
Quasigroups and Related Systems 13 (2005), 157 − 174Conjugate invariant quasigroupsZoran Stojakovi¢ and Wieslaw A. DudekAbstratSome properties of onjugate invariant quasigroups and their relations to various ombi-natorial and algebrai strutures are desribed.1. IntrodutionThe theory of quasigroups, although older than the theory of groups, is oftenonsidered as a minor o�shoot of the later (whih an be witnessed by AMSSubjet Classi�ation 20N05 where quasigroups and loops are onsideredas just one of "other generalizations of groups"). What is negleted in thisonsideration are numerous appliations of quasigroups in other branhesof mathematis and not only mathematis. This paper aims to give a briefpresentation of some appliations of quasigroups in ombinatoris, namelythe onnetion of so alled onjugate (parastrophy) invariant quasigroupsand some ombinatorial strutures and also to desribe some algebrai prop-erties of suh quasigroups.2. PreliminariesAlthough we shall onsider binary and n-ary quasigroups, we shall givebasi de�nition and notions for n-ary ase, whih for n = 2 give the usualde�nitions in the binary ase.The sequene xm, xm+1, . . . , xn we denote by xn
m or {xi}

n
i=m. If m > nthen xn
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158 Z. Stojakovi¢ and W. A. DudekAn n-ary groupoid (n-groupoid) (Q, f) is alled an n-quasigroup if theequation A(ai−1
1 , x, an

i+1) = an+1 has a unique solution x for every an+1
1 ∈ Qand every i ∈ {1, . . . , n}. An n-quasigroup (Q, f) is alled idempotent if forevery x ∈ Q f(x, x, . . . , x) = x. An element x ∈ Q is alled an idempotentif f(x, x, . . . , x) = x.An n-quasigroup (Q, f) is alled (i, j)-assoiative i� the following iden-tity holds

f(xi−1
1 , f(xi+n−1

i ), x2n−1
i+n ) = f(xj−1

1 , f(xj+n−1
j ), x2n−1

j+n ).An n-quasigroup whih is (i, j)-assoiative for all i, j ∈ Nn is alled an
n-group.By Sn we denote the symmetri group of degree n and by An its alter-nating subgroup.If G is a group and S ⊆ G, by Γ{S} we denote the subgroup of Ggenerated by S.A Steiner system S(t, k, v) is a pair (S, T ), where S is a v-set and T is afamily of k-subsets of S suh that every t-subset of S is ontained in exatlyone element of T . An S(2, 3, v) is alled a Steiner triple system (STS) and an
S(3, 4, v) is alled a Steiner quadruple system (SQS). Ordered analogues ofSteiner systems are Mendelsohn systems. A Mendelsohn system M(t, k, v)is a pair (S, T ) where S is a v-set and T is a family of yli k-tuples
〈a1, . . . , ak〉, a1, . . . , ak distint elements of S, suh that every ordered pairof distint elements from S belongs to exatly one element of T . A yli
k-tuple 〈a1, . . . , ak〉 is the following set of k ordered pairs: 〈a1, . . . , ak〉 =
{(a1, a2), (a2, a3), . . . , (ak−1, ak), (ak, a1)}. An M(2, 3, v) and an M(3, 4, v)are alled a Mendelsohn triple system (MTS) and a Mendelsohn quadruplesystem (MQS), respetively.3. Quasigroup onjugatesHere we give some basi properties of quasigroup onjugates [2℄.If (S, f) is an n-quasigroup and σ ∈ Sn+1, then the n-quasigroup (Q, fσ)de�ned by

fσ({xσ(i)}
n
i=1) = xσ(n+1) ⇐⇒ f(xn

1 ) = xn+1is alled a σ-onjugate (or simply onjugate) of f . A onjugate (Stein [19℄) isalso alled parastrophe (after A. Sade [18℄), the later is also used in Russianliterature (Belousov, [1℄, [2℄, [3℄).



Conjugate invariant quasigroups 159Let f, g, h be n-ary quasigroup operations de�ned on the same set Q. If
h is a onjugate of g and g is a onjugate of f , then h is a onjugate of f .If fσ = g and h = gτ , then h = (fσ)τ = fστ .If f = fσ, then (Q, f) is alled σ-permutable. If H ⊆ Sn+1 and f = fσfor all σ ∈ H, then (Q, f) is alled H-permutable. H-permutable quasi-groups are also alled onjugate invariant quasigroups.The set H of all σ ∈ Sn+1 suh that f = fσ is a subgroup of Sn+1whih is denoted by Π(f). A H-permutable n-quasigroup (Q, f) suh that
H = Π(f) is alled exatly H-permutable n-quasigroup.An n-quasigroup (Q, f) is alled totally symmetri (TS) if (Q, f) is
Sn+1-permutable, alternating symmetri (AS) if it is An+1-permutable ([21℄,[28℄) and yli if it is Cn+1-permutable, where Cn+1 is a yli subgroupof Sn+1 generated by the yle (12 . . . n + 1) ([20℄). Binary quasigroupswhih are σ-permutable for di�erent values of σ are ommutative quasi-groups, semisymmetri quasigroups (satisfying the identity (xy)y = y), to-tally symmetri quasigroups, quasigroups satisfying Sade's left "key's" law(x(xy)=y) and Sade's right "key's" law ((xy)y=x) [7℄.For eah subgroup H of Sn+1 we de�ne Λ(H), the spetrum of H, tobe the set of all positive integers q for whih there exists an n-quasigroup
(Q, f) of order q with Π(f) = H.4. H-permutable n-groupoidsAlthough for arbitrary n-groupoids onjugates an not be always de�ned,the de�nition of σ-permutability an be extended to n-groupoids.De�nition 1. Let σ ∈ Qn+1. An n-groupoid (Q, f) is σ-permutable if forall xx+1 ∈ S

f(xn
1 ) = xn+1 ⇐⇒ f({xσ(i)}

n
i=1) = xσ(n+1).As before, the set of all σ ∈ Sn+1 for whih an n-groupoid is σ-permutable is a subgroup of Sn+1. If H ⊆ Sn+1, and an n-groupoid (S, f)is σ-permutable for all σ ∈ H, then it is H-permutable.Let (Q, f) be an n-groupoid, H a subgroup of Sn+1 and Γ a set ofgenerators of H. It is not di�ult to see that f is H-permutable if and onlyif f is σ-permutable for every σ ∈ Γ.Theorem 1. [22℄ Let H be a nontrivial subgroup of the symmetri group

Sn+1. Every H-permutable n-groupoid is an n-quasigroup if and only if His a transitive permutation group.



160 Z. Stojakovi¢ and W. A. DudekProof. If H is a transitive subgroup of Sn+1, then it is easy to see that every
H-permutable n-groupoid is an n-quasigroup.Now we assume that H is not a transitive subgroup of Sn+1. If forevery k ∈ Nn+1, there exists σ ∈ H suh that σk = n + 1, then H must betransitive. Hene there exists k ∈ Nn+1 suh that there is no permutationin H whih maps k to n + 1.Let P = {σ(k) | σ ∈ H} and R = Nn+1\P and let (Q,+) be a nontrivialommutative group. If we denote P = {a1, . . . , ai}, R = {b1, . . . , bm},
bm = n + 1, and if a ∈ Q is an arbitrary element, then we de�ne an
n-groupoid (Q, f) by

f(xn
1 ) = −xb1 − · · · − xbm−1

+ a.Now we shall show that f is an H-permutable n-groupoid whih is not an
n-quasigroup. Sine |P | > 1, f is not an n-quasigroup. If for some σ ∈ Hand some aj ∈ P , σ(aj) = bs, then sine there exists τ ∈ H suh that
τ(k) = aj , it follows στ(k) = bs, whih is a ontradition. Hene for every
σ ∈ H and every x ∈ P , σ(x) ∈ P . Also for every σ ∈ H and every
y ∈ R, σ(y) ∈ R (sine σ(bp) = aq implies σ−1(aq) = bp, and that ase wasonsidered earlier). So, (Q, f) is an H-permutable n-groupoid.A question of the existene of exatly H-permutable n-quasigroups fordi�erent subgroups H of Sn+1 is onsidered in [16℄ where the existene ofsuh quasigroups for some omposite orders is established:Theorem 2. [16℄ For every m > n, p > 2, and every subgroup H of Sn+1there exists a H-permutable n-quasigroups of order mp, suh that H = Π(f).Proof. Let M and P be �nite Abelian groups of orders m and p, respetively.We onstrut an n-quasigroup f on Q = M × P as follows: Choose n + 1distint elements a1, a2, . . . , an+1 in M , hoose a pair b, c of distint elementsfrom P , and let s = a1 + a2 + · · · + an+1.Now let x1, x2, . . . , xn+1 ∈ M , y1, y2, . . . , yn+1 ∈ P . We de�ne

f((x1, y1), (x2, y2), . . . , (xn, yn)) = (xn+1, yn+1)i� the following two onditions hold:(1) x1 + x2 + · · · + xn+1 = s,(2) if for some σ ∈ H, (x1, x2, . . . , xn+1) = (aσ(1), aσ(2), . . . , aσ(n+1)),then y1 + y2 + · · ·+ yn+1 = b. Otherwise, y1 + y2 + · · ·+ yn+1 = c. It is easyto hek that (Q, f) is an n-quasigroup suh that Π(f) = H.



Conjugate invariant quasigroups 161In [16℄ the following onjeture was made:For eah subgroup H of Sn+1, Λ(H) onsists of all but �nitely manypositive integers.Some onstrutions of exatly H-permutable n-quasigroups of primeorders were given in [22℄, whih an be easily extended to some ompositeorders.Theorem 3. [22℄ Let H be a subgroup of Sn+1. If there exist disjoint sets
R1, . . . , Rk ∈ Nn+1 suh that for every σ ∈ H, σ(Ri) = Ri, i = 1, . . . , k, forevery x ∈ Nn+1 \ (R1 ∪ · · · ∪ Rk), σ(x) = x, and H ontains all permuta-tions from Sn+1 with the given properties, then there exists an H-permutable
n-quasigroup (Q, f) of order p, where p > n + 1 is any prime, suh that
Π(f) = H.In [22℄ the spetrum of yli n-quasigroups (Q, f) ([20℄) with the prop-erty that Π(f) = Cn+1, where Cn+1 a subgroup of Sn+1 generated by theyle (12 . . . n + 1), was investigated.5. Steiner and Mendelsohn systems
H-permutable n-quasigroups are losely related to some ombinatorialstrutures. First we shall onsider binary ase. It is well known that �-nite idempotent TS and semisymmetri quasigroups are equivalent to STSsand MTSs, respetively ([6℄, [14℄).Let (Q, ∗) be a �nite idempotent TS quasigroup. If we de�ne

T = {{x, y, x ∗ y} | x, y ∈ Q, x 6= y},then (Q, T ) is a STS, Conversely, if (Q, T ) is a STS, then if we de�ne abinary operation * on Q for all x, y ∈ Q, x 6= y, by
x ∗ y = z ⇐⇒ {x, y, z} ∈ T,and

x ∗ x = x,then (Q, ∗) is an idempotent TS quasigroup.This is not the only way of turning quasigroups into STSs and vie versa.It an be shown analogously that idempotent TS loops of order v + 1 areequivalent to STS of order v.



162 Z. Stojakovi¢ and W. A. DudekMTS are also equivalent to a lass of H-permutable quasigroups. If
(Q, T ) is a MTS, and if we de�ne a binary operation * on Q by

x ∗ y = z ⇐⇒ (x, y) ∈ 〈x, y, z〉, x 6= y,and x ∗ x = x for all x ∈ Q, we get an idempotent quasigroup (Q, ∗) suhthat ∗ = ∗(123). Conversely, if (Q, ∗) is a �nite idempotent quasigroup and
∗ = ∗(123), then (Q, T ) where

T = {〈x, y, x ∗ y〉 | x, y ∈ Q, x 6= y}is a MTS. Here the quasigroup (Q, ∗) is H-permutable, where H is a ylisubgroup of S3 generated by (123) (semisymmetri quasigroup).Previous results an be naturally generalized to ternary ase.If (Q, f) is a �nite ternary TS quasigroup, then by
T = {{x, y, z, f(x, y, z)} | x, y, z ∈ Q, x 6= y 6= z 6= x},a SQS (Q, T ) is de�ned.If (Q, T ) is an SQS and a ternary operation f is de�ned on Q for distintelements x, y, z ∈ Q by

f(x, y, z) = u ⇐⇒ {x, y, z, u} ∈ T,and f(x, x, y) = f(x, y, x) = f(y, x, x) = y (generalized idempotene (GI))otherwise, then (Q, f) is a GITS quasigroup.MQS are also equivalent to a lass of ternary quasigroups. If (Q, T ) isa MQS, then if for distint elements x, y, z ∈ Q we de�ne
f(x, y, z) = u ⇐⇒ 〈x, y, z, u〉 ∈ Tand f(x, x, y) = f(x, y, x) = f(y, x, x) = y otherwise, we obtain a GI H-permutable ternary quasigroup (Q, f), where H = Γ{(1234)}. Conversely,if (Q, f) is a �nite GI ternary H-quasigroup, where H = Γ{(1234)}, thenby

T = {{x, y, z, f(x, y, z)} | x, y, z ∈ Q, x 6= y 6= z 6= x},a MQS (Q, T ) is de�ned.



Conjugate invariant quasigroups 1636. Other quadruple systemsWe have seen that �nite idempotent S3-permutable (TS) quasigroups and
C3-permutable (semisymmetri) quasigroups are equivalent to STSs andMTSs, respetively. This was naturally generalized to the ternary ase,where �nite GI S4-permutable 3-quasigroups and GI C4-permutable 3-quasigroups are equivalent to SQSs and MQSs, respetively. But in theternary ase besides these two lasses of GI H-permutable 3-quasigroups,there exist many other GI H-permutable 3-quasigroups and to eah suhlass of GI H-permutable 3-quasigroups a lass of quadruple systems an beassoiated, analogously as it is done for Steiner and Mendelsohn quadruplesystems.Among these quadruple systems so alled tetrahedral quadruple systemswere �rst introdued and studied in [28℄ and they represent another gener-alization of MTSs.De�nition 2. Let Q be a �nite set of v elements. A direted quadruple
〈abcd〉, where a, b, c, d are distint elements of Q, is the following set of 12ordered triples

〈abcd〉 = {(abc), (adb), (acd), (bdc),
(bca), (dba), (cda), (dcb),
(cab), (bad), (dac), (cbd)}.De�nition 3. A tetrahedral quadruple system (TQS) of order v is a pair

(Q, T ) where T is a olletion of direted quadruples of elements of Q, suhthat every ordered triple of distint elements of Q belongs to exatly onedireted quadruple from Q.Direted quadruples are obtained from 4-element subsets of Q by anorientation whih an be represented by the following diagram (Figure 1).If the elements a, b, c, d of a direted quadruple 〈abcd〉 are represented asthe verties of the tetrahedron as in Figure 1, then the verties of eah faeof the tetrahedron are ylially ordered in positive diretion observed fromthe interior of the tetrahedron.So, TQSs an be onsidered as a 3-dimensional analogue of MTSs. If
〈abc〉 is a direted triple from an MTS, then the orientation of the pairswhih belong to that triple is shown in Figure 2.



164 Z. Stojakovi¢ and W. A. Dudek

Figure 1. Figure 2.That TQSs are a generalization of MTSs will follow from the algebraiharaterization of TQS whih will be given later.Let (Q, T ) be a TQS of order v. We de�ne a ternary operation f on Q.If (abc) is an ordered triple of distint elements from Q, then it belongs toexatly one direted quadruple from T . If d is the fourth element in thatquadruple, then we de�ne f(a, b, c) = d. If for all x, y ∈ Q f(x, x, y) =
f(x, y, x) = f(y, x, x) = y then (Q, f) is a GIAS-3-quasigroup.Now let (Q, f) be a �nite GIAS-3-quasigroup. Let (abc) be an orderedtriple of distint elements of Q and f(a, b, c) = d. Suppose d ∈ {a, b, c}, say
d = a, then sine (Q, f) is AS, f(a, b, c) = d implies f(a, a, b) = c and sine
(Q, f) is GI we get c = a whih is a ontradition. Hene d 6∈ {a, b, c}.Now, for every ordered triple (abc) of distint elements from Q, wede�ne a direted quadruple 〈abcf(a, b, c)〉 and denote by T the family ofsuh direted quadruples. Sine (Q, f) is AS, it follows that for every fourdistint elements a, b, c, d ∈ Q suh that 〈abcd〉 ∈ T

〈abcd〉 = 〈bcad〉 = 〈cabd〉 =

= 〈adbc〉 = 〈dbac〉 = 〈badc〉 =

= 〈acdb〉 = 〈cdab〉 = 〈dacb〉 =

= 〈bdca〉 = 〈dcba〉 = 〈cbda〉.This means that every ordered triple of distint elements from Q belongsto exatly one direted quadruple from T , hene (Q, T ) is a TQS.We have seen that TQSs are equivalent to GIAS-3-quasigroups, but sinein the binary ase the alternating subgroup A3 of the symmetri group S3 isin fat yli group C3, it follows that TQSs are a generalization of MTSs.



Conjugate invariant quasigroups 165The spetrum of TQSs was determined in [28℄, [15℄ where it was provedthat the spetrum onsists of all n ≡ 1, 2, 4, 5, 8, 10 (mod 12).Similarly, we an de�ne quadruple systems for other subgroups H of S4.In [30℄ the spetrum of GI H-permutable 3-quasigroups where H is D4 (thedihedral group), K4 (Klein group) and Γ{(13)(24)} was determined. Thespetrum Λ(D4) = {1} ∪ {2n | n ∈ N} and Λ(K4) onsists of all n ≡ 0, 1, 2
(mod 4). 7. IdentitiesIt is easy to see that De�nition 1 an be given in another equivalent form.De�nition 4. Let σ ∈ Qn+1. If σ(k) = n + 1 for some k ∈ Nn, then an
n-groupoid (Q, f) is σ-permutable if for all xn+1

1 ∈ Q

f({xσ(i)}
k−1
i=1 , f(xn

1 ), {xσ(i)}
n
i=k+1) = xσ(n+1).If σ(n + 1) = n + 1, then (Q, f) is σ-permutable if for all xn+1

1 ∈ S

f({xσ(i)}
n
i=1) = f(xn

1 ).We see that the lass of all H-permutable n-groupoids is a variety.When applied to n-quasigroups, this de�nition is equivalent to the pre-viously given de�nition of σ-permutability.Consequently, every H-permutable n-quasigroup an be de�ned as an
n-quasigroup satisfying a system of identities.For example, a 3-groupoid (Q, f) is a GIAS-3-quasigroups if and only ifthe following identities hold











f(x, y, y) = x,

f(x, y, z) = f(y, z, x),

f(y, f(x, y, z), z) = x.The seond of the given identities is equivalent to f = f (123), and the thirdis equivalent to f = f (124). Γ{(123), (124)} is a generating set of the group
A4, hene (Q, f) is a GIAS-3-quasigroup.Besides identities obtained from the equality of onjugates f = fσ,some other identities an be also used to de�ne varieties of H-permutable
n-groupoids. A question is what is the minimal set of identities in a base of



166 Z. Stojakovi¢ and W. A. Dudeksuh variety. It an be shown that many of these varieties are single based[8℄, [9℄, [27℄, [24℄.For example, the following two theorems ([24℄) show that the varietiesof GI-C4-permutable 3-groupiods and GI-S4-permutable 3-groupoids (whihare neessarily 3-quasigroups and in the �nte ase are equivalent to MQSsand STQs, respetively) are single based.Theorem 4. A 3-groupoid (Q, f) is a GI-C4-permutable 3-groupoid i� thefollowing identity is satis�ed
f(f(x, y, f(u, f(v, v, f(p, q, f(f(z, t, t), p, q))), u)), x, y) = z. (1)Proof. The following notation will be used. If (Q, f) is a 3-groupoid, thenthe translation maps T1(a, b), T2(a, b), T3(a, b) are de�ned by

T1(y, z)(x) = T2(x, z)(y) = T3(x, y)(z) = f(x, y, z).If (Q, f) is a GI-C4-permutable 3-groupoid, then it is easy to see that(1) is satis�ed.Now, let (Q, f) be a 3-groupoid suh that (1) is valid. Sine a 3-groupoid
(Q, f) is a GI-C4-permutable i� the following identities are satis�ed

f(f(x, y, z), x, y) = z, (2)
f(x, x, y) = y, (3)we shall prove that (1) implies (2) and (3).(1) an be written by

T1(x, y)T3(x, y)T2(u, u)T3(v, v)T3(p, q)T1(p, q)T1(t, t) = I, (4)where I is the identity mapping of Q. From (4) we get that T1(t, t) is 1− 1and T1(x, y) is onto, hene for all t ∈ Q T1(t, t) is a bijetion, whih implies
T1(x, y)T3(x, y)T2(u, u)T3(v, v)T3(p, q)T1(p, q) = T−1

1 (t, t).The last equality implies that T1(x, y) is a bijetion and
T3(x, y)T2(u, u)T3(v, v)T3(p, q) = T−1

1 (x, y)T−1
1 (t, t)T−1

1 (p, q).By the similar argument we obtain that T3(x, y) is a bijetion for all
x, y ∈ Q, whih gives

T2(u, u) = T−1
3 (x, y)T−1

1 (x, y)T−1
1 (t, t)T−1

1 (p, q)T−1
3 (p, q)T−1

3 (v, v).



Conjugate invariant quasigroups 167Hene T2(u, u) is a bijetion for all u ∈ Q.From (4) we get that for all x, y, u, v, p, q, t, r, s ∈ Q

T1(x, y)T3(x, y)T2(u, u)T3(v, v)T3(p, q)T1(p, q)T1(t, t) =

= T1(r, s)T3(r, s)T2(u, u)T3(v, v)T3(p, q)T1(p, q)T1(t, t),and
T1(x, y)T3(x, y) = T1(r, s)T3(r, s),that is,

f(f(x, y, z), x, y) = f(f(r, s, z), r, s). (5)By an analogous proedure it follows that for all x, y ∈ Q

Ti(x, x) = Ti(y, y), i = 1, 2, 3,that is,
f(z, x, x) = f(z, y, y), f(x, z, x) = f(y, z, y), f(x, x, z) = f(y, y, z). (6)Putting in (6) y = z, one gets

f(z, x, x) = f(x, z, x) = f(x, x, z) = f(z, z, z). (7)If in (5) we put x = f(z, z, z), y = r = s = z, using (7) it follows
f(f(f(z, z, z), z, z), f(z, z, z), z) = f(f(z, z, z), z, z) = f(z, f(z, z, z), z).Sine T1(x, y) is a bijetion from the preeding equality we get

f(f(z, z, z), z, z) = z. (8)If now we put in (5) r = s = z, it follows
f(f(x, y, z), x, y) = f(f(z, z, z), z, z) = z,hene identity (2) is valid. So we have proved that for all x, y ∈ Q

T1(x, y)T3(x, y) = I. But identity (2) is equivalent to
f(x, y, f(z, x, y)) = z,whih means that for all x, y ∈ Q T3(x, y)T1(x, y) = I. Therefore, (4)beomes

T2(u, u)T3(v, v)T1(t, t) = I,



168 Z. Stojakovi¢ and W. A. Dudekthat is,
f(u, f(v, v, f(z, t, t)), u) = z.Putting in the preeding identity u = v = t = z and using (7) and (8)we get

f(z, z, z) = z,whih by (7) gives
f(z, x, x) = f(x, z, x) = f(x, x, z) = z.Theorem 5. A 3-groupoid (Q, f) is a GI-S4-permutable 3-groupoid i� thefollowing identity is satis�ed

f(f(x, y, f(u, f(v, v, f(p, q, f(f(z, t, t), q, p))), u)), x, y) = z. (9)These results an be extended to other GI-H-permutable 3-groupoids.In [27℄ it is proved that the variety of GI-H-permutable 3-groupoids an bede�ned by a single identity for every subgroup H of S4 whih ontains atleast one permutation σ suh that σ(4) 6= 4.8. Algebrai propertiesConjugate invariant quasigroups have many ombinatorial appliations, butit is also interesting to onsider algebrai properties of these quasigroups.We shall illustrate some of these properties on GIAS-3-quasigroups [23℄.We have seen that the lass of all GIAS-3-groupoids is a variety, and everyGIAS-3-groupoid is neessarily a GIAS-3-quasigroup.Theorem 6. Let U = (Q; f) be a GIAS-3-groupoid and let C(U) be theongruene lattie of U . Then
a) If θ ∈ C(U), then eah θ-lass is a subalgebra of U ,
b) U has permutable ongruenes,
c) U has regular ongruenes,
d) U has uniform ongruenes,
e) U has oherent ongruenes.Proof. a) Obvious.
b) Follows from Mal'ev's theorem (a variety has permutable ongru-enes i� it has a ternary polynomial f(x, y, z) suh that f(x, y, y) =
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f(y, y, x) = x).

c) Let [a]θ, θ ∈ C(U), be a θ-lass. If x ≡ y (θ) then f(x, y, a) ≡
f(y, y, a) (θ), hene a ≡ f(x, y, a) (θ). Conversely, if a ≡ f(x, y, a) (θ), then
f(a, x, a) ≡ f(f(x, y, a), x, a) (θ) and sine U is AS f(f(x, y, a), x, a) = y,hene x ≡ y (θ). We have proved that for all x, y ∈ Q, x ≡ y (θ) i�
a ≡ f(x, y, a) (θ), so one θ-lass de�nes the whole ongruene.

d) Let θ ∈ C(U), a, b ∈ Q, a 6≡ b (θ). The mapping ϕ : [a]θ → [b]θ de-�ned by ϕ(x) = f(x, a, b) is a bijetion. ϕ is obviously 1−1, and if y ∈ [b]θ,then x = f(y, b, a) ∈ [a]θ is suh that ϕ(x) = f(f(y, b, a), a, b) = y.
e) Let B = (B; f) be a subalgebra of U whih ontains a ongruenelass C = [a]θ. If we assume that there exist elements p ∈ Q\B, q ∈ B\C,suh that p ≡ q (θ), and if r is an arbitrary element from C, then sine themapping f : [r]θ → [q]θ de�ned by x 7→ f(x, r, q) is a bijetion, it followsthat there exist an element r1 ∈ C suh that f(r1, r, q) = p. But, sine Bis a subalgebra, p ∈ B, whih is a ontradition. Hene all elements on-gruent to an element of B belong to B, i.e. a subalgebra whih ontains aongruene lass must be a union of ongruene lasses.We have proved that if a GIAS-3-groupoid has a nontrivial ongruene,then that ongruene is uniform and eah ongruene lass is a subalge-bra. Sine fator algebra is also a GIAS-3-groupoid we have the followingorollary.Corollary 1. A neessary ondition that a �nite GIAS-3-groupoid of order

v has nontrivial ongruenes, is that v ≡ v1v2, where v1, v2 are integersgreater than 1 suh that v1, v2 ≡ 1, 2, 4, 5, 8, 10 (mod 12).In [13℄ Fraser and Horn studied varieties V with the property that forevery A,B ∈ V eah ongruene θ of A×B is a produt ongruene θ1×θ2.A variety V of algebras has the Fraser-Horn property if for every A,B ∈ Vall ongruenes of A×B are produt ongruenes. A ongruene of a diretprodut whih is not a produt ongruene is alled skew.Theorem 7. A variety of GIAS-3-groupoids does not have the Fraser-Hornproperty.Proof. In [17℄ it is proved that the variety whih oordinatizes Steinerquadruple systems has a skew ongruene. Sine this variety is a subva-riety of the variety V of all GIAS-3-groupoids, it follows that V does nothave the Fraser-Horn property.



170 Z. Stojakovi¢ and W. A. DudekUsing a theorem of Birkho� ([5℄) whih states that if every algebra froma variety has permutable ongruenes and singleton subalgebras, then every�nite algebra from that variety has a deomposition into a diret produtof diretly irreduible algebras whih is unique up to isomorphism of thefators and up to their sequene, by Theorem 6 we get the next theorem.Theorem 8. Eah �nite GIAS-3-groupoid has a deomposition into a diretprodut of diretly irreduible fators whih is unique up to isomorphism ofthe fators and up to their sequene.9. H-permutable n-groupsVarious lasses of H-permutable n-groups were onsidered in [11℄, [12℄, [21℄,[29℄, [26℄. Here we shall desribe some of them.Theorem 9. Let (Q, f) be an n-group. (Q, f) is AS i� there exists anAbelian group (Q,+) suh that x = −x for all x ∈ Q, and
f(xn

1 ) =
n

∑

1

xi + c,where c is a �xed element from Q.Proof. Let (Q, f) be an AS-n-group. Then by Hosszú-Gluskin theoremthere exist a group (Q, ·), its automorphism θ and an element c ∈ Q suhthat
f(xn

1 ) = x1θx2θ
2x3 . . . θn−1xnc,where θc = c and for all x ∈ Q θn−1x = cxc−1. f is AS, hene f = fσ,where σ = (1, 2, n + 1), and the following identity is valid

f(x2, f(xn
1 ), xn

3 ) = x1,that is
x2θ(x1θx2θ

2x3 . . . θn−1xnc)θ2x3 . . . θn−1xnc = x1. (10)If we put in the preeding equality x1 = e, i = 1, . . . , n, where e is theunit of (Q, ·), we get that c2 = e. Now putting in (10) xi = e, i = 1, . . . , n,it follows θx1 = x1, i. e. θ is the identity mapping of Q. If in (10) weput x1 = e, i = 1, 3, . . . , n, we obtain θ2x2 = x−1
2 whih means that for all

x ∈ Q, x = x−1. Hene (Q, ·) is an Abelian group and
f(xn

1 ) = x1x2 . . . xnc.The onverse part of the theorem is obvious.



Conjugate invariant quasigroups 171Sine the group (Q, ·) suh that x = x−1 for all x ∈ Q is of order 2t,
t ∈ N, and for every t ∈ N there exists suh group of order 2t, we have thefollowing orollary.Corollary 2. There exists a nontrivial �nite AS-n-group (Q, f) of order qi� q = 2t, t ∈ N.Cyli n-groups have similar struture. Some properties of suh n-groups are given in the following theorems ([29℄).Theorem 10. Let (Q, f) be an (i, j)-assoiative yli n-quasigroup, where
j − i is relatively prime to n. Then (Q, f) is an n-group.Theorem 11. Let (Q, f) be an n-group, where n = 2k, k ∈ N. (Q, f)is yli i� there exists an Abelian group (Q,+) suh that x = −x for all
x ∈ Q, and

f(xn
1 ) =

n
∑

1

xi + c,where c is a �xed element from Q.Theorem 12. Let (Q, f) be an n-group, where n = 2k + 1, k ∈ N. (Q, f)is yli i� there exists an Abelian group (Q,+) suh that
f(xn

1 ) = x1 − x2 + x3 − · · · + xn + c, (11)where c = −c is a �xed element from Q.Corollary 3. When n is even, there exists a nontrivial �nite yli n-group
(Q, f) of order q i� q = 2t, t ∈ N. When n is odd, a nontrivial �nite yli
n-group (Q, f) of order q exists for every q ∈ N and every suh group isrepresented by (11).Further investigation of H-permutable n-groups is done in [26℄ wheresome neessary and su�ient onditions for an n-group to be σ-permutableare determined and several onditions under whih suh n-groups are de-rived from binary groups are given.10. Other appliationsWe have desribed some properties of onjugate invariant quasigroups, butthere are many other appliations of suh quasigroup whih ould not be
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