number of free elements in the word w by
|w|. Let l = |w1|+ |w2|.

Now, we shall determine all nontrivial identities in Q(Σ) having the
minimal length l.

The identity w1 = w2 will be called nontrivial, if

a) there is no subword of the form A(u, u) (no "square"),

b) there are no isolated free elements.

The �rst condition can be justi�ed by remarking that A(u, u) can be
replaced by αu, i.e. by a unary operation, but we are considering only
binary operations. The second condition is also reasonable: the identity
w1 = w2 with an isolated element z (that is, in w1 = w2, the element z
occurs only once) can be transformed to the form w′ = z. Then, by �xing
all elements in w′, we get w′ = z1, w

′ = z2, where z1, z2 are arbitrary
elements of Q, i.e. z1 = z2, whence we obtain that Q has only one element.

Let us determine the minimal l. It is clear that l > 3. If l = 3, then the
identity w1 = w2 is trivial, since the condition a) or b) is violated. If l = 4,
then the identity w1 = w2 contains two free elements x, y exactly twice,
otherwise condition a) or b) does not hold. In this case, the identity has the
form A(x, (B(x, y)) = y or A(x, y) = B(x, y). [It appears that the identity
might also have the form A(B(x, y), x) = y for example but, by replacing A
by its parastrophe A∗ in this instance, we obtain A∗(x,B(x, y)) = y, which
is an identity of the �rst type. Similar arguments can be used for other
cases.] But these two identities are also trivial, because the �rst determines
the right inverse operation B = A−1 and the second implies that A = B.

Thus, the minimal length l of a nontrivial identity w1 = w2 must be
equal to 5 (at least). If l = 5, the identity w1 = w2 contains only two free
elements x, y. More than three free elements is not possible because the
condition b) would be violated. If the identity contains exactly three free
elements x, y, z then, as is easy to see, the condition b) is violated in that
case too.

Therefore the identity w1 = w2 (if of length 5) contains only two free
elements x, y and one of them, say x, is contained in it three times and the
other twice, otherwise the condition b) would be violated.

With the help of transformations to inverse operations where necessary,
the identity w1 = w2 can be transformed to the form w′ = y, where w′
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contains the element x three times and y just once. The identity w′ = y
might have, a priori, any one of the following forms:

10. A(z1, B(z2, C(z3, z4))) = y,

20. A(z1, B(C(z2, z3), z4)) = y,

30. A(B(z1, z2), C(z3, z4)) = y,

40. A(B(C(z1, z2), z3), z4) = y,

50. A(B(z1, C(z2, z3)), z4) = y.

We see immediately that the identity w′ = y cannot have the form 30

because, by condition a), one of z1 or z2 must be y and, likewise, one of
z3 or z4 must be y but then y would occur in w′ = y three times, which
contradicts the assumption that y occurs only twice.

Further we can remark that, with the aid of the transformationK → K∗,
we can transform the identities 20, 40 and 50 to the form 10. For example,
in the case of 50 we get A∗(z4, B(z1, C(z2, z3))) = y. Next, let us consider
the identity 10. It is evident that either z3 or z4 must be y. Let z4 = y
(if z3 = y, we replace C by C∗). The remaining elements are equal to x:
z1 = z2 = z3 = x. Thus, any nontrivial minimal identity of the algebra
Q(Σ) can be transformed into the form:

A(x,B(x,C(x, y))) = y. (1.1)

For example, suppose that a nontrivial minimal identity of the form

A(B(x, y), C(x, y)) = x. (1.2)

is given. We transform it to

−1A(x,C(x, y)) = B(x, y).

Let B(x, y) = z, whence y = B−1(x, z). Consequently, we can write

−1A(x,C(x,B−1(x, z))) = z,

i.e. (1.2) is transformed to the form of (1.1).
Using multiplication of operations, the identity (1.1) can be rewritten

in abbreviated form as
ABC = E, (1.3)

where E(x, y) = y for all x, y ∈ Q.
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Remark 1. It is easy2 to deduce that the following equalities are equivalent
to (1.3):

BCA = E, (1.4)

CAB = E, (1.5)

C−1B−1A−1 = E, (1.6)

B−1A−1C−1 = E, (1.7)

A−1C−1B−1 = E. (1.8)

Remark 2. If A, B, C are quasigroups satisfying (1.3) then the following
conditions must be satis�ed3 :

B 6= A−1, C 6= B−1, A 6= C−1. (1.9)

Orthogonality. Π-quasigroups.

The orthogonality of operations is closely connected with minimal nontrivial
identities. This assertion follows from the following lemma.

Lemma 1. Let A, B be quasigroups. Then A⊥B if and only if there exists

a quasigroup K such that KBA−1 = E.

Proof. Necessity. Let A⊥B, then θ̄ = (A,B) is a permutation. Conse-
quently, θ̄−1 also is a permutation. If θ̄−1 = (C,D), then C and D are
quasigroups (see 80 of §0) and

θ̄−1θ̄ = (C,D)(A,B) = (C(A,B), D(A,B)) = (F,E) = ε̄

(ε̄ is the identity permutation of Q 2). Consequently, C(A,B) = F , i.e.
C(A(x, y), B(x, y)) = x. Hence we get −1C(x,B(x, y)) = A(x, y) = z.
From this we can obtain y: namely, y = A−1(x, z) and in consequence
−1C(x,B(x,A−1(x, z))) = z or, brie�y, −1CBA−1 = E, i.e. K = −1C.

Su�ciency. Let KBA−1 = E, where K is a quasigroup. We show that

x0 = −1K(a, b), y0 = A−1(−1K(a, b), a) (1.10)

2Editors' Note: For example, A(x, B(x, C(x, y))) = y −→ C(x, A(x, B(x, C(x, y))))
= C(x, y) −→ B(x, C(x, A(x, B(x, C(x, y))))) = B(x, C(x, y)) or B(x, C(x, A(x, z)) = z,
which is (1.4). Also A(x, B(x, C(x, y))) = y −→ rA(x, y) = B(x, C(x, y)) −→ C(x, y) =
rB(x, rA(x, y)) −→ rC(x, rB(x, rA(x, y))) = y, which is (1.6).

3Suppose that B = A−1 in (1.4). Then A(x, A−1(x, C(x, y)) = y. Let
A−1(x, C(x, y) = z. Then A(x, z) = C(x, y) by de�nition of A−1. But this contradicts
A(x, z) = y which is the given equality.
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is a solution of the system of equations A(x, y) = a, B(x, y) = b.
Indeed, we have

A(x0, y0) = A(−1K(a, b), A−1(−1K(a, b), a))

= AA−1(−1K(a, b), a) = E(−1K(a, b), a) = a,

B(x0, y0) = B(x0, A
−1(x0, a)) = BA−1(x0, a) = d.

Then

K(x0, d) = K(x0, BA
−1(x0, a)) = KBA−1(x0, a) = E(x0, a) = a. (1.11)

But from the �rst equality of (1.10) it follows that K(x0, b) = a. Comparing
this with (1.11), we obtain d = b so B(x0, y0) = b.

Thus, the solution exists. Finally, we show the uniqueness of this so-
lution. Let x1, y1 be a second pair of solutions so that A(x1, y1) = a,
B(x1, y1) = b. Then B(x1, y1) = B(x1, A

−1(x1, a)) = BA−1(x1, a) = b.
Hence it follows that K(x1, BA

−1(x1, a)) = K(x1, b), or

KBA−1(x1, a) = K(x1, b),

so a = K(x1, b) since KBA−1 = E, whence x1 = −1K(a, b).
This together with (1.10) implies that x1 = x0. Now it follows easily that

y1 = y0. Indeed,y1 = A−1(x1, a) = A−1(x0, a) = y0, because A(x0, y0) = a.
Consequently y1 = y0.

Next, by writing the equality (1.3) in the form AB(C−1)−1 = E, we
conclude that B⊥C−1. From (1.4) and (1.5), we deduce that C⊥A−1,
A⊥B−1 so we have the following lemma.

Lemma 2. If, in the system Q(Σ), the minimal nontrivial identity ABC =
E holds, then A⊥B−1, B⊥C−1, C⊥A−1.

Minimal nontrivial identities in quasigroups.

Suppose that a quasigroup Q(·) is given. It can be considered as an algebra
Q(·, \, / ), (·) = A. Of course, a minimal nontrivial identity can be satis�ed
in a single quasigroup too. It will take the form

αAβAγA = E,

where α, β, γ ∈ S3.
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We make the following de�nition:

De�nition 1. A quasigroup A is called a Π-quasigroup of type [α, β, γ] if
it satis�es the identity αAβAγA = E.

Remark 3. By virtue of the identities (1.4) � (1.8), the quasigroup A
also has the following types: [β, γ, α], [γ, α, β], [rγ, rβ, rα], [rβ, rα, rγ],
[rα, rγ, rβ].

Remark 4. In view of (1.9), a Π-quasigroup A satis�es the following in-
equalities: βA 6= (αA)−1, γA 6= (βA)−1, αA 6= (γA)−1 or βA 6= rαA, γA 6= rβA,
αA 6= rγA: that is, we must have

β 6= rα, γ 6= rβ, α 6= rγ. (1.12)

By applying Lemma 2 to a Π-quasigroup A of type [α, β, γ], we obtain

αA⊥rβA, βA⊥rγA, γA⊥rαA.

We shall use the notation

α⊥β(A) (1.13)

if αA⊥βA. In what follows, we shall write α⊥β instead of (1.13) if the rele-
vant quasigroup operation A is clear from the context. Thus a Π-quasigroup
A of type [α, β, γ] will satisfy the following orthogonality relations:

α⊥rβ, β⊥rγ, γ⊥rα.

In the sequel, we shall write α⊥β(σ) instead of α⊥β(σA) . It is evident that

α⊥β(σ)←→ ασ⊥βσ.

Indeed, α⊥β(σ) means that α(σA)⊥β(σA) or ασA⊥βσA, that is, ασ⊥βσ.

Parastrophic equivalence4.

Let us consider the following two transformations5 of the type of a Π-
quasigroup:

f [α, β, γ] = [β, γ, α], h[α, β, γ] = [rγ, rβ, rα]. (1.14)

4Both the original Russian text and (in some places) Belousov's English translation
of it have been modi�ed in this section particularly so as to make the meaning clear.

5These are admissible because of Remark 3.
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It is easy to see that f3 = 1, h2 = 1. Moreover, we have fh = hf2. Indeed,

fh[α, β, γ] = f [rγ, rβ, rα] = [rβ, rα, rγ] = h[γ, α, β] = hf2[α, β, γ].

Thus, the transformations f and h generate the group

S0 = {1, f, f2, h, fh, f2h},

which is isomorphic to S3.
We remark now that, if A has the type [α, β, γ], then σA has the type

[ασ−1, βσ−1, γσ−1]. This fact suggests making the next de�nition which
has the e�ect of de�ning a transformation of the type [α, β, γ]:

[α, β, γ]θ = [αθ, βθ, γθ]. (1.15)

Thus, the preceding remark implies that θA has the type [α, β, γ], when A
has the type [αθ, βθ, γθ]. The equality (1.15) implies also that if some min-
imal nontrivial identity is satis�ed in Q(A), then some minimal nontrivial
identity holds for each parastrophe also which is related to the preceding
one by (1.15). If T = [α, β, γ] is the type of a quasigroup A, then we can
apply the transformations (1.14) and (1.15) to T to obtain a relation of the
form T ′ = (gT )θ, where g ∈ S0, θ ∈ S3. It is clear that (gT )θ = g(Tθ),
therefore we shall write T ′ = gTθ.

De�nition 2. Π-quasigroups B and A are called parastrophically equivalent

if their types T ′ and T are connected by a relation of the form T ′ = gTθ
for some g ∈ S0 and θ ∈ S3. Notation: T

′ ∼ T and B ∼ A. We shall also
say that the types T ′ and T are parastrophically equivalent.

It is easy to see that parastrophic equivalence is in fact an equivalence
relation.

Remark to De�nition 2. Parastrophic equivalence means that if some
minimal identity of type T is satis�ed in a Π-quasigroup A, then a well-
de�ned minimal nontrivial identity of type T ′ = gTθ is satis�ed in its
parastrophe.6

To determine the equivalence classes under parastrophic equivalence,
we look for representatives of these classes. Because T = [α, β, γ] =

6An earlier investigation of this idea was made by A. Sade. See [14] or page 66 of
[4]. The concept was also de�ned (using the name conjugate-equivalent) by T. Evans, see
page 46 of [13].



Parastrophic-orthogonal quasigroups 35

[1, βα−1, γα−1]α, it follows that T ∼ [1, σ, τ ], where σ = βα−1, τ = γα−1.
Thus the class representatives should have the form [1, σ, τ ]. Moreover, the
conditions (1.12) must be satis�ed, namely:

σ 6= r1, τ 6= rσ, 1 6= rτ,

That is,
σ 6= r, τ 6= r, τ 6= rσ. (1.16)

First, we consider the case σ = 1, i.e. we consider the type of the form
[1, 1, τ ]. The conditions (1.16) become

1 6= r, τ 6= r, τ 6= r1,

so they reduce to τ 6= r. Thus, we can choose the types

T1 = [1, 1, 1], T2 = [1, 1, l], T3 = [1, 1, rl], T4 = [1, 1, lr], T5 = [1, 1, s]

as class representatives under parastrophic equivalence.
Now let us consider the case when σ 6= 1, i.e. the type [1, σ, τ ]. As a

consequence of condition (1.16), we also have:

σ 6= 1, τ 6= 1, σ 6= τ. (1.17)

Indeed, suppose that τ = 1, T = [1, σ, 1]. But then f2T = [1, 1, σ], so
T ∼ Ti, where i is one of the numbers 2, 3, 4, 5. If σ = τ , then T = [1, σ, σ],
whence fT = [σ, σ, 1] = [1, 1, σ−1]σ and therefore T = f2[1, 1, σ−1]σ so
T ∼ [1, 1, σ−1]. That is, T ∼ Ti. Taking into account conditions (1.16) and
(1, 17), the following representatives for the equivalence classes are possible:

T6 = [1, l, lr], T7 = [1, l, s], T8 = [1, rl, lr],

T9 = [1, rl, s], T10 = [1, lr, l], T11 = [1, lr, rl],

T12 = [1, s, l], T13 = [1, s, rl].

We shall show that
T13 ∼ T10 ∼ T7,

T12 ∼ T9 ∼ T6.

Indeed, we have

hT10 = h[1, lr, l] = [rf, rlr, r] = [1, lrllr, s]rl = [1, l, s]rl = T7rl,

fT13 = f [1, s, rl] = [s, rl, 1] = [1, rls, s]s = [1, rllrl, s]s = [1, l, s]s = T7s.
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Consequently, T10 ∼ T7 and T13 ∼ T7.
Furthermore, we have

fT9 = f [1, rl, s] = [rl, s, 1] = [1, slr, lr]rl = [1, l, lr]rl = T6rl,

fT12 = f [1, s, l] = [s, l, 1] = [1, ls, s]s = [1, rl, s] = T9s.

Therefore, T9 ∼ T6 and T12 ∼ T9.
We have also the equivalences:

T5 ∼ T2, T4 ∼ T3. (1.18)

Indeed,

fhT5 = fh[1, 1, s] = f [rs, r, r] = [r, r, rs] = [1, 1, rsr]r = [1, 1, l]r = T2r,

fhT4 = fh[1, 1, lr] = f [rlr, r, r] = [r, r, s] = [1, 1, sr]r = [1, 1, rl]r = T3r,

We shall use the second equality again later, so we write

fhT4 = T3r. (1.19)

This proves the equivalences (1.18), so �nally only the following class rep-
resentatives for parastrophic equivalence remain:

T1, T2, T4, T6, T8, T10, T11 . (1.20)

We shall show that the seven types listed in (1.20) are pairwise parastroph-
ically non-equivalent.

a) T8 and T11 are parastrophically non-equivalent to any other type.
This follows from the following relations:

fT8 = T8rl, f2T8 = T8lr, hT8 = T8s, fhT8 = T8l, f2hT8 = T8r,

fT11 = T11lr, f
2T11 = T11rl, hT11 = T11l, fhT11 = T11s, f

2hT11 = T11r .
(1.21)

Thus, any type T ′ 6= T8 which is parastrophically equivalent to T8 has the
form gT8α = (T8β)α = T8γ = [γ, ϕ, ψ], where γ 6= 1, i.e. none of the types
(1.20) is equivalent to T8 other than T8 itself. An analogous assertion is
valid for T11.

b) We shall use the following trivial observations. If all the components of

T are identical and T ′ ∼ T , then all the components of T ′ also are identical.
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If two components of T are identical and T ′ ∼ T , then two components of

T ′ also are identical.
From this it follows at once that none of the types (1.20) is parastroph-

ically equivalent to T1 (except T1 itself).
c) From a) and b) it follows that T6 and T7 and, likewise, T2 and T4, are

parastrophically non-equivalent pairs.
The types T6 and T7 cannot be parastrophically equivalent to T2 and

T4 because T2 and T4 have two identical components, while T6 and T7 have
their components all di�erent.

We shall show that T2 � T4. For this purpose, we determine gT2, where
g runs through the whole group S0:

gT2 = [1, 1, l], [1, l, 1], [l, 1, 1], [rl, r, r], [r, r, rl], [r, rl, r]. (1.22)

Now we determine T4α, where α runs through the whole group S3:

T4α = [1, 1, lr], [r, r, l], [l, l, s], [rl, rl, 1], [lr, lr, rl], [s, s, r]. (1.23)

From (1.22) and (1.23), we conclude that T2 � T4. Similarly, we can prove
that T6 � T10.

Therefore, we have seven classes for parastrophic equivalence, the rep-
resentatives of which are listed in (1.20). We determine the identity de�ned
by each of these types and, in each case, we obtain the equivalent identity
when this identity is written in terms of the basic quasigroup operation A
alone.

1) Type T1 = [1, 1, 1]. The corresponding identity is determined by the
equality AAA = E. If A = (·), then it is the following identity

x(x · xy) = y.

2) Type T2 = [1, 1, l]. The corresponding identity is determined by the
equality AA lA = E. If A = (·), then lA = ( / ) and the identity takes the
form

x(x(x/y)) = y. (1.24)

Let x/y = z, whence x = zy. Consequently (1.24) can be transformed into
the following identity:

(zy)(zy · z) = y.

Multiplying on the left by z and replacing zy by x, we obtain

z[(zy)(zy · z)] = zy, (1.25)
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or z(x · xz) = x.

Thus, an identity of type T2 is equivalent to (1.25).
3) Type T4 = [1, 1, lr]. The corresponding identity is determined by the

equality AA lrA = E. Let A = (·), then lrA(x, y) = y/x. Consequently, the
identity has the form

x(x(y/x)) = y. (1.26)

Let y/x = z, then y = zx. So the identity (1.26) can be transformed into
the equality x · xz = zx. This is Stein's identity (or, in the terminology of
[4], Stein's �rst law).

4) Type T6 = [1, l, lr]. To this type corresponds the equality A lA lrA =
E. If A = (·), then lA = ( / ), lrA(x, y) = y/x, and consequently T6 deter-
mines the identity

x(x/(y/x)) = y. (1.27)

Let y/x = u, x/u = v. Then y = ux, x = vu, whence y = u · vu. The
identity (1.27) becomes transformed into the form

vu · v = u · vu.

5) Type T10 = [1, lr, l]. We consider a type parastrophically equiva-
lent to T10: namely, fT10 = [lr, l, 1]. To this type corresponds the equality
lrA lAA = E. If A = (·), then lA = ( / ), lrA(x, y) = y/x and the correspond-
ing identity has the form:

(x/xy)/x = y,

whence it follows that yx = x/xy and so

yx · xy = x.

This is precisely Stein's third law (see [4]).
6) Type T8 = [1, rl, lr]. The corresponding identity is determined by

the equality A rlA lrA = E. If A = (·), then lrA(x, y) = y/x, rlA(x, y) = y\x.
Consequently, to the type T8 corresponds the identity:

x((y/x)\x) = y. (1.28)

Let y/x = u, u\x = v. Then y = ux, x = uv, whence y = u · uv, and the
identity (1.28) has the form

uv · v = u · uv.
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In the terminology of [4], this is Schröder's �rst law.

Finally, we consider

7) Type T11 = [1, lr, rl]. The corresponding equality is A lrA rlA = E,
and the corresponding identity has the form

x((y\x)/x) = y. (1.29)

Let y\x = u, u/x = v. Then x = yu, u = vx. Consequently, the identity
(1.29) takes the form xv = y. Combining the last equality with the others,
we get

x = yu = xv · vx,

i.e. (1.29) is equivalent to the identity

xv · vx = x,

which is Schröder's second law (see [4]).

We summarize the results obtained in the following table

No. Type Identity Derived form Note

1. T1 = [1, 1, 1] x(x · xy) = y x(x · xy) = y

2. T2 = [1, 1, l] x(x(x/y)) = y x(y · yx) = y

3. T4 = [1, 1, lr] x(x(y/x)) = y x · xy = yx Stein's 1st law

4. T6 = [1, l, lr] x(x/(y/x)) = y xy · x = y · xy Stein's 2nd law7

5. T10 = [1, lr, l] (x/xy)/x = y xy · yx = y Stein's 3nd law

6. T8 = [1, rl, lr] x((y/x)\x) = y xy · y = x · xy Schröder's 1st law

7. T11 = [1, lr, rl] x((y\x)/x) = y yx · xy = y Schröder's 2nd law

Table 1.

Thus, we have proved

Theorem 1. Any minimal nontrivial identity in a quasigroup is parastroph-

ically equivalent to one of the identity types listed in (1.20).

7Editors' Remark: Stein's 2nd law is misquoted in [4] because of a compositing error.
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Editors Comments: The same result8 was obtained later (1989) by F. E.
Bennett [10] working independently and using an earlier closely-related theorem
due to T. Evans [13]. Bennett also investigated the spectrum of orders for which
a quasigroup satisfying each particular one of the seven identity types exists. The
results obtained by Bennett, Evans and other authors are summarized in Chapter
4, Section 36 of [12]. However, Belousov's work on this topic and on Quasigroups
in general is not mentioned in that summary. It is also the case that Belousov
seemed unaware of the work of Evans which is closely related to his own and
predates it. In fact, in the 1970s and 1980s, Congressus Numerantium was not
available in USSR and Belousov's published booklet was not available in Canada.

Example. Consider the minimal nontrivial identity

(x/y)\(y\x) = x, (1.30)

or in alternative notation

A−1(−1A(x, y), A−1(y, x)) = x. (1.31)

We transform the identity (1.31) to the form ABC = E. We have

A−1(−1A(x, y), (A−1)∗(x, y)) = x,

whence
−1(A−1)(x, (A−1)∗(x, y)) = −1A(x, y). (1.32)

Let −1A(x, y) = z. Then y = (−1A)−1(x, z). Consequently, from (1.32) we
obtain

−1(A−1)(x, (A−1)∗(x, (−1A)−1(x, z)) = z,

or
lrA(x, srA(x, rlA(x, z))) = z,

lrA srA rlA = E,

i.e. Our identity has type T = [lr, sr, rl] = [lr, rl, rl]. We transform T :

T = [lr, rl, rl] = [lrlr, 1, 1]rl = [rl, 1, 1]rl

= f2[1, 1, rl]rl = f2T3rl.

8Bennett's list consists of T4, T8, T10 T11 and the duals of T1, T6 and T5 (equivalent
to T2).
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But, T3 = fhT4r (as was proved in (1.19)), whence

T = f2(fhT4r)rl = hT4l.

Consequently, T is parastrophically equivalent to T4, and the identity (1.30)
is equivalent to an identity of type T4, i.e. to Stein's identity for lA = ( / ).
Indeed, let (◦) = ( / ), so that x/y = x ◦ y. From (1.30), it follows that
(x ◦ y)\(y\x) = x,

(x ◦ y)x = y\x,
y((x ◦ y)x) = x.

(1.33)

Let (x ◦ y)x = z. Then x ◦ y = z/x = z ◦ x and from (1.33) we obtain

x/((x ◦ y)x) = y, x ◦ ((x ◦ y)x) = y.

Finally, x ◦ y = z ◦ x and x ◦ z = y imply the Stein law x ◦ (x ◦ z) = z ◦ x.

Remarks. 1) The names of the identities (in Table 1) originate from Sade's
paper [7]. In this paper a list of 63 identities, basic identities and generalized
identities, is given. The identities of types T4, T6, T8, T10, T11 are given
the numbers 12, 13, 14, 16, 15 respectively in [7] and these names are cited
in the monograph of Dénes and Keedwell [4].

2) In Norton and Stein's paper [5], idempotent quasigroups satisfying
the identity T11 (xy · yx = x) are considered. These authors obtained
a condition on the order which holds for a quasigroup of this type and
also one for the �nite idempotent quasigroups which satisfy the identity
T10 (xy · yx = y). Furthermore, they gave examples of such quasigroups:
namely, the ones which are de�ned by the following tables:

a b c d

a a c d b
b d b a c
c b d c a
d c a b d

a b c d e

a a c d e b
b d b e c a
c e a c b d
d b e a d c
e c d b a e

Table 2. Table 3.

3) Quasigroups satisfying the identity T4 (x ·xy = yx) are considered in
the paper [8] by Stein. The following example is given of a Stein quasigroup
(i.e. of a quasigroup satisfying Stein's �rst law T4). The epithet "Stein
quasigroup" was given in [3] for brevity.
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a b c d

a a c d b
b d b a c
c b d c a
d c a b d

Table 4.

As can be seen, the quasigroups given in Table 2 and Table 4 are identical,
i.e. they satisfy both of the identities T4 and T11: x · xy = yx, xy · yx = x.
They also satisfy the identity xy ·x = y, called the identity of semisymmetry
in Sade's terminology [7], who devoted a series of papers to them.

4) In Stein's paper [8] the identities T6 (xy ·x = y ·xy) and T8 (xy · y =
x · xy) are mentioned and examples of such quasigroups are constructed.

5) Minimal identities occur in the study of paratopy of OSQ (see 90 of
§ 0). Let Σ = {Ai}, i = 1, 2, . . . , k, be an OSQ. A permutation θ̄ of the
set Q 2 is called a paratopy of the OSQ Σ if the system {A1θ̄, A2θ̄, . . . , Akθ̄}
is identical to Σ. For k = 4 (for k 6 3 we have trivial cases) an OSQ
admitting at least one paratopy can be one of nine types [2]. These systems
take the form {F,E,A,A′}, where A′ can be expressed in terms of A. For
example, A′ = A∗, A′ = −1(A−1), A′ = (−1A)−1A, and so on. In seven
of these cases it has been shown that the quasigroup must satisfy some
minimal identity. Two of these identities are T1 and T10, while the other
�ve are parastrophically equivalent to identities of type T1, T10 and T6.

Orthogonality and parastrophy.

In the preceding Section, we showed that, if Q(·) is a Π-quasigroup, (·) = A,
of type [α, β, γ], then the following parastrophes are pairwise orthogonal

α⊥rβ, β⊥rγ, γ⊥rα. (1.34)

In order to describe all mutually orthogonal parastrophes of a quasigroup of
one of the seven types mentioned above, we �rst look at some properties of
orthogonality of parastrophes. We recall that α⊥β(σ) means that α⊥β(σA).

1) If α⊥β, then sα⊥sβ. Indeed, this follows from the more common
assertion: If A⊥B, then A∗⊥B∗ and conversely. The latter statement fol-
lows from the fact that the system of equations A(x, y) = a, B(x, y) = b is
equivalent to the system of equations A∗(y, x) = a, B∗(y, x) = b.
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2) If α⊥β, then 1⊥βα−1(α), 1⊥αβ−1(β). This follows from the fact
proved above: α⊥β(σ) is equivalent to ασ⊥βσ.

We return to the discussion of orthogonality of parastrophes of Π-
quasigroups. By property 1), the following orthogonalities follow from
(1.34):

sα⊥srβ, sβ⊥srγ, sγ⊥srα,

or

sα⊥rlβ, sβ⊥rlγ, sγ⊥rlα. (1.35)

Applying property 2) for T = [α, β, γ] to the orthogonalities (1.34) and
(1.35), we obtain

1⊥rβα−1(α), 1⊥rγβ−1(β), 1⊥rαγ−1(γ),

1⊥αβ−1r(rβ), 1⊥βγ−1r(rγ), 1⊥γα−1r(rα),

1⊥rlβα−1s(sα), 1⊥rlγβ−1s(sβ), 1⊥rlαγ−1s(sγ),

1⊥sαβ−1lr(rlβ), 1⊥sβγ−1lr(rlγ), 1⊥sγα−1lr(rlα).

(1.36)

In particular, for the case α = 1, we get

1⊥rβ(1), 1⊥rγβ−1(β), 1⊥rγ−1(γ),

1⊥β−1r(rβ), 1⊥βγ−1r(rγ), 1⊥γr(r),
1⊥rlβs(s), 1⊥rlγβ−1s(sβ), 1⊥rlγ−1s(sγ),

1⊥sβ−1lr(rlβ), 1⊥sβγ−1lr(rlγ), 1⊥sγlr(rl).

(1.37)

Applying the relations (1.37) to Π-quasigroups of the types given in Table
1 we obtain the results presented below.

No. Type Orthogonality
1. T1 = [1, 1, 1] 1⊥r(1, r), 1⊥l(rl, s)
2. T2 = [1, 1, l] 1⊥r(1, r), 1⊥l(rl, s), 1⊥rl(1, r, rl, l), 1⊥lr(r, lr, rl, s)
3. T4 = [1, 1, lr] 1⊥r(1, r, l, rl), 1⊥l(r, rl, lr, s), 1⊥s(1, s)
4. T6 = [1, l, lr] 1⊥r(l, rl), 1⊥l(r, lr), 1⊥rl(1, r, lr, s), 1⊥lr(1, l, rl, s)
5. T10 = [1, rl, l] 1⊥rl(l, rl), 1⊥lr(lr, r), 1⊥s(1, s)
6. T8 = [1, rl, lr] 1⊥r(1, r, l, rl, lr, s), 1⊥l(1, l, r, rl, lr, s)
7. T11 = [1, lr, rl] 1⊥s(1, r, l, rl, lr, s)

Table 5.
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Here, for the sake of brevity, we have written α⊥θ(β1, β2, . . . , βk) instead
of α⊥θ(β1), α⊥θ(β2), . . . , α⊥θ(βk).9

If we restrict ourselves to parastrophes of the basic operation, i.e. to
orthogonalities of the form α⊥β, then (taking into account the equivalence
α⊥β(θ)←→ αθ⊥βθ), we obtain the following table:10

No. Type Orthogonality
1. T1 = [1, 1, 1] 1⊥r, rl⊥s
2. T2 = [1, 1, l] 1⊥r, 1⊥rl, r⊥s, rl⊥s, rl⊥lr, l⊥r
3. T4 = [1, 1, lr] 1⊥r, 1⊥s, l⊥rl, rl⊥s, r⊥lr
4. T6 = [1, l, lr] 1⊥lr, 1⊥rl, r⊥lr, l⊥rl, r⊥s, l⊥s
5. T10 = [1, rl, l] 1⊥s, l⊥r, rl⊥lr
6. T8 = [1, rl, lr] 1⊥r, 1⊥l, r⊥lr, l⊥rl, s⊥rl, s⊥lr
7. T11 = [1, lr, rl] 1⊥s, r⊥rl, l⊥lr

Table 6.

We end this Section with some remarks.

Remark 1. Identities of type T8 and T11 are invariant under parastrophy,
i.e. these identities hold in any parastrophe. Indeed, from (1.21) it follows
that, for an arbitrary parastrophe σ, there exists a transformation g ∈ S0,
such that gT8 = T8σ. From the remark after De�nition 2 it follows that,
if the identity T8 holds in Q(A), then the identity gT8σ

−1 holds in Q(σA):
that is, by virtue of (1.21), T8 holds in Q(σA) for every σ ∈ S3. The same
assertion holds for an identity of type T11.

These facts can be proved directly. Consider an identity of type T11.
That is, one which is equivalent to

xy · yx = x. (1.38)

Let xy = u, yx = v, then uv = x. From these equalities it follows that
x\u = y, y \v = x, u\x = v. Hence x = y \v = (x\u)(u\x), that is,
(x\u)\(u\x) = x. From the same relations xy = u, yx = v, uv = x it follows

9In a paper of M. E. Stickel and H. Zhang[15], these authors claimed incorrectly that
the following results from Belousov's Table 5 were new: For a quasigroup of type T10,
1⊥rl(l, rl) (re-proved by Stickel, 1994) and, for a quasigroup of type T6, 1⊥l(r, lr) (stated
in the paper just mentioned). (In the notation of Stickel and Zhang, �a parastrophe of
QG4 satis�es QG2 and a parastrophe of QG7 satis�es QG1.�)

10Table 3 of Stickel and Zhang's 1994 paper[15] (which was obtained with the aid of
a computer) contains the same information as Belousov's Table 6 below.
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at once that u/y = x, v/x = y, x/v = u, whence x = u/y = (x/v)/(v/x),
i.e.

(x/v)/(v/x) = x. (1.39)

So the identity T11 holds both in Q( / ) and in Q( \ ), and hence it holds in
the other parastrophes too.

Furthermore, it follows from the above that the identities (1.38) and
(1.39) are not only parastrophically equivalent but they are equivalent in
the usual sense as well.

Remark 2. 1) Quasigroups satisfying any one of the identities T4, T10,
T11 are anti-commutative (that is, the equality ab = ba holds if and only if
a = b).

We begin with the identity T10. Let ab = ba = c. Then c2 = ab · ba = b
and c2 = ba · ab = a. Consequently, a = b. Similarly, we can show this fact
for T11.

In the case of T4 we have ac = a · ab = ba = c, bc = b · ba = ab = c, i.e.
ac = bc, whence a = b.

2) Quasigroups satisfying any one of the identities T4, T6, T8 are idem-
potent. Indeed, for Stein's law (T4) idempotency follows directly by putting
x = y. This gives x · x2 = x2 = xx, whence x2 = x. In the identity T6

(xy · x = y · xy), let y = ex, where xex = x.11 Then xex · x = ex · xex or
xx = exx: that is, x = ex. Then x2 = xx = xex = x. Finally, putting
y = ex in T8 (xy · y = x · xy), we obtain x = x2.

�2. Π-quasigroups.

Π-quasigroups are de�ned by identities containing only two free variables
so we should not expect to obtain their complete description: that is, the
description of all loops which are isotopic to these quasigroups.

First, the following question arises: �For which values of n (where n
is a natural number) do there exist Π-quasigroups of type [α, β, γ]?� This
question is combinatorial in character and several investigations concern-
ing it have been made: for example, the papers of Phelps who considered
orthogonality of the form A⊥σA, where σA is a parastrophe of A. Such an
orthogonality is connected with the equality A′A τσA = E or A′A τA = E
(i.e. A and τ determine A′). Therefore, it leads to a class of quasigroups

11Editors' Note: The element ex, so de�ned, is called the right local identity for the
element x.
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more general than the class of Π-quasigroups. In [6] the spectrum12 of A
is considered, i.e. the collection of all positive integers n for which there
exists A⊥σA.

Here we consider a di�erent question. It is known [3] that if a Stein
quasigroup (in our classi�cation a Π-quasigroup of type T4) is isotopic to a
group, then that group is metabelian. We are interested in analogous ques-
tions for other Π-quasigroups: that is, we shall investigate Π-quasigroups
isotopic to groups. We shall consider each type separately.

1) Π-quasigroups A = (·) of type T1 = [1, 1, 1].

In such a quasigroup, the following identity is satis�ed:

x(x · xy) = y. (2.1)

Let x + y = R−1
a x · L−1

b y, so that Q(+) is a loop with 0 = ba as identity
element. For the sake of brevity, let Ra = R, Lb = L. Then xy = Rx+Ly,
and replacing the operation (·) by (+) in (2.1), we get

Rx+ L(Rx+ L(Rx+ Ly)) = y,

or x+ L(x+ L(x+ Ly)) = y. (2.2)

By putting x = 0, we deduce that L3 = 1.13

From (2.2) we deduce that

x+ L(x+ Ly) = L−1(−x+ y),

whence
x+ L(x+ y) = L−1(−x+ L−1y). (2.3)

For a suitable choice of a, b we can make L−10 = 0. Indeed, L−10 = 0 is
equivalent to L0 = 0 or Lb(ba) = ba, b · ba = ba, whence ba = a, i.e. it is
necessary that b = fa, where fa is the left local identity for the element a
(cf. the right local identity ea used earlier). Putting y = 0 in (2.3) we have

x+ Lx = L−1(−x). (2.4)

12Editors' Note: A lot of work has been done on this question in recent years. The
interested reader will �nd a summary of the results obtained prior to 1996 in [12] which
we mentioned earlier. A more recent paper on this topic is [11] by F.E.Bennett and H.
Zhang

13The original text says �If x = 0, then L3 = 1�.
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With the help of (2.4) we can transform (2.3):14

L−1(−x+ L−1y) = L−1(−x+ L−1(−(−y))) = L−1(−x− y + L(−y))
= −(−x− y + L(−y) + L(−(−x− y + L(−y)))
= −L(−y) + y + x+ L(−L(−y) + y + x).

Thence, after replacing −y by y and using (2.3), we get

−Ly − y + x+ L(−Ly − y + x) = x+ L(x− y). (2.5)

Let −Ly− y+x = u so that x = y+Ly+u. Then the equality (2.5) takes
the form

u+ Lu = y + Ly + u+ L(y + Ly + u− y),

whence
L(y + Ly + u− y) = −u− Ly − y + u+ Lu. (2.6)

Now (2.4) and (2.6) together imply that

L(L−1(−y) + u− y) = −u− L−1(−y) + L−1(−u).

Writing −v for y and −u for u, we have

L(L−1v − u+ v) = u− L−1v + L−1u,

whence
L−1(u− L−1v + L−1u) = L−1v − u+ v.

Let L−1 = λ. Then

λ(u− λv + λu) = λv − u+ v. (2.7)

We introduce a new operation:

v ◦ λu = λv − u+ v.

14Editors' Note: provided that b = fa and that (+) is an associative operation.
Belousov states at the beginning of this Section that he is interested in quasigroups of each
type Ti which are isotopic to groups. It follows that the loop principal isotope (Q, +) of a
quasigroup of type T1 is itself isotopic to a group and so, by Albert's Theorem (Theorem
1.4 of [1] or Theorem 1.3.4 of [4]), this principal isotope is a group. The main results
of this long subsection are that (Q, +) satis�es the relation 2x + 2y + 2z = 2(x + y + z)
and that, if there is an element 0 in Q satisfying the relation (2.11), then there is a loop
(Q,⊕), de�ned as in (2.16), for which Theorems 2 and 3 hold. However, the loop (Q,⊕)
itself does not appear to be isotopic either to (Q, +) or to the original quasigroup (Q, ·)
of type T1.
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It is easy to see that Q(◦) is a quasigroup: using the equality (2.7), we �nd
that the equations a ◦ x = b, y ◦ a = b are equivalent to the equations:

λa− x+ a = b, λ(a− λy + λa) = b

which are uniquely soluble for any given a, b ∈ Q. In what follows, we shall
suppose that

λI = Iλ,

where Ix = −x. The relation λI = Iλ is equivalent to LI = IL.
We should like to know under what conditions this last equality holds.

First we remark that, because 0 = ba = faa = a, we have

R−1x = R−1
a x = R−1

0 x = x/0

and L−1x = L−1
b x = L−1

fa
x = L−1

f0
x = f0\x.

Therefore, x+ y = Rax · L−1
b y = (x/0) · (f0\y). In particular, x+ Ix = 0

implies that (x/0) · (f0\Ix) = 0, whence we obtain

f0\Ix = (x/0)\0.

We have f0\Ix = L−1Ix from above. Let ϕx = L−1Ix, then

(x/0)\0 = ϕx.

But ϕL = Lϕ, because ϕ = L−1I and LI = IL. Thus,15 since

ϕLx = (Lx/0)\0

(by putting Lx for x in the preceding equation) and since

Lϕx = L[(x/0)\0].

follows directly from the same preceding equation, we get

(Lx/0)\0 = L[(x/0)\0].

Since L = Lb = Lfa = Lf0 , it follows that

(f0x/0)\0 = f0[(x/0)\0]. (2.8)

15The following three lines of textual explanation were not in the original text or its
translation.
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Let
(x/0)\0 = u, (f0x/0)\0 = v. (2.9)

Then (2.8) implies that
v = f0u (2.10)

and, from (2.9), we get

(x/0) · u = 0, (f0x/0) · v = 0,

whence it follows that

0/u = x/0, 0/v = f0x/0.

These equalities, together with (2.10), imply that

x = (0/u) · 0, f0x = (0/v) · 0 = (0/f0u) · 0.

So, �nally we get
f0[(0/u)0] = (0/f0u)0. (2.11)

We prove the converse statement: if there is an element 0 in Q satisfying
the condition (2.11) then, in the isotope x+ y = R−1

a x · L−1
b y, where a = 0

and b = f0, the equality LI = IL is satis�ed with L = Lf0 and R = R0.
First we note that 0/u = I−1

0 u, where the mapping I0 is determined
by the equality x · I0x = 0. Thus, (2.11) is equivalent to the equality
Lf0R0I

−1
0 = R0I

−1
0 Lf0 or

LRI−1
0 = RI−1

0 L. (2.12)

In order to express I0 in terms of I, we replace the operation (+) by (·) in
the equation (x + Ix) = 0 so as to get R−1

a x · L−1
b Ix = 0 or, for brevity,

R−1x · L−1Ix = 0 and so x · L−1IRx = 0, whence, by the de�nition of
I0, we obtain I0 = L−1IR. Substituting this expression into (2.12), we get
LR(R−1IL) = R(R−1IL)L, whence it follows that LI = IL.

Assume now that an element 0 satisfying (2.11) exists (so that LI = IL
and λL = Lλ). Under this assumption it follows from (2.7) that

λI(−λu+ λv − u) = v ◦ u,

λI(Iλu+ λv + Iu) = v ◦ u,

λI(λIu− Iλv + Iu) = v ◦ u,
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λI(Iu ◦ Iλv) = v ◦ u, (2.13)

or
(λI)−1(v ◦ u) = Iu ◦ Iλv,

whence (using the preceding equality twice) it follows that

(λI)−2(v ◦ u) = (λI)−1(Iu ◦ Iλv) = I2λv ◦ IλIu
and so (λI)−2(v ◦ u) = λv ◦ λu,

because I2 = 1 and λI = Iλ. But (λI)−2 = λ−2I−2 = λ−2 = L2 = L−1

because L3 = 1. Thus,
λ(v ◦ u) = λv ◦ λu,

i.e λ is an automorphism of the quasigroup Q(◦).
We determine a loop which is an LP -isotope of the quasigroup (◦) and

for which the LP -isotopism is given by

x⊕ y = R̄−1
0 x ◦ L̄−1

0 y, (2.14)

where R̄0x = x ◦ 0 and L̄0x = 0 ◦ x.
We remark that 0◦0 = 0, i.e. 0 is the identity of the loop Q(⊕). Indeed,

0 ◦ 0 = λ0− 0 + 0 = λ0 = L−1
f0

0 = 0. Moreover, we have

L̄0x = 0 ◦ x = λ0− x+ 0 = −x = Ix,

R̄0x = x ◦ 0 = λx− 0 + x = λx+ x = L−1x+ x = L−1x+ L(L−1x).

Taking into account the equality (2.4), we obtain

R̄0x = L−1(−L−1x) = L−1IL−1x = L−2Ix = LIx.

So, L̄−1
0 = I, R̄−1

0 = IL−1 = Iλ and consequently

x⊕ y = Iλx ◦ Iy. (2.15)

From this and the de�nition of the operation (◦), we conclude that

x⊕ y = λIλx− Iy + Iλx, or x⊕ y = Iλ2x+ y + Iλx.

But λ2 = L−2 = L = λ−1, hence

x⊕ y = Iλ−1x+ y + Iλx. (2.16)

We prove the following assertion.
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Theorem 2. The loop Q(⊕) de�ned by the equality (2.14) is a Moufang

loop.

Proof. We show �rst that λ is an automorphism of the loop Q(⊕). For this
purpose, we use the equality (2.15) and the fact that λ is an automorphism
of Q(◦). We have

λ(x⊕ y) = λ(Iλx ◦ Iy) = λIλx ◦ λIy = Iλ(λx) ◦ Iλy = λx⊕ λy, so

λ(x⊕ y) = λx⊕ λy. (2.17)

Next we show that I is an anti-automorphism of the loop Q(⊕). For this
purpose, we replace the operation (◦) in (2.13) by (⊕) with the aid of (2.15):

λI(λ−1I−1Iu⊕ I−1Iλv) = λ−1I−1v ⊕ I−1u,

Iλ(λ−1u⊕ λv) = Iλ−1v ⊕ Iu,
I(u⊕ λ2v) = Iλ−1v ⊕ Iu. (2.18)

Since λ2 = λ−1, by replacing λ−1v by v in (2.18), we get

I(u⊕ v) = Iv ⊕ Iu (2.19)

as required. We need also the following equality:

λx+ x = x+ λx = λ−1Ix (2.20)

which we now prove. Putting u = 0 and v = 0 in turn in the equality
(2.7), we get

1) putting u = 0: λ(−λv) = λv + v or

λIλv = λv + v, λ2Iv = λv + v, λ−1Iv = λv + v;

2) putting v = 0: λ(u+ λu) = −u or

u+ λu = λ−1(−u), u+ λu = λ−1Iu.

Finally, we prove the relation:

(x⊕ y)⊕ x = x+ y + x. (2.21)

Using (2.19) and then (2.16) twice, we have

(x⊕ y)⊕ x = I(Ix⊕ I(x⊕ y)) = I(Iλ−1Ix+ I(x⊕ y) + IλIx)

= I2λIx+ I2(x⊕ y) + I2λ−1Ix = λIx+ (x⊕ y) + λ−1Ix

= λIx+ λ−1Ix+ y + λIx+ λ−1Ix.
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But, from (2.20), λIx + λ−1Ix = λIx + λ2Ix = λIx + λ(λIx) =
λ−1I(λIx) = λ−1IIλx = x. Consequently, (x⊕ y)⊕ x = x+ y + x.

Now it is easy to show that Q(⊕) is a (left) Bol loop. We calculate
separately the left and right hand sides of the Bol identity:

w1 = x⊕ (y ⊕ (x⊕ z))
= Iλ−1x+ (Iλ−1y + (Iλ−1x+ z + Iλx) + Iλy) + Iλx,

w2 = (x⊕ (y ⊕ x))⊕ z = Iλ−1(x⊕ (y ⊕ x)) + z + Iλ(x⊕ (y ⊕ x))

from (2.16). But, by (2.17), (2.19) and (2.21), we have

Iλ(x⊕ (y ⊕ x)) = I(λx⊕ λ(y ⊕ x)) = Iλ(y ⊕ x)⊕ Iλx
= (Iλx⊕ Iλy)⊕ Iλx = Iλx+ Iλy + Iλx.

Similarly, we obtain

Iλ−1(x⊕ (y ⊕ x)) = Iλ−1x+ Iλ−1y + Iλ−1x.

Therefore we get the following expression for w2:

w2 = (Iλ−1x+ Iλ−1y + Iλ−1x) + z + (Iλx+ Iλy + Iλx).

Comparing the forms of w1 and w2 thus obtained and using the fact that
(+) is an associative operation, we conclude that w1 = w2: that is, we
obtain the Bol identity. In order to show that Q(⊕) is in fact a Moufang
loop it is su�cient to apply the anti-automorphism I to both sides of the
left Bol identity w1 = w2, where w1 and w2 are determined as above, and
then after replacing Ix, Iy and Iz by x, y and z respectively, we obtain the
right Bol identity. But if Q(⊕) is both a left and right Bol loop, then it is
a Moufang loop [1]. Our theorem is proved.

The following result also is true.

Theorem 3. The loop Q(⊕) is a group if and only if Q(+) is a metabelian

group.

Proof. Indeed, from (2.16), we have

x⊕ (y ⊕ z) = Iλ−1x+ (Iλ−1y + z + Iλy) + Iλx,

(x⊕ y)⊕ z = Iλ−1(x⊕ y) + z + Iλ(x⊕ y).
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Equating the right hand sides of these equations, assuming that (Q,⊕) is a
group, and then transferring terms,16 we obtain

[λ−1(x⊕ y) + Iλ−1x+ I−1λy] + z = z + [Iλ(x⊕ y) + λx+ λy]. (2.22)

Putting z = 0, we see that t1 = t2, where

t1 = λ−1(x⊕ y) + Iλ−1x+ Iλ−1y, t2 = Iλ(x⊕ y) + λx+ λy

and it follows from (2.22) that t1(= t2) is in the centre Z of the group Q(+).
But

t1 = (λ−1x⊕ λ−1y) + Iλ−1x+ Iλ−1y

so the latter expression is an element of Z. Replacing x and y by λx and
λy respectively, we obtain

(x⊕ y) + Ix+ Iy ∈ Z,
Iλ−1x+ y + Iλx+ Ix+ Iy ∈ Z,
Iλ−1x+ y + I(x+ λx) + Iy ∈ Z.

But (2.20) implies x+ λx = λ−1Ix = Iλ−1x and so

Iλ−1x+ y + λ−1x+ Iy ∈ Z,
−λ−1x+ y + λ−1x− y ∈ Z.

Replacing x by λx and y by −y, we get

−x− y + x+ y ∈ Z, (2.23)

i.e. [x, y] ∈ Z, where [x, y] is the commutator of x, y in Q(+). The last
relation shows that Q(+) is a metabelian group.

Conversely, starting from (2.23) and reversing the steps, we show that
t1 ∈ Z. If we then show that t1 = t2, it will follow that (2.22) holds. But
this equality is equivalent to the associativive law in Q(⊕). We proceed to
prove that t1 = t2:

t1 = λ−1(x⊕ y) + Iλ−1x+ Iλ−1y

= −((x⊕ y) + λ(x⊕ y)) + Iλ−1x+ Iλ−1y by (2.20)17

= −λ(x⊕ y)− (x⊕ y) + Iλ−1x+ Iλ−1y

= Iλ(x⊕ y)− (Iλ−1x+ y + Iλx) + Iλ−1x+ Iλ−1y by (2.16)17

= Iλ(x⊕ y)− Iλx− y − Iλ−1x+ Iλ−1x+ Iλ−1y

= Iλ(x⊕ y) + λx− y + Iλ−1y = Iλ(x⊕ y) + λx− y + y + λy by (2.20)17

16 Editors' Note: We add λ−1(x⊕ y) on the left to both sides, then λx on the right
and �nally λy on the right.



54 V. D. Belousov

= Iλ(x⊕ y) + λx+ λy = t2.

Thus, t1 = t2 and the theorem is proved.

Finally, we show that a group Q(+) which is isotopic to a Π-quasigroup
satisfying the identity T1 must satisfy the identity

2(x+ y + x) = 2x+ 2y + 2x. (2.24)

Indeed, consider the loop Q(⊕). In this loop we have the equality

I(x⊕ y) = Iy ⊕ Ix.

Replacing (⊕) by (+) in this identity and using (2.16), we obtain

I(Iλ−1x+ y + Iλx) = Iλ−1(Iy) + Ix+ Iλ(Iy).

L.H.S. = −(−λ−1x+ y − λx) = λx− y + λ−1x so we get

λx+ Iy + λ−1x = λ−1y + Ix+ λy. (2.25)

Since λ−1x = −Iλ−1x = −(x + λx) = −(λx + x) by (2.20), we have
λ−1x = −λx− x and λ−1y = −y − λy and so (2.25) implies

λx− y − λx− x = −y − λy − x+ λy,

whence
y + λx− y − λx = −λy − x+ λy + x,

[−y,−λx] = [λy, x],

or, after replacing −y and −λx by y and x respectively:

[y, x] = [Iλy, Iλ−1x]. (2.26)

Applying (2.26) to the right-hand side of the same identity, we obtain

[y, x] = [(Iλ)2y, (Iλ−1)2x],

[y, x] = [λ2y, λ−2x].

But λ3 = (L−1)3 = L−3 = 1, so,

[y, x] = [λ−1y, λx]. (2.27)

17The explanatory remarks have been added by the Editors.
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From the equality (2.26) we also get

[Iy, Ix] = [λy, λ−1x]. (2.28)

Finally, applying (2.27) to the right-hand side of the same identity, we get

[y, x] = [λ−2y, λ2x],

[y, x] = [λy, λ−1x]. (2.29)

Comparing (2.28) and (2.29), we have

[Iy, Ix] = [y, x],

or, in expanded form,

−Iy − Ix+ Iy + Ix = −y − x+ y + x,

y + x− y − x = −y − x+ y + x,

whence it follows that

x+ y + y + x− y − x = y + x,

x+ x+ y + y + x = x+ y + x+ x+ y,

2x+ 2y + 2x = x+ y + x+ x+ y + x = 2(x+ y + x)

which proves (2.24).

Remark 5. If Q(+) is metabelian then the identity (2.24) is satis�ed
automatically.

Example of a Π-quasigroup which satis�es an identity of type T1.
Let x · y = x + y, where Q(·) is a group of exponent 3, in additive

notation 3x = 0. Here, evidently, R = L = 1.18 The condition LI = IL
holds trivially. The quasigroup (◦) has the form: x◦y = x−y+x = y−x+y.
The loop (⊕) is de�ned by the equality: x ⊕ y = Iλ−1x + y + Iλy =
Ix + y + Ix = −x + y − x = −x + y + 2x. It is known [1] that (⊕) is a
commutative Moufang loop.

18Editors' Remark: The original text says �Let (Q, ·) be a group of exponent 3, in
additive notion 3x = 0. Here, evidently, R = L = 1.� but this text does not make good
sense.
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2) Π-quasigroups A = (·) of type T2 = [1, 1, l].

Such quasigroups satisfy the identity

x(y · yx) = y. (2.30)

We suppose that the quasigroup Q(·) has an idempotent element 0 and
we consider the LP -isotope x + y = R−1x · L−1y, where R = R0, L = L0

and so 0 is the identity of the loop Q(+).
Replacing (·) by (+) in (2.30), we get

Rx+ L(Ry + L(Ry + Lx)) = y. (2.31)

Assume that Q(+) is a group and that RL = LR. Then (2.31) implies that

L(y + L(y + x)) = −RL−1x+R−1y.

If y = 0, then L2x = −RL−1x, whence L2 = IRL−1 and so R = IL3 (where
Ix = −x). We note that IL = LI, because IL = RL−3L = L−2R = LI.
Consequently, the following equality must hold in Q(+):

L(y + L(y + x)) = L2x+ IL−3y. (2.32)

and (since x · y = Rx+ Ly) the quasigroup operation (·) can be expressed
in terms of (+) as follows:

x · y = −L3x+ Ly. (2.33)

It is easy to check the converse statement. The quasigroup Q(·) de�ned by
(2.33), where (+) is a group and L is a permutation satisfying the identity
(2.32), will be a Π-quasigroup of type [1, 1, l], i.e. in this quasigroup the
identity (2.30) will be satis�ed. We have

x(y · yx) = −L3x+ L(−L3y + L(−L3y + Lx))

= −L3x+ L2(Lx) + IL−3(−L3y)

= −L3x+ L3x+ IL−3IL3y = y.

Putting x = 0 in (2.32) we get L(y + Ly) = IL−3y, whence

1 + L4 + L5 = 0.

If L is an automorphism of the group Q(+), then (2.32) implies that
Ly+L2y+L2x = L2x+ IL−3y and, from above, we also have Ly+L2y =
IL−3y whence IL−3y+L2x = L2x+ IL−3y, and so y+ x = x+ y: that is,
in this case the group Q(+) is abelian.
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3) Π-quasigroups A = (·) of type T4 = [1, 1, lr].

Such a quasigroup (Q, ·) is a Stein quasigroup in which the identity x ·xy =
yx holds. In [3] it was proved that, if Q(·) is isotopic to a group, then this
group is metabelian.

4) Π-quasigroups A = (◦) of type T6 = [1, l, lr].

In such quasigroups the identity

x ◦ (y ◦ x) = (y ◦ x) ◦ y (2.34)

holds. From (2.34) it follows at once that Q(◦) is idempotent. Indeed, let
y = fx. Then, x ◦ (fx ◦ x) = (fx ◦ x) ◦ fx or x ◦ x = x ◦ fx and so x = fx.
Thus, y = fx ⇒ x = fx and so x ◦ x = fx ◦ x for every choice of x: that is,
x ◦ x = x for every choice of x.

Let x · y = R−1
1 x ◦L−1

1 y, where 1 is a �xed element of Q. It is clear that
1 is the identity of the loop Q(·). After transformation of (◦) into (·), the
equality (2.34) takes the form

Rx · L(Ry · Lx) = R(Ry · Lx) · Ly, (2.35)

where R = R1, L = L1. By replacing y and x by L−1y and L−1x respec-
tively in (2.35), we obtain

RL−1x · L(RL−1y · x) = R(RL−1y · x) · y

or
ϕx · L(ϕy · x) = R(ϕy · x)y, (2.36)

where ϕ denotes the mapping RL−1.
Further we assume that Q(·) is a group. Let ϕy ·x = z. Then x = Iϕy ·z

(where Iu = u−1) and (2.36) implies that

ϕ(Iϕy · z)Lz = Rz · y, ϕ(Iϕy · z) = RzyILz,

ϕ(yz) = Rz · ϕ−1Iy · ILz. (2.37)

If z = 1, then ϕ = ϕ−1I and so ϕ2 = I and the equality (2.37) takes the
form

ϕ(yz) = Rz · ϕy · ILz. (2.38)

It is easy to observe that (2.38) and ϕ2 = I together imply (2.37).
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We determine ϕ(xyz) in two ways:

ϕ(xyz) = ϕ(xy · z) = Rzϕ(xy)ILz = RzRyϕxILyILz,

ϕ(xyz) = ϕ(x · yz) = R(yz)ϕxIL(yz).

Consequently,
RzRyϕxILyILz = R(yz)ϕxIL(yz),

whence, replacing ϕx by x, we obtain

(IR(yz)RzRy)x = x(IL(yz)LzLy). (2.39)

Putting x = 1, we deduce that the equality (2.39) implies

IR(yz)RzRy = IL(yz)LzLy = C−1(y, z), say.

Then (2.39) implies that C−1(y, z) belongs to the centre Z of Q(·). So,

R(yz) = RzRyC(y, z), L(yz) = LzLyC(y, z). (2.40)

Now we show that R and L commute. Putting x = 1 and y = 1 in turn
into (2.36), we deduce that

Lϕy = Rϕy · y, ϕx · Lx = Rx,

whence Ly = Ry · ϕ−1y or ϕ−1y = IRy · Ly and ϕx = RxILx. But
Iϕ = ϕ−1, so I(Rx · ILx) = IRx · Lx. That is, Lx · IRx = IRx · Lx or

Rx · Lx = Lx ·Rx = x (2.41)

because x = x ◦ x = Rx · Lx from the de�nition of the operation (·).
Replacing x by L−1x in (2.41), we obtain RL−1x · x = L−1x, or ϕx · x =
L−1x. Also, from above, ϕx = Rx · ILx = ILx · Rx because Lx and Rx
commute. On the other hand, the equality RL−1x · x = L−1x implies that

L−1Rx = RL−1Rx ·Rx = (RL−1)2Lx ·Rx = ϕ2Lx ·Rx = ILx ·Rx.

Consequently, ϕx = L−1Rx or RL−1 = L−1R, whence RL = LR.

Theorem 4. Suppose that the mappings R and L of a group Q(·) satisfy

the conditions (2.40) and (2.41), where C(x, y) is in the centre Z of Q(·).
Then the isotope Q(◦), where x ◦ y = Rx · Ly, is a Π-quasigroup of type

[1, l, lr].
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Proof. To prove this theorem, we compute the left and right sides of the
equality (2.34) using (2.40).

x ◦ (y ◦ x) = Rx · L(Ry · Lx) = RxL2xLRyC(Ry,Lx),

(y ◦ x) ◦ y = R(Ry · Lx) · Ly = RLxR2yC(Ry,Lx)Ly.

But RxL2x = LRx and R2yLy = RLy as we now show.

RxL2x = RxIR2x = RxIR(Rx) = L(Rx) = LRx,

R2yLy = IL2yLy = IL(Ly)Ly = RLy.

Here we used the equalities R2 = IL2 (which follows from ϕ2 = I and
RL−1 = L−1R) and x · IRx = Lx, ILx ·x = Rx (the latter identities being
a consequence of Lx ·Rx = x). Thus,

x ◦ (y ◦ x) = LRxLRyC(Ry,Lx),

(y ◦ x) ◦ y = RLxRLyC(Ry,Lx),

whence, because RL = LR, we obtain x ◦ (y ◦ x) = (y ◦ x) ◦ y.

Now we prove the following result.

Theorem 5. If a group is isotopic to a Π-quasigroup of type [1, l, lr], then
it is metabelian.

Proof. For the proof we use the equality (2.38): namely,

ϕ(yz) = RzϕyILz.

But ϕ = RL−1. We showed above that RL = LR and IL = R2L−1, where
the last equality follows from R2 = IL2. So, (2.38) can be written as follows:

L−1R(yz) = Rz · L−1Ry · L−1R2z,

R(yz) = L(Rz · L−1Ry · L−1R2z). (2.42)

Next we determine L(uvw) using the second equality of (2.40):

L(uvw) = L(uv · w) = LwL(uv)C(uv,w)

= LwLvLuC(u, v)C(uv,w) = LwLvLuD(u, v, w),

where C(u, v)C(uv,w) = D(u, v, w) ∈ Z, the centre of the group Q(·).
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Consequently, from (2.42) and the �rst equality of (2.40), we obtain

RzRyC(y, z) = L(L−1R2z)L(L−1Ry)L(Rz)D(Rz,L−1Ry,L−1R2z),

RzRyC(y, z) = R2zRyLRzD(Rz,L−1Ry,L−1R2z),

RzRy = R2zRyLRzK(y, z), (2.43)

where K(y, z) = D(Rz,L−1Ry,L−1R2z)C−1(y, z) ∈ Z.
Replacing Rz, Ry by z, y respectively in (2.43), we get

zy = Rz · y · Lz ·K(R−1y,R−1z),

where K(R−1y,R−1z) ∈ Z. But z = Rz · Lz from (2.41), so

Rz ·Lz · y = Rz · y ·Lz ·K(R−1y,R−1z), Lz · y = y ·Lz ·K(R−1y,R−1z),

z · y = y · z ·K(R−1y,R−1L−1z), (2.44)

where K(R−1y,R−1L−1z) ∈ Z. So, (2.44) implies that [z, y] =
K(R−1y,R−1L−1z), i.e. [z, y] ∈ Z, which means that Q(·) is metabelian.19

5) Π-quasigroups A = (·) of type T10 = [1, lr, l].

In such quasigroups
xy · yx = y. (2.45)

We remark at once that these quasigroups and also quasigroups satisfying
the identity xy · yx = x are di�cult to characterize completely even if we
suppose that they are isotopic to groups.

We assume that there is an idempotent element 0 in the quasigroup Q(·)
and we consider the isotope x+ y = R−1

0 x · L−1
0 y, whence x · y = Rx+ Ly

(where R = R0, L = L0 and 0 · 0 = 0 is the identity of the loop Q(+)).
Replacing the operation (·) by (+) in (2.45), we get

R(Rx+ Ly) + L(Ry + Lx) = y. (2.46)

Putting x = 0 and y = 0 in turn into (2.46), we obtain RLy+LRy = y and
R2x+ L2x = 0, or

RL+ LR = 1, (2.47)

R2 + L2 = 0. (2.48)

19The Editors have simpli�ed and made unambiguous the latter part of this proof by
a change of notation for the centre elements and by inserting missing symbols denoting
the operation (·).
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Let us suppose now that Q(+) is a group and that R and L are automor-
phisms of this group. Then it follows from (2.46) that

R2x+RLy + LRy + L2x = y,

whence, by (2.47), we obtain

R2x+ y + L2x = y,

or

y + L2x = −R2x+ y.

But (2.48) implies that −R2x = L2x, and consequently we have

y + L2x = L2x+ y;

that is, in this case the group Q(+) is abelian.
Now, we strengthen our suppositions. Suppose that RL = LR, then

(2.47) implies that 2RL = 1, 2RLx = x, 2x = L−1R−1x, i.e. the mapping
τ : x→ 2x is a permutation of the set Q, τ = L−1R−1.

We determine another connection between R and L. It is evident that
R(2x) = 2Rx, hence R(2LR) = R is equivalent to 2R2L = R. But R2 =
−L2, whence 2(−L2)L = R, R = −2L3. By symmetry, L = −2R3.
Moreover, we have R2 + L2 = R2 + (−2R3)2 = R2 + 4R6 = 0, whence
it follows that 4R4 = −1. Analogously, 4L4 = −1. We obtain the same
connection using the three relations 2RL = 1, L = −2R3, R = −2L3

alone.
The following proposition is true: if Q(+) is an abelian group having L

as an automorphism and if 4L3 = −1 and x · y = −2L3x+Ly, then Q(·) is
a Π-quasigroup of type [1, lr, l]:

xy · yx = −2L3(−2L3x+ Ly) + L(−2L3y + Lx)

= 4L6x− 2L4y − 2L4y + L2x = L2(1 + 4L4)x− 4L4y = y.

Example of a π-quasigroup of type [1, lr, l]. Let Q(+, ·) be the �eld of
complex numbers. We de�ne x◦y = a(x+ iy), where a2 = −1

2 i. Then Q(◦)
is a Π-quasigroup of type [1, lr, l]. Indeed, we have

(x ◦ y) ◦ (y ◦ x) = a(a(x+ iy) + ia(y + ix))

= a2(x+ iy + iy − x) = 2a2iy = y.
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Here Rx = ax, Lx = aix.20

6) Π-quasigroups A = (·) of type T8 = [1, rl, lr].

In such quasigroups the identity

xy · y = x · xy. (2.49)

is satis�ed. Let x+y = R−1
a x ·L−1

b y. Then x ·y = Rx+Ly, where R = Ra,
L = Lb. Replacing the operation (·) by (+) in (2.49), we get

R(Rx+ Ly) + Ly = Rx+ L(Rx+ Ly),

whence

R(x+ y) + y = x+ L(x+ y). (2.50)

Putting y = 0 (where 0 = ba is the identity of the loop Q(+)), we obtain
Rx = x+ Lx. This together with (2.50) imply that

[x+ y + L(x+ y)] + y = x+ L(x+ y),

and so y + L(x+ y) + y = L(x+ y).

provided that (Q,+) is a group.

Replacing L(x+ y) by x we have

y + x+ y = x.

From this it follows that 2y = 0 and x + y = y + x. Therefore, we have
proved the following proposition.

Theorem 6. If a group is isotopic to a Π-quasigroup of type [1, rl, lr], then
it is an abelian group of exponent two.

The equality Rx = x + Lx shows that L is a complete mapping.a We
show that, if Q(+) is an abelian group of exponent two and L is a complete

20Here, 0 is an idempotent element of the quasigroup (Q, ◦) and R0x = x◦0 = ax+0,
L0x = 0 ◦ x = 0 + aix.

aA permutation ϕ is called a complete mapping for a quasigroup Q(·) if there exists
another permutation ϕ′ of the set Q such that x · ϕ(x) = ϕ′(x) for all x ∈ Q.
Editors' Remark: The mapping ϕ′ is called the orthomorphism corresponding to ϕ.



Parastrophic-orthogonal quasigroups 63

mapping, then Q(·), where x · y = x+ Lx+ Ly, is a Π-quasigroup of type
[1, rl, lr]. Indeed,

x · xy = x+ Lx+ L(xy) = x+ Lx+ L(x+ Lx+ Ly),

xy · y = xy + L(xy) + Ly = x+ Lx+ Ly + L(x+ Lx+ Ly) + Ly

= x+ Lx+ L(x+ Lx+ Ly).

Consequently, x · xy = xy · y.
We end this Section by showing that an arbitrary group of exponent

two has a complete mapping. For this purpose, we remark that any
�nite group Q of exponent two can be presented as a set of n-tuples
{ā = (a1, a2, . . . , an)}, where ai ∈ {0, 1} � the cyclic group of order two. It
is clear that 2ā = 0̄ and that 0̄ = (0, 0, ..., 0). We de�ne the mapping L on
Q by putting

Lā = (a1 + a2, a2 + a3, . . . , an−1 + an, a1).

It is evident that L produces a permutation of the set Q. We determine R,
where Rā = ā+ Lā:

Rā = (a1, a2, . . . , an−1, an) + (a1 + a2, a2 + a3, . . . , an−1 + an, a1)

= (a1 + a1 + a2, a2 + a2 + a3, . . . , an−1 + an−1 + an, an + a1)

= (a2, a3, . . . , an, an + a1).

Clearly, R is a permutation of the set Q and so L is a complete mapping.
Therefore, we have proved that any �nite group of exponent two is isotopic

to a Π-quasigroup of type [1, rl, lr].

It remains to consider the last case.

7) Π-quasigroups A = (·) of type T11 = [1, lr, rl].

In such quasigroups the identity

xy · yx = x. (2.51)

holds. Very little can be said about these quasigroups apart from the fact
that they are similar to the Π-quasigroups of type [1, lr, l]. Assuming that
Q(·) has an idempotent element 0 then, by putting R0 = R, L0 = L and
replacing the operation (·) by (+) in (2.51), where x + y = R−1x · L−1y,
we obtain the equality

R(Rx+ Ly) + L(Ry + Lx) = x,
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whence it follows that
RL+ LR = 0,

R2 + L2 = 1. (2.52)

If we suppose also thatQ(+) is a group and thatR and L are automorphisms
of this group then, contrary to the situation for quasigroups of type T10 =
[1.lr, l], the mapping R cannot be expressed in terms of L. However, we can
construct examples of groups Q(+) with automorphisms R and L satisfying
(2.52). One such example is the quasigroup de�ned by Table 2.

�3. Some remarks

1. From Table 6 it follows that, when a quasigroup Q(·) satis�es some
minimal identity from that Table, then (·) is orthogonal to one or more
parastrophes of (·). So, we have a natural question: Under which systems

of identities from Table 1 will a quasigroup (·) be orthogonal to all of its

parastrophes?

First we give such a table (Table 7).

No. Orthogonality No of identity in Table 1

1. 1⊥r 1, 2, 3, 6

2. 1⊥l 6

3. 1⊥rl 2, 4

4. 1⊥lr 4

5. 1⊥s 3, 5, 7

Table 7

From the table, we see that the identities 4 and 6 must both be satis�ed
in order to ensure the orthogonalities 1⊥l, 1⊥lr , i.e. the identities xy ·x =
y ·xy and xy ·y = x ·xy must both be satis�ed. To guarantee the remaining
orthogonalities we have to take the following combinations: (3, 4, 6), (5, 4, 6)
or (7, 4, 6), i.e. we need to add one of the identities x ·xy = yx, yx ·xy = x
or xy · yx = x to the previous two identities.

We shall consider each case separately.

1st case: (3, 4, 6).
We have the identities

x · xy = yx, xy · x = y · xy, xy · y = x · xy. (3.1)
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If we put u = xy and v = yx, the identities (3.1) take the form

xu = v, ux = yu, uy = xu.

We calculate v · xv in two ways:

v · xv = (yx)(x · yx) = (yx)(yx · y) = y · yx = xy = u.

Here we used the identities 3 and 4.

v · xv = (yx)(x · yx) = (x · xy)[x(x · xy)] = (xu)(x · xu)
= (x · xu)x = ux · x = u · ux = xu.

Here we used all the identities from (3.1). Comparing the results obtained,
we get xu = u. But Stein's identity x · xy = yx implies idempotency.
(Putting x = y in this identity, we obtain x · xx = xx, whence x2 = x.)
So the equality xu = u can be re-written in the form xu = uu. Therefore
u = x: that is, xy = x = xx and so y = x. Thus, the identities (3.1) are all
satis�ed only in a one-element set.

2nd case: (5, 4, 6).
We have

yx · xy = x, xy · x = y · xy, xy · y = x · xy. (3.2)

The equality x = y follows directly since

x = (xy · x)(x · xy) = (y · xy)(xy · y) = xy,

and, because x and y independently may be any elements from Q, the
equality x = xy implies that all elements of Q are equal. So, in this case
also, the identities from (3.2) hold simultaneously only in a one-element
quasigroup.

3rd case: (7, 4, 6).
We have the identities

xy · yx = x, xy · x = y · xy, xy · y = x · xy.

Here the proof is almost an exact copy of that above. We have

x = (x · xy)(xy · x) = (xy · y)(y · xy) = xy,

and so on.
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So, we have proved

Theorem 7. A Π-quasigroup Q(A) in which minimal identities (of speci�ed
types) hold cannot be orthogonal to all of its parastrophes.

On the other hand, it is easy to construct a quasigroup A such that
σA⊥τA for any speci�ed σ, τ ∈ S3. Here is an example: A(x, y) = 2x+ 3y,
where Q(+, ·) is the �eld of rational numbers. The parastrophes of A are
as follows:

A−1(x, y) = 1
3(−2x+ y), −1A(x, y) = 1

2(x− 3y),

−1(A−1) = −1
2(3x− y), (−1A)−1(x, y) = −1

3(−x+ 2y),

A∗(x, y) = 3x+ 2y.

Since the determinant of the system of equations σA(x, y) = a, τA(x, y) = b
for each pair σ, τ ∈ S3 is not equal to zero, we have σA⊥τA.

2. The connection between minimal identities and orthogonality sug-
gests the following question: Are there other identities which give rise to

orthogonal parastrophes?

To obtain a reply to this question, we return to the notion of a minimal
nontrivial identity. As was shown earlier, every such identity can be written
in the form ABC = E or, more precisely,

A(x,B(x,C(x, y))) = y. (3.3)

As we remarked earlier, all other minimal nontrivial identities can be trans-
formed to this form. Thus, in particular, the identity:

G[K(x, y), L(x, y)] = x. (3.4)

can be so transformed.
The converse statement is valid too: an identity of the form (3.3) is

equivalent to an identity of the form (3.4). Indeed, (3.3) implies that

−1A(y,B(x,C(x, y))) = x. (3.5)

Let C(x, y) = z, then y = C−1(x, z), whence (3.5) becomes

−1A[C−1(x, z), B(x, z)] = x, (3.6)

and so we obtain an identity of the form (3.4).
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We deduce that

Lemma 3. If the quasigroups G, K, L are connected by the identity (3.4),
then K⊥L.21

Proof. Indeed, comparing (3.6) and (3.4) we can write G = −1A, K = C−1

and L = B. Hence A = −1G, B = L, C = K−1 and the equality ABC = E
takes the form −1GLK−1 = E. Then L⊥K follows from Lemma 1.

Using the notation of § 0, the identity (3.4) can be written in the
form Gθ̄ = F or G(K,L) = F , where θ̄ = (K,L), because Gθ̄(x, y) =
G(K,L)(x, y) = G[K(x, y), L(x, y)] = x.

We also have the following result:

Lemma 4. If K, L are orthogonal quasigroups, then there exists a unique

quasigroup G such that G(K,L) = F .

Proof. Indeed, letK⊥L, then θ̄ = (K,L) is a permutation of the setQ 2. For
θ̄ there exists an inverse permutation θ̄−1 = (G,H), where the operations
G and H must be quasigroups by the theorem of §0. Furthermore, we have
θ̄−1θ̄ = (G,H)θ̄ = (Gθ̄, hθ̄) = ε̄, where ε̄ is the identity permutation of Q 2.
But ε̄ = (F,E), thus (Gθ̄,Hθ̄) = (F,E), whence it follows that Gθ̄ = F or
G(K,L) = F .

Next we show that there exist identities of length greater than �ve with
the required property. Suppose that a quasigroup Q(·, \, / ) is given and
let f(u, v) be an arbitrary word of length at least two in this quasigroup.
Further, let σA, τA be two parastrophes of the quasigroup (·) = A. Consider
the identity

f(σA(x, y), τA(x, y)) = x. (3.7)

The word f(u, v) de�nes some binary operation. Let σA = B. Then x =
−1B(B(x, y), y). Consequently, the identity (3.7) can be written in the form

f(B(x, y), τA(x, y)) = −1B(B(x, y), y),

(−1B)−1(B(x, y), f(B(x, y), τA(x, y)) = y. (3.8)

21Editors' Note: T. Evans stated this result as an if and only if theorem in his 1975
paper[13] and F. E. Bennett [10] then used that theorem to obtain his seven identities
equivalent to those in Table 1.
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We de�ne a subword f ′ in the following way:

f ′(u, v) = (−1B)−1(u, f(u, v)),

i.e. f ′(u.v) also de�nes a certain binary operation on the quasigroup Q(·).
Therefore (3.8) has the form

f ′(σA(x, y), τA(x, y)) = y. (3.9)

Let (σA, τA) = θ̄ be a mapping on the set Q 2. Equalities (3.7) and (3.9) can
be written brie�y as:

fθ̄ = F, f ′θ̄ = E.

Consequently, ε̄ = (F,E) = (fθ̄, f ′θ̄) = (f, f ′)θ̄ (cf. 80 of § 0). The pair
(f, f ′) also de�nes some mapping ϕ̄, so we can write ϕ̄ = (f, f ′). Thus,
ϕ̄θ̄ = ε̄. In the case when Q is �nite, Q 2 is �nite too, and then ϕ̄, θ̄ are
permutations of the set Q 2. Because θ̄ = (σA, τA) is a permutation, we
obtain σA⊥τA.

Moreover, because ϕ̄ = (f, f ′) = θ̄−1, ϕ̄ also is a permutation, we can
apply the theorem in 80 of § 0 and deduce that f is a quasigroup.

For instance, let f(u, v) = (uv)(v\u) and let

σA(x, y) = x\y, τA(x, y) = yx.

We obtain the identity

[(x\y)(yx)][(yx)\(x\y)] = x.

Then ( \ )⊥(∗), where x ∗ y = yx, and the mapping A : (u, v)→ (uv)(v\u)
will be a quasigroup.

3. When we investigated identities of the above kind taken from the
types in Table 1, we attempted to transform them into a particular form:
namely, to identities equivalent to the originals but containing only one basic
operation (·). In this connection, we make two remarks. In general, besides
the identities listed in that table, there are six other minimal nontrivial
identities involving only one operation. We list them below (they can be
obtained in a simple way):

1) (xy · x)x = y (T2), 2) (yx · y)x = y (T6), 3) (xy · y)x = y (T2),

4) (yx · x)x = y (T1), 5) x(y · xy) = y (T6), 6) x(x · yx) = y (T2).
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The identity type from Table 1 which is equivalent to each of the six listed
identities is given in parentheses. It is interesting to add that the identities
2) and 5) are parastrophically equivalent to an identity of type T6 having
length six. This can be checked directly: the identity T6, i.e. xy · x =
y · xy is parastrophically equivalent to an identity of type T6 = [1, l, lr],
i.e. x(x/(y/x)) = y which is equivalent to the identity y/(x/(y/x)) = x.
Replacing ( / ) by (∗) and then putting x∗y = yx, i.e. applying parastrophic
equivalence, we obtain y ∗ (x ∗ (y ∗ x)) = x, that is, (xy · x)y = x, which is
exactly the identity 2).b

In connection with the above, we should make the following (second)
remark. The identity T6, i.e. xy · x = y · xy, is not minimal in our sense
because it has length six. But it is equivalent to the identity x(x/(y/x)) = y,
which is minimal. It is easy to see that, if we have an identity of the form

f1(x, y, z) = f2(x, y, z),

where z = xy, and if the number of occurrences of x (or y) is smaller than
the number of occurrences of z = xy then, after replacing x by z/y in the
�rst case or y by x\z in the second case, we obtain an identity of shorter
length. For example, in the identity T6 (i.e. xy · x = y · xy) which has
length six, the elements x and y occur only once while the subword z = xy
is repeated twice. But, putting z/y instead of x, we obtain the identity
z(z/y) = yz which has length �ve.

4. The identities implying orthogonality of parastrophes which are con-
sidered above involve only two variables. This raises the question: Are there
identities containing more than two variables which imply the orthogonality

of parastrophes of a given quasigroup? We show that such identities ex-
ist. A general method of constructing such identities is the following. Let
D(x, y) = y be a minimal nontrivial identity which holds in the quasigroup
Q(·), i.e. D = ABC, where A, B, C are parastrophes of the quasigroup (·).
Consider the following identity w1 = w2, where w1 (or w2) has the form

w1 = . . . D(u, v) . . . ,

where u, v are some subwords. The dots denote variables, parentheses and
operation symbols which have been omitted, while D denotes the product

bIn obtaining such identities, we considered also identities of the form (xy · x)y = y
for example, but such ones can be omitted because, for instance, the example given here
is equivalent to the identity xy ·x = y/y, which is trivial according to our de�nition since
it has a subword of the form A(y, y).
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ABC, where A, B, C are parastrophes of the operation (·). We assume
further that the subword u contains the free element x exactly once and
that the subword v contains the free element y exactly once. Moreover,
we suppose that x and y do not appear elsewhere in w1 and that the free
element y appears exactly once in w2.

We make a retraction of all elements except x and y in the identity
w1 = w2, i.e. we replace all elements except x and y by constant elements
of Q. Then u and v become replaced by αx and βy respectively, while w1

and w2 are replaced by γD(αx, βy) and δy respectively, i.e. we obtain the
identity

γD(αx, βy) = δy,

which is valid for any x and y in Q. Since all these transformations are
made in the quasigroup Q(·), α, β, γ, δ are permutations of the set Q.
Replacing αx and βy by x and y, we get

γD(x, y) = δβ−1y,

whence we obtain βδ−1γD(x, y) = y or

ϕD(x, y) = y, (3.10)

where ϕ = βδ−1γ. More precisely, because D = ABC, the equality (3.10)
can be written as

ϕA(x,B(x,C(x, y))) = y. (3.11)

Let us de�ne the operation A′ by A′(x, y) = ϕA(x, y). Then (3.11) can be
written brie�y in the form A′BC = E, which means that B⊥C−1.

Example. Consider the identity

(zx)[(zx)(zx · ty)] = z2(zy · t). (3.12)

We may choose zx and ty as the subwords u and v. The left side takes
the form w1 = u(u · uv). Replacing z and t by �xed elements α and β, we
obtain the identity αx(αx(αx · βy)) = γy, whence, replacing αx by x and
βy by y, we get x(x · xy) = γβ−1y or βγ−1[x(x · xy)] = y. If A = (·) and
A′ = ϕA, where ϕ = βγ−1, and ϕA is de�ned by (ϕA)(x, y) = ϕA(x, y),
then A′AA = E, i.e. A⊥A−1.

We remark that quasigroups satisfying the identity (3.12) do exist. For
example, an abelian group Q(·) of exponent three (i.e. x3 = 1 for all x ∈ Q)
satis�es (3.12).
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Nontrivial quasigroups (ones with more than one element) satisfying
speci�ed identities obtained in the above way do not always exist. An
example of such an identity is

[(x · xy)z]t = (xy · y)(zt). (3.13)

Here, the identityD(x, y) = y is some identity of type T8, i.e. x((y/x)\x) = y
(cf. Table 1), the derived form of which is x · xy = xy · y. In other words,
by changing some of the operations in (3.13) to parastrophes, it can be
transformed22 to {{x[(y/x)\x]}z}t = y · zt, which is the form wanted.

However, if we put x = fy in (3.13), we get yz · t = y2 · zt.
Replacing z by y and then cancelling y2 gives the equality t = yt, which

is valid for all y and t in Q. But in a nontrivial quasigroup such an identity
is impossible.

5. In this last subsection, we formulate some questions:

1. In �2, we studied Π-quasigroups which are isotopic to groups. For Π-
quasigroups satisfying identities of types T2, T10 and T11, we were unable to
obtain a complete answer. Therefore, we pose the following problem: Find
a complete characterization of groups isotopic to quasigroups which satisfy

one of the identities x(y · yx) = y, xy · yx = y and xy · yx = x.

2. The following question generalizes that raised in the �rst subsection
of this Section: Under which systems of identities will a quasigroup (Q, ·)
be orthogonal to all of its parastrophes?

3. In the second subsection of this Section, we constructed identities
of arbitrary length containing two free elements which guarantee the or-
thogonality of two parastrophes. Prove that any identity involving two free

elements which guarantees the orthogonality of at least two parastrophes of

the quasigroup Q(·) has the form described in that subsection.

4. Finally, we pose the general problem: Describe all identities which,

when satis�ed in a quasigroup Q(·), guarantee the orthogonality of some

parastrophes of the given quasigroup.

In place of this, probably, we should seek to solve a more restricted
problem: namely, Do there exist identities with two free elements which

imply the orthogonality of some parastrophes but which do not have retracts?

(cf. subsection 4 of this Section)
22We have x((y/x)\x) = y. Put y/x = u and u\x = v. Then y = ux and x = uv so

uv · v = y = u · uv. Since (3.13) can be written as [(u · uv)z]t = (uv · v)(zt) by changing
the variables, it is equivalent to yz · t = y · zt or ((x[(y/x)\x])z)t = y · zt which is the
form claimed.
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