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On structure of �nite n-ary medial quasigroups

and automorphism groups of these quasigroups

Victor Shcherbacov

Abstract

We prove that any �nite medial n-ary quasigroup is isomorphic to the direct product of
a medial unipotently-solvable quasigroup and a principal isotope of a medial idempotent
quasigroup. For binary case similar theorem was proved by D.C. Murdoch. This theorem
gives a possibility to obtain information on automorphism groups of �nite n-ary medial
quasigroups.

1. Introduction

We shall use basic terms and concepts from books and articles [3], [5], [6],
[25], [36], [45], [56], [58].

1.1. n-ary quasigroups and codes

We recall some known facts. Let Q be a nonempty set, let n be natural
number, n > 2. A map f that maps all n-tuples over Q into elements of
the set Q is called an n-ary operation, i.e. f(x1, x2, . . . , xn) = xn+1 for all
(x1, x2, . . . , xn) ∈ Qn and xn+1 ∈ Q.

We can de�ne an n-ary operation f as the set F of (n + 1)-tuples of
the following form (x1, x2, . . . , xn, f(x1, x2, . . . , xn)), where x1, x2, . . . , xn,
f(x1, x2, . . . , xn) ∈ Q. Two n-ary operations f and g de�ned on a set Q are
equal if and only if F = G.

A sequence xm, xm+1, . . . , xn will be denoted by xn
m. Of course, m,n are

natural numbers with m 6 n. As usual in the study of n-ary quasigroups,
1, n = {1, 2, . . . , n} [5].
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This de�nition of n-ary quasigroups was given by V.D. Belousov and
M.D. Sandik in 1966 ([7]).

De�nition 1. A nonempty set Q with an n-ary operation f such that
in the equation f(x1, x2, . . . , xn) = xn+1 knowledge of any n elements of
x1, x2, . . . , xn, xn+1 uniquely determines the remaining one is called an n-
ary quasigroup or shortly: n-quasigroup ([7], [5]).

Some applications of n-ary quasigroups in Coding Theory there are in
[40, 41]. We add the following de�nitions to make situation more clear
and to show that n-ary medial quasigroups have some applications in prac-
tice, therefore study of n-ary quasigroups has not only purely theoretical
motivation.

A check digit system C with one check character is a systematic error
detecting code over an alphabet Q which arises by appending a check digit

an+1 to every word a1a2 . . . an ∈ Qn [53].
We can view the code C as a mapping over an alphabet Q such that

the check symbol an+1 is obtained from information symbols a1, a2, . . . , an

in the following manner: g(a1, a2, . . . , an) = an+1, where g is an n-ary
operation on the set Q ([40]). The code C was called in [40] an n-ary code

(Q, g).
If in an n-ary code (Q, g) the operation g is an n-ary quasigroup oper-

ation, then this code is called an n-quasigroup code (Q, g).

Theorem 1. Any n-ary code (Q, g) detects all single errors if and only if

it is an n-ary quasigroup code ([11, 40]).

1.2. Isotopy of n-ary quasigroups, translations

We say that n-ary quasigroup (Q, f) is an isotope of n-ary quasigroup (Q, g)
if there exist permutations µ1, µ2, . . . , µn, µ of the set Q such that

f(x1, x2, . . . , xn) = µ−1g(µ1x1, . . . , µnxn) (1)

for all x1, . . . , xn ∈ Q. We can write this fact also in the form (Q, f) =
(Q, g)T , where T = (µ1, µ2, . . . , µn, µ).

If in (1) f = g, then (n+ 1)-tuple (µ1, µ2, . . . , µn, µ) of permutations of
the set Q is called an autotopy of n-quasigroup (Q, f). The last component
of an autotopy of an n-quasigroup is called a quasi-automorphism (by the
analogy with binary case).
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If in (1) µ1 = µ2 = · · · = µn = µ, then quasigroups (Q, f) and (Q, g)
are isomorphic.

At last, if in (1) the n-ary operations f and g are equal and µ1 =
µ2 = · · · = µn = µ, then we obtain an automorphism of quasigroup (Q, f),
i.e. a permutation µ of the set Q is called an automorphism of an n-
quasigroup (Q, f) if for all x1, . . . , xn ∈ Q the following relation is ful�lled:
µf(x1, . . . , xn) = f(µx1, . . . , µxn). We denote by Aut(Q, f) the automor-
phism group of an n-ary quasigroup (Q, f).

As usual, L◦
a : L◦

ax = a ◦ x, R◦
a : R◦

ax = x ◦ a are respectively left and
right translations of binary quasigroup (Q, ◦). We shall omit denotation of
a quasigroup operation by using of quasigroup translations, i.e. we shall
write La, Ra instead of L◦

a, R
◦
a, in cases when it will be clear from context

relatively which quasigroup operation we take quasigroup translations.
M(Q, ·) denotes the group generated by all left and right translations

of a binary quasigroup (Q, ·) and it is called the multiplication group of a

quasigroup (Q, ·).
An element d of an n-ary quasigroup (Q, f) such that f(d, . . . , d) = d

is called an idempotent element of quasigroup (Q, f) (in brackets we have
taken the element d exactly n times). In binary case an element d ∈ Q such
that d · d = d is called an idempotent element of quasigroup (Q, ·).

We shall denote the identity permutation as ε, the order of a set Q as
|Q|.

1.3. Linear n-ary quasigroups

An n-ary quasigroup (Q, g) of the form

γg(x1, x2, . . . , xn) = γ1x1 + γ2x2 + · · ·+ γnxn, (2)

where (Q,+) is a group, γ, γ1, . . . , γn are some permutations of Q, we shall
call an n-ary group isotope. This equality (as well as analogous equalities
that will appear later in this article) is true for all x1, x2, . . . , xn ∈ Q.

Remark 1. It is easy to see that (Q, g) = (Q, f)T , where f(xn
1 ) = x1 +

x2 + · · ·+ xn and the isotopy T has the form (γ1, γ2, . . . , γn, γ).

Following articles [35, 44] we shall call the equality (2) the form of qua-

sigroup (Q, g).
An n-ary quasigroup (Q, f) with the form f(xn

1 ) = x1 + x2 + · · · + xn,
where (Q,+) is a binary group, will be called as n-ary derivative group of
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a binary group (Q,+) ([5, 48]). Sometimes we shall denote this quasigroup

as (Q,
n
+).

Remark 2. The form of a quasigroup (Q, g) is some analytical de�nition of
the n-ary operation g over a group (Q,+) similar to de�nition of a function
with help of a formula over �eld of real numbers or over �eld of some other
kind of numbers.

Remark 3. In algebra usually quasigroups are studied up to isomorphism.
Therefore in some cases, without loss of a generality, we will be able to
choose an isotopy T of an n-ary quasigroup (Q, g) in such manner that its
last component is the identity map.

De�nition 2. An n-quasigroup (Q, g) of the form

g(xn
1 ) = α1x1 + α2x2 + · · ·+ αnxn + a =

n∑
i=1

αixi + a, (3)

where (Q,+) is a group, α1, . . . , αn are some automorphisms of the group
(Q,+), the element a is some �xed element of the set Q, will be called a
linear n-ary quasigroup (over group (Q,+)).

Example 1. Gluskin-Hosszú theorem.

Any n-ary group (Q, g) ([5, 20, 25, 48]) has the following form

g(xn
1 ) = x1 + θx2 + θ2x3 + · · ·+ θn−2xn−1 + θn−1xn + c,

where (Q,+) is a binary group, θ ∈ Aut(Q,+), c ∈ Q, θn−1x = c + x − c
and θc = c.

This theorem �rstly was proved in [29]. The elegant short proof is given
in [57]. Some important generalizations are proved in [21, 22].

From this theorem it follows that any n-ary group is a linear n-ary
quasigroup. In some sense this theorem can be considered as a de�nition of
n-ary groups. The question when an n-ary quasigroup de�ned by (3) is an
n-ary group is solved in [59].

Lemma 1. The form of a linear n-ary quasigroup (Q, g) over a �xed group

(Q,+) de�nes the quasigroup (Q, g) by the unique way.

Proof. If we suppose that

g(xn
1 ) = α1x1 +α2x2 + · · ·+αnxn + a = β1x1 + β2x2 + · · ·+ βnxn + b, (4)
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then, if in equality (4) we put x1 = · · · = xn = 0, we obtain a = b. Further,
if we suppose that in equality (4) x2 = · · · = xn = 0, then α1 = β1, since
a = b. If we take in (4) x1 = x3 = x4 = · · · = xn = 0, then α2 = β2 and so
on.

An n-ary linear quasigroup (Q, g) over an abelian group (Q,+) is called
n-T-quasigroup [58]. If n = 2, then a quasigroup from this quasigroup class
is called a T-quasigroup [35, 44].

1.4. n-ary medial quasigroups

The following identity of an n-ary quasigroup (Q, g)

g(g(x11, x12, . . . , x1n), g(x21, x22, . . . , x2n), . . . , g(xn1, xn2, . . . , xnn)) =
g(g(x11, x21, . . . , xn1), g(x12, x22, . . . , xn2), . . . , g(x1n, x2n, . . . , xnn)) (5)

is called medial identity [5]. An n-ary quasigroup with identity (5) is called
a medial n-ary quasigroup.

In binary case from identity (5) we obtain usual medial identity:

xy · uv = xu · yv.

For a medial n-ary group the group (Q,+) from Gluskin-Hosszú theorem
must be abelian. Other properties of medial n-ary groups are described in
[18] and [26] (see also [20]). Some special medial n-ary groups which are a
set-theoretic union of �nite medial n-ary groups are studied in [17].

Medial quasigroups, as well as the other classes of quasigroups isotopic
to groups, give us a possibility to construct quasigroups with preassigned
properties. Often it is possible to express these properties on the language
of properties of groups and components of isotopy. Systematically this
approach was used by study of T-quasigroups in [33], [32], [35], [44].

In [42] D.C. Murdoch proved that any �nite binary medial quasigroup
(Q, ·) is either a quasigroup with a unique idempotent element, or it is a
quasigroup in which the map e (e : x 7→ e(x), where x · e(x) = x), is a
permutation, or it is isomorphic to the direct product of a quasigroup (A, ·)
with a unique idempotent element and a quasigroup (B, ·) in which the map
e (e : x 7→ e(x)) is a permutation.

It is easy to see that in the Murdoch theorem it is possible to use the
map f, f(x) · x = x. A little bit other proof of this theorem is for the map
s : x 7→ s(x), s(x) = x ·x. For us the map s is more suitable in n-ary (n > 3)
case to prove an n-ary analog of Murdoch theorem. See below.



130 V. Shcherbacov

In [5] V.D. Belousov proved the following theorem. This theorem follows
from results of T. Evans ([23], Theorem 6.2.), too.

Theorem 2. Let (Q, f) be a medial n-quasigroup. Then there exist an

abelian group (Q,+), its pairwise commuting automorphisms α1, . . . , αn,
and a �xed element a of the set Q such that

f(x1, x2, . . . , xn) = α1x1 + α2x2 + · · ·+ αnxn + a =
n∑

i=1
αixi + a

for all xi ∈ Q, i ∈ 1, n.

In a binary case from Theorem 2 it follows the classical Toyoda theorem
(T-theorem) ([3], [6], [12], [42], [60]).

Remark 4. We notice, n-ary quasigroups arise in di�erent areas of mathe-
matics at study of various objects. Properties of n-ary medial quasigroups
are described in many articles from various points of view, see, for example
[1, 4, 8, 13, 14, 18, 23, 26, 43, 46, 47, 60]. The author thanks Referees for
information on articles devoted n-ary medial quasigroups and listed in this
remark.

Remark 5. From Theorem 2 it follows that any n-ary medial quasigroup

(Q, f) can be represented as an isotope of an n-ary derivative group (Q,
n
+)

of an abelian group (Q,+), namely (Q, f) = (Q,
n
+)T , where the isotopy T

has the form (α1, . . . , αn−1, L
+
a αn, ε), α1, . . . , αn ∈ Aut(Q,+), L+

a x = a+x.

1.5. Some elementary properties of binary quasigroups

We shall use the following elementary properties of binary quasigroups.

Lemma 2.
(i) If (Q, ·) is a binary quasigroup, La, Rb are some its left and right

translations, ϕ ∈ Aut(Q, ·), then ϕLa = Lϕaϕ, ϕRb = Rϕbϕ.

(ii) If (Q,+) is a group, then LaRb = RbLa, L
−1
a = L−a, R

−1
a = R−a.

(iii) If (Q,+) is a group, then Rd = LdId, where Id is the inner auto�

morphism of the group (Q,+), i.e. Idx = −d+x+ d for all x ∈ Q.

(iv) Any quasi-automorphism of a group (Q,+) has the form Laβ,

where a ∈ Q, β ∈ Aut(Q,+).

Proof. (i) We have ϕLax = ϕ(a · x) = ϕa · ϕx = Lϕaϕx, ϕRbx = ϕ(x · b) =
ϕx · ϕb = Rϕbϕx.
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(ii) LaRbx = a + (x + b) = (a + x) + b = RbLax. L
−1
a = L−a since

L−1
a Lax = x = −a+ a+ x = L−aLax.
(iii) Rdx = x+ d = d− d+ x+ d = LdIdx.
(iv) Any autotopy of a group (Q,+) has the form (Lcθ,Rdθ, LcRdθ),

where θ ∈ Aut(Q,+), Lc is a left and Rd is a right translation of the group
(Q,+) ([3], [6], [45]). Using (iii) further we have LcRdθ = LcLdIdθ =
Laβ.

2. Congruences and direct products of quasigroups

Now we are needed in an n-quasigroup homomorphic theory and in some
facts from universal algebra ([3], [6], [15], [45], [54], [58]). Most of the results
of this section is a speci�cation for n-ary quasigroups of results on Ω-algebras
[15]). We do not give the de�nition of Ω-algebra in this article, but we would
like to notice that an n-ary quasigroup is an Ω-algebra. Almost all lemmas
in this paragraph are very known for binary quasigroups ([3], [45]).

2.1. Congruences and translations of n-ary quasigroups

De�nition 3. ([45]) Let (Q, f) and (H, g) be n-ary quasigroups, and let
ϕ be a single valued mapping of Q into H such that ϕf(x1, . . . , xn) =
g(ϕx1, . . . , ϕxn), then ϕ is called a homomorphism of (Q, f) into (H, g) and
the set {ϕx |x ∈ Q} is called a homomorphic image of (Q, f) under ϕ.

Even in the case n = 2 a homomorphic image of an n-ary quasigroup
(Q, f) does not have to be a quasigroup [2], i.e class of n-ary quasigroups
with signature that consists of one n-ary operation is not closed in regard
to homomorphic images.

To avoid appearance of non-quasigroup homomorphic images the notion
of normal congruences is de�ned. Any normal congruence induces such
homomorphism that its (homomorphic) image is a quasigroup. To prove
this fact we give some de�nitions.

If (B, f) and (C, g) are n-ary quasigroups (Ω-algebras), C is a subset of
B (written C ⊆ B) and C is closed under the action f , then (C, f) is said
to be a subalgebra of (B, f), written (C, f) 6 (B, f) [54].

As usual, a binary relation θ is an equivalence relation on Q if and only
if θ is re�exive, symmetric and transitive subset of Q2 [15, 27].

Let V be an equivalence relation on Q. The notion xV y will often be
used instead of (x, y) ∈ V. The equivalence class xV is {y ∈ Q |xV y}. AV
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will denote the set of equivalence classes, and nat V : Q→ QV ; x 7→ xV the
natural projection.

De�nition 4. An equivalence θ is a congruence of an n-ary quasigroup
(Q, f) if and only if such implication is true: aiθbi, i = 1, n =⇒ f(an

1 )θf(bn1 ).
In other words, an equivalence θ is a congruence of (Q, f) if and only if θ
is a subalgebra of (Q×Q, (f, f)).

A translation of an n-ary quasigroup (Q, f) will be denoted as

T (a1, . . . , ai−1,−, ai+1, . . . , an)

where ai ∈ Q for all i ∈ 1, n and

T (a1, . . . , ai−1,−, ai+1, . . . , an)x = f(a1, . . . , ai−1, x, ai+1, . . . , an).

for all x ∈ Q.
From the de�nition of an n-ary quasigroup it follows that any translation

of an n-ary quasigroup (Q, f) is a permutation of the set Q.
Let T(Q, f) be a set all translations de�ned above,

T−1(Q, f) = {T−1 |T ∈ T(Q, f)}.

The semigroup generated by the set T will be denoted by ΠT(Q, f)
(often for a short ΠT), group generated by the set T will be denoted by
MT.

If θ is an equivalence on a set Q, α is a permutation of the set Q and
from xθy it follows αxθαy for all (x, y) ∈ θ, then we shall say that the
equivalence θ admits permutation α.

Remark 6. Slightly other de�nition of admissibility is given in [15].

Lemma 3. ([15], Proposition II.6.1) Every congruence θ admits any ele-

ment of the semigroup ΠT(Q, f).

Proof. If a1θb1, a2θa2, . . . , anθan, then from De�nition 4 it follows that
f(a1, a

n
2 )θf(b1, an

2 ). Therefore the congruence θ admits the translation
T (−, an

2 ) and so on.

De�nition 5. ([58]). The congruence θ on an n-quasigroup (Q, f) is called
normal if for every i = 1, n and for every (cn1 ) ∈ Qn the following implication
is true:

f(ci−1
1 , a, cni+1) θ f(ci−1

1 , b, cni+1) =⇒ aθb,

where a, b ∈ Q.
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Lemma 4. If a congruence θ admits any element of the set T−1, then θ is

a normal congruence.

Proof. Let f(ci−1
1 , a, cni+1) θ f(ci−1

1 , b, cni+1), i.e. on language of translations

T (ci−1
1 ,−, cni+1)a θ T (ci−1

1 ,−, cni+1)b.

Since a congruence θ admits permutations from the set T−1, then we have

T−1(ci−1
1 ,−, cni+1)T (ci−1

1 ,−, cni+1)a θ T
−1(ci−1

1 ,−, cni+1)T (ci−1
1 ,−, cni+1)b,

therefore aθb.

Corollary 1. A normal congruence θ of an n-quasigroup (Q, f) admits any

element of the group MT(Q, f).

Proof. By Lemma 4 and induction.

Lemma 5. If ϕ is a homomorphism of an n-quasigroup (Q, f), then ϕ
induces the congruence ker(ϕ).

Proof. Let ϕ be a homomorphism of an n-ary quasigroup (Q, f) onto an
n-ary groupoid (H, g). Then ϕ induces the equivalence relation ker(ϕ) = η
in the following way: aηb if and only if ϕa = ϕb.

The equivalence η is a congruence. Indeed, for the equivalence η the
implication aiηbi, i = 1, n⇒ f(an

1 )ηf(bn1 ) we can rewrite as

ϕai = ϕbi, i = 1, n⇒ ϕ(f(an
1 )) = ϕ(f(bn1 )).

Since ϕ is a homomorphism, we have

ϕ(f(an
1 )) = ϕ(f(bn1 )) ⇐⇒ g(ϕa1, . . . , ϕan) = g(ϕb1, . . . , ϕbn).

Therefore we have the following true implication

ϕai = ϕbi, i = 1, n⇒ g(ϕa1, . . . , ϕan) = g(ϕb1, . . . , ϕbn),
which completes the proof.

Corollary 2. If ϕ is a homomorphism of an n-quasigroup (Q, f) onto an

n-ary quasigroup (H, g), then ϕ induces a normal congruence η.

Proof. By Lemma 5 a relation η = ker(ϕ) is a congruence. To prove that
it is normal let f(ci−1

1 , a, cni+1)ηf(ci−1
1 , b, cni+1). Then

ϕ(f(ci−1
1 , a, cni+1)) = ϕ(f(ci−1

1 , b, cni+1)),

g(ϕci−1
1 , ϕa, ϕcni+1) = g(ϕci−1

1 , ϕb, ϕcni+1).

Since (H, g) is a quasigroup, we have ϕa = ϕb, aηb.
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Lemma 6. If θ is a normal congruence on an n-quasigroup (Q, f), then
θ determines the homomorphism nat (θ) of a quasigroup (Q, f) onto an n-
quasigroup (Qθ, f).

Proof. Let θ be a normal congruence, i.e. θ admits any element of the group
MT. The set Q θ with an n-ary operation f(aθ

1, . . . , a
θ
n) = (f(a1, . . . , an))θ

forms a quasigroup.
Indeed, it is easy to see that an element f(aθ

1, . . . , a
θ
n) is uniquely de-

termined. The equation f(aθ
1, . . . , a

θ
i−1, x

θ, aθ
i+1, . . . , a

θ
n) = aθ

n+1 has a

solution bθ, where f(ai−1
1 , b, an

i+1) = an+1.
We prove that this solution is unique. Let

f(aθ
1, . . . , a

θ
i−1, b

θ
1, a

θ
i+1, . . . , a

θ
n) = f(aθ

1, . . . , a
θ
i−1, b

θ
2, a

θ
i+1, . . . , a

θ
n).

Then

f(ai−1
1 , b1, a

n
i+1) θ f(ai−1

1 , b2, a
n
i+1) =⇒ b1 θ b2 ⇒ bθ1 = bθ2,

which completes the proof.

Lemma 7. If (Q, f) is a �nite n-ary quasigroup, then any its congruence

is normal and any its homomorphic image is an n-ary quasigroup.

Proof. In a �nite n-ary quasigroup (Q, f) ΠT = MT. Indeed, for any
translation T of the quasigroup (Q, f) there exist a natural number n such
that T n = T−1.

Thus from Lemmas 3 and 4 it follows that in this case any congruence
is normal.

Since a homomorphism ϕ of an n-ary quasigroup (Q, f) induces a con-
gruence ker (ϕ) (Lemma 5) and any congruence of a �nite n-quasigroup is
normal, then a homomorphism ϕ of the quasigroup (Q, f) induces a normal
congruence ker (ϕ).

From Lemma 6 it follows that a homomorphic image nat ker (ϕ) =
ϕ(Q, f) of the quasigroup (Q, f) is an n-ary quasigroup.

Remark 7. Using the terminology more near to the terminology of the
group theory or the ring theory we can call a quasigroup ϕ(Q, f), which is
a homomorphic image of a quasigroup (Q, f), as a factor-quasigroup of the
quasigroup (Q, f).

Remark 8. It is possible to prove that a homomorphic image (H, g) of
a homomorphism ϕ of a quasigroup (Q, f) is a quasigroup if and only if
corresponding congruence of a homomorphism ϕ is normal.
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2.2. Direct products of n-ary quasigroups

Direct products of quasigroups and Ω-algebras are studied in many articles
and books, see, for example, [9, 10, 15, 31, 35, 54]. The concept of a direct
product of quasigroups was used already in [42].

De�nition 6. If (B, f) and (C, g) are n-ary quasigroups (Ω-algebras) then
B × C with the action f on the �rst component and g on the second
component is called the direct product of (B, f) and (C, g) and denoted

by (B × C, (f, g)).

We give and more usual de�nition of the direct product of n-ary quasi-
groups.

De�nition 7. If (Q1, f1), (Q2, f2) are n-ary quasigroups, then their (external)
direct product (Q, f) = (Q1, f1) × (Q2, f2) is the set of all ordered pairs
(a′, a′′), where a′ ∈ Q1, a

′′ ∈ Q2, and where the operation in (Q, f) is
de�ned component-wise, that is, f(an

1 ) = (f1((a′)n
1 ), f2((a′′)n

1 )).

That (Q, f) = (Q1, f1)× (Q2, f2) is an n-ary quasigroup is immediate.
If we have an additive form of group operations, then we shall speak

instead of the direct product about the direct sum, instead of factors we
shall speak about items and write G = G1 ⊕G2.

In [54] there is a de�nition of the (internal) direct product of Ω-algebras.
For our aims this approach is more preferable. We notice that internal direct
products of quasigroups and Ω-algebras was studied in many articles, some
of these articles are listed above.

If U and W are equivalence relations on a set A, then

U ◦W = {(x, y) ∈ A2 | ∃ t ∈ A, xUtWy}
and

U ∨W = {(x, y) ∈ A2 | ∃ n ∈ N, ∃ t0, t1, . . . , t2n ∈ A,
x = t0Ut1Wt2 U . . . Ut2n−1Wt2n = y}.

U ∨W is an equivalence relation on A called the join of U and W . If U
and W are equivalence relations on A for which U ◦W = W ◦ U , then we
say that U and W are said to commute [54]. In this case U ◦W = U ∨W .

If A is an Ω-algebra and U, W are congruences on A, then U ∨W , and
U ∩W are also congruences on A.

De�nition 8. If U andW are congruences on the algebra A which commute
and for which U ∩W = Â = {(a, a)| ∀ a ∈ A}, then the join U ◦W = U ∨W
of U and W is called the direct product U uW of U and W [54].
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The following theorem establishes the connection between concepts of
internal and external direct products of Ω-algebras ([54], p.16).

Theorem 3. Ω-algebra A is isomorphic to a direct product of Ω-algebras B
and C with an isomorphism e : A→ B × C, if and only if there exist such

congruences U and W of A for which A2 = U uW.

Proof. If e : A → B × C is an isomorphism, and ϕ : B × C → B and
ψ : B×C → C are projections, U = ker ϕe,W = ker ψe. ThenA2 = UuW .

Conversely, if A2 = U uW , then every element of A is uniquely deter-
mined by its U -class and its V -class. Thus A2 = AU ×AW .

Lemma 8. If (Q, f) is a �nite n-ary quasigroup, then each pair of congru-

ences on (Q, f) commute.

Proof. From [38] it follows that congruences commute on all algebras with
transitive groups of invertible translations. A translation is invertible if it
is a product of translations of this algebra.

Since in �nite n-ary quasigroup for any translation T there exists a �nite
natural number k such that T k = ε, then T k−1 = T−1, i.e. every translation
is invertible.

For any pair of elements a and b of a quasigroup (Q, f) there exists
a translation T (−, cn2 ) such that T (−, cn2 )a = b. For example, elements
c3, . . . , cn can be any �xed elements of the set Q and element c2 must be a
solution of the equation f(a, c2, cn3 ) = b.

Lemmas 7, 8 give us a possibility to use Theorem 3 for �nite n-ary
quasigroups.

3. n-ary linear quasigroups

3.1. Multiplication groups of n-ary T-quasigroups

Theorem 4. The multiplication group MT(Q, f) of an n-ary T-quasigroup

(Q, f) with the form f(xn
1 ) =

∑n
j=1 αjxj + a over an abelian group (Q,+)

has the following structure

MT(Q, f) ∼= (
n−1⊕
j=1

(Q,+)j)h < α1, . . . , αn > .
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Proof. Any translation Ti of the quasigroup (Q, f) has the form

Ti(ai−1
1 ,−, an

i+1)x = α1a1+ . . .+ αi−1ai−1+ αix+ αi+1ai+1+ · · ·+ αnan+ a

= α1a1+ . . .+ αi−1ai−1+ αi+1ai+1+ · · ·+ αnan+ a+ αix

= L+
α1a1

L+
α2a2

. . . L+
αi−1ai−1

L+
αi+1ai+1

. . . L+
αnan+aαix.

From the group theory ([34]) it follows that

MiT(Q, f) ∼= (
n−1⊕
j=1

(Q,+)j)h < αi > .

Using Lemma 2 we can prove that any element of the group MT(Q, f)
can be represented in the form L+

a1
L+

a2
. . . L+

an−1
β, where a1, . . . , an−1 ∈ Q,

β ∈< α1, . . . , αn >.

Further, the proof is also standard [39], and, we hope that this part of
the proof can be easy re-established.

3.2. Homomorphisms and direct products

On Algebraic Seminar at Charles University (Prague, October, 2003) Prof.
Jan Trlifaj raised the following question:

Let n-ary medial quasigroup (Q, f) be a direct product of n-ary medial

quasigroups (Q1, f1) and (Q2, f2), i.e. (Q, f) ∼= (Q1, f1) × (Q2, f2). What

connections there exist between the form f of the quasigroup (Q, f) and the

forms f1 and f2 of the quasigroups (Q1, f1) and (Q2, f2)?
In this subsection we making attempt to answer this question. See

[35, 44] for binary case.

From the de�nition and properties of the direct product of quasigroups
we obtain the following property. If (Q1, f1) is a linear quasigroup with the

form f1((x′)n
1 ) = β1x

′
1 +1β2x

′
2 +1 · · ·+1βnx

′
n +1 b over a group (Q1,+1) and

(Q2, f2) is a linear quasigroup with the form f2((x′′)n
1 ) = γ1x

′′
1 +2 γ2x

′′
2 +2

· · ·+2 γnx
′′
n +2 c over a group (Q2,+2), then (Q, f) = (Q1, f1)×(Q2, f2) is a

linear quasigroup with the form f(xn
1 ) = α1x1+ α2x2 + · · ·+αnxn + a over

a group (Q,+) = (Q1,+1)× (Q2,+2), where xi = (x′i, x
′′
i ), αi = (βi, γi) for

all i ∈ 1, n, a = (b, c).
If (Q, f) = (Q1, f1) × (Q2, f2) and T1 is an isotopy of the quasigroup

(Q1, f1), T2 an isotopy of the quasigroup (Q2, f2), then T = (T1, T2) is an

isotopy of the quasigroup (Q, f) and vice versa.
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Proposition 1. Let (Q, f) be an n-ary medial quasigroup such that (Q, f) =
(Q1, f1)×(Q2, f2) and the form of quasigroups (Q, f), (Q1, f1), (Q2, f2) are
de�ned over groups (Q,+), (Q1,+1), (Q2,+2) respectively. Then

(Q,+) ∼= (Q1,+1)× (Q2,+2).

Proof. If (Q, f) is a medial n-ary quasigroup and (Q, f) ∼= (Q1, f1) ×
(Q2, f2), then (Q1, f1) and (Q2, f2) are medial quasigroups too. Thus
from Belousov theorem (Theorem 2) it follows (see Remarks 1 and 5) that

there exist derivative n-groups (Q,
n
+), (Q1,

n
+1), (Q2,

n
+2) of abelian groups

(Q,+), (Q1,+1), (Q2,+2) respectively, isotopies T, T1 and T2 such that

(Q, f) = (Q,
n
+)T , (Q1, f1) = (Q1,

n
+1)T1, (Q2, f2) = (Q2,

n
+2)T2 and

(Q,
n
+)T = (Q1,

n
+1)T1 × (Q2,

n
+2)T2.

Taking into consideration properties of direct products of universal al-

gebras ([27, 15]), we conclude that from the last relation it follows (Q,
n
+) =

(Q1,
n

+1)× (Q2,
n

+2) and T = (T1, T2).

If (Q,
n
+) = (Q1,

n
+1) × (Q2,

n
+2), then (Q,+) = (Q1,+1) × (Q2,+2).

Indeed, if x1+x2+ · · ·+xn = (x′1+1x
′
2+1 · · ·+1x

′
n)×(x′′1 +2x

′′
2 +2 · · ·+2x

′′
n)

for all xn
1 ∈ Q, (x′)n

1 ∈ Q1, (x′′)n
1 ∈ Q2, then in the case when x3 = x4 =

· · · = xn = 0, x′3 = x′4 = · · · = x′n = 0′, x′′3 = x′′4 = · · · = x′′n = 0′′ we obtain
x1 + x2 = (x′1 +1 x

′
2)× (x′′1 +2 x

′′
2), i.e. (Q,+) = (Q1,+1)× (Q2,+2).

Remark 9. It is necessary to notice that an analog of Proposition 1 is true
for a direct product of n-ary linear quasigroups.

Unfortunately, in general case, decomposition of a quasigroup that is
a direct product of two (or more) quasigroups, cannot be carry out in an
unique way.

Lemma 9. If γ1x1 + γ2x2 + · · · + γnxn + g is a form of n-T-quasigroup
(Q,A) over a �nite abelian group (Q,+), then every congruence on (Q,A)
is a congruence on (Q,+).

Proof. We repeat the proof of Proposition 5 from [58] since Lemma 9 is
direct corollary of this proposition. We have

aΘb⇔A(γ−1
1 (a),

n−2
0 ,γ−1

n (−g))ΘA(γ−1
1 (b),

n−2
0 , γ−1

n (−g)) ⇔ γ−1
1 (a)Θγ−1

1 (b).
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Therefore

A(γ−1
1 (a), γ−1

2 (c),
n−3
0 , γ−1

n (−g))ΘA(γ−1
1 (b), γ−1

2 (c),
n−3
0 , γ−1

n (−g)),

or (a + c)Θ(b + c), i.e. Θ is a congruence on the abelian group (Q,+).
We notice that the �rst equivalence is true since any congruence Θ of an
n-ary quasigroup (Q,A) is admissible relatively any element from the group
MT (Q,A).

Remark 10. Results similar to Lemma 9 there are and in [37].

Proposition 2. If a map ξ : Q −→ Q1 is a homomorphism of a �nite n-ary
medial quasigroup (Q, f) with the form f(xn

1 ) = α1x1+α2x2+· · ·+αnxn+a
over an abelian group (Q,+) into a �nite medial n-ary quasigroup (Q1, f1),
then there exist an abelian group (Q1,+1) such that ξ(Q,+) = (Q1,+1) and
the quasigroup (Q1, f1) has the form f1(x′1, . . . , x

′
n) = β1x

′
1 +1β2x

′
2 +1 · · ·+1

βx′n +1 b, where ξa = b, ξαi = βiξ, x
′
i ∈ Q1 for all i ∈ 1, n.

Proof. It is known that using the homomorphism ξ it is possible to de�ne a
congruence θ on the set Q in the following way: aθb if and only if ξa = ξb.
Since the quasigroup (Q, f) is �nite, from Lemma 9 it follows that the
congruence θ of a quasigroup (Q, f) is a congruence of the group (Q,+).

Using the congruence θ of the group (Q,+) we can de�ne a binary
operation on the set Q1 in such manner: if x′ = ξx, y′ = ξy, then x′+1 y

′ =
ξ(x + y) for all x, y ∈ Q. It is a standard check that (Q,+1) is a �nite
abelian group.

Since ξ is a homomorphism of the group (Q,+), then we obtain

ξ(f(xn
1 )) = ξ(α1x1 + α2x2 + · · ·+ αnxn + a)

= ξ(α1x1) +1 ξ(α2x2) +1 · · ·+1 ξ(αnxn)+1 ξa.

Therefore the quasigroup (Q1, f1) has a linear form over the group (Q1,+1),

i.e. it is an isotope of the group (Q1,
n

+1).
The quasigroup (Q1, f1) is a �nite medial n-ary quasigroup as a ho-

momorphic image of a �nite medial n-ary quasigroup. Then by the Be-
lousov's theorem, the quasigroup (Q1, f1) over the group (Q1,+1) has the
form f1(xn

1 ) = β1x1 +1 β2x2 +1 · · · +1 βnxn +1 b, where βi ∈ Aut(Q,+1),
βiβj = βjβi, xi ∈ Q1 for all i, j ∈ 1, n.

Since the map ξ is a homomorphism of the quasigroup (Q, f) into
the quasigroup (Q1, f1), then we have ξf(xn

1 ) = f1(ξx1, ξx2, . . . , ξxn), i.e.
ξf(xn

1 ) = β1ξx1 +1 β2ξx2 +1 · · ·+1 βξxn +1 b.
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Comparing the right sides of the last equalities, we obtain

ξ(α1x1) +1 · · ·+1 ξ(αnxn) +1 ξa = β1ξx1 +1 · · ·+1 βξxn +1 b. (16)

We notice that ξ0 = 01, because ξ is a homomorphism of the group (Q,+)
into the group (Q1,+1) and ξx = ξx+1 01 = ξ(x+ 0) = ξx+1 ξ0.

If we put x1 = x2 = · · · = xn = 0 in (16), where 0 is the identity element
of the group (Q,+), then ξa = b. Thus from (16) we get

ξα1x1 +1 ξα2x2 +1 · · ·+1 ξαnxn = β1ξx1 +1 β2ξx2 +1 · · ·+1 βξxn. (17)

Putting x2 = x3 = · · · = xn = 0 in 17, we obtain ξα1x = β1ξx for all x ∈ Q.
For other values of i the equality ξαi = βiξ is proved similarly.

Remark 11. Proposition 2 is an n-ary analog of Lemma 28 from [35] and
it is very near to Proposition 9 from [58].

Corollary 3. If (Q, f) is an n-ary �nite medial quasigroup with the form

f(xn
1 ) = α1x1 + α2x2 + · · ·+ αnxn + a, (Q, f) ∼= (Q1, f1)× (Q2, f2), homo-

morphisms ξ and χ are such that ξ : ξ(Q, f) = (Q1, f1) and χ : χ(Q, f) =
(Q2, f2), then there exist abelian groups (Q1,+1) and (Q2,+2) such that

(Q,+) ∼= (Q1,+1)× (Q2,+2) and

f1(x′)n
1 = β1x

′
1 +1 β2x

′
2 +1 · · ·+1 βnx

′
n +1 ξ(a),

f2(x′′)n
1 = γ1x

′′
1 +2 γ2x

′′
2 +2 · · ·+2 γnx

′′
n +2 χ(a),

where βi ∈ Aut(Q1,+1), βiβj = βjβi, γi ∈ Aut(Q2,+2), γiγj = γjγi,

x′i ∈ Q1 and x′′i ∈ Q2 for all i, j ∈ 1, n.

Proof. We can use Propositions 2 and 1.

4. n-ary analog of Murdoch theorems

For an n-ary quasigroup (Q, f) we de�ne the map sf : Q → Q putting
sf (x) = f(x, x, . . . , x). Below often by using the map sf we shall omit
denotation of an n-ary operation and shall write s instead of sf . According

to Dörnte [16] the element f(x, x, . . . , x) will be denoted as f(
(n)
x ).

Lemma 10. In a medial n-ary quasigroup this map is an endomorphism.
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Proof. We have s(f(xn
1 )) = f(

(n)

f(xn
1 )). Using the medial identity (see (5))

we obtain

f(f(
(n)
x1), f(

(n)
x2), . . . , f(

(n)
xn)) = f(s(x1), s(x2), . . . , s(xn)),

which completes the proof.

Remark 12. For a binary medial quasigroup (Q, ·) we have: s(x) = x · x.
Then s(x · y) = (x · y) · (x · y) = (x · x) · (y · y) = s(x) · s(y).

Lemma 11. If an n-ary medial quasigroup (Q, f) has a �nite order, then

there exists natural number m such that the map s|sm(Q) is an automorphism

of the quasigroup sm(Q, f).

Proof. By sj(Q) we denote the endomorphic image of the quasigroup (Q, f)
relative to the endomorphism sj .

Then, since a medial n-ary quasigroup (Q, f) has a �nite order, there
exists a number m such that the following chain

Q = s0(Q) ⊃ s1(Q) ⊃ s2(Q) ⊃ · · · ⊃ sm−1(Q) ⊃ sm(Q)

becomes stable, i.e. sm(Q) = sm+1(Q) = sm+2(Q) and so on.

In this case we shall say that the endomorphism s has order m.

We denote the set {τ ∈ Aut(Q, f) | τα = ατ}, where (Q, f) is an n-
ary quasigroup, α is a permutation of the set Q, by CAut(Q,f)(α). As it is
well known, the set CAut(Q,f)(α) forms a group with respect to the usual
multiplication of permutations [34].

To prove the next lemma we shall use the following theorem from [39].

Theorem 5. If (Q, f) = (Q, g)T0 is an isotope of an n-ary idempotent

quasigroup (Q, g) such that T0 has the form (ε, . . . , ε, βi+1, ε, . . . , ε) (there
are (n + 1) members in this sequence) and i ∈ 0, n, then Aut(Q, f) =
CAut(Q,g)(βi+1).

Lemma 12. Let (H, f) be an n-ary medial quasigroup and the map sf be a

bijection on H. Then an n-ary quasigroup (H, g), where g(xn
1 ) = s−1

f (f(xn
1 ))

is a medial idempotent n-ary quasigroup and sf ∈ Aut(H, g).



142 V. Shcherbacov

Proof. It is obviously that sf ∈ Aut(H, f). Let us prove that the quasigroup
(H, f) is an isotope of a medial idempotent n-ary quasigroup (H, g).

At �rst check that the n-ary quasigroup (H, g) is idempotent:

sg(x) = g(
(n)
x ) = s−1

f (f(
(n)
x )) = s−1

f (sf (x)) = x.

We prove that the quasigroup (H, g) is a medial quasigroup. We note
that by Lemma 11 the map s−1 = s−1

f is an automorphism of the quasigroup
(H, f). We have

g(g(x11, x12, . . . , x1n), . . . , g(xn1, xn2, . . . , xnn))
= s−1f(s−1f(x11, x12, . . . , x1n), . . . , s−1f(xn1, xn2, . . . , xnn))
= s−1f(f(s−1x11, s

−1x12, . . . , s
−1x1n), . . . , f(s−1xn1, s

−1xn2, . . . , s
−1xnn))

= s−1f(f(s−1x11, s
−1x21, . . . , s

−1xn1), . . . , f(s−1x1n, s
−1x2n, . . . , s

−1xnn))
= s−1f(s−1f(x11, x21, . . . , xn1), . . . , s−1f(x1n, x2n, . . . , xnn))
= g(g(x11, x21, . . . , xn1), . . . , g(x1n, x2n, . . . , xnn)).

From Theorem 5 it follows that Aut(H, f) ∼= CAut(H,g)(sf ). Therefore
Aut(H, f) ⊆ Aut(H, g) and sf ∈ Aut(H, g) since sf ∈ Aut(H, f).

We recall that an n-ary quasigroup (Q, f) is called unipotent if there

exists an element e ∈ Q such that f(
(n)
x ) = e for all x ∈ Q.

Theorem 6. Let (Q, f) be an n-ary �nite medial quasigroup. Then (Q, f)
is either an isotope of a special form of an idempotent medial quasigroup,

or (Q, f) is a quasigroup with unique idempotent element, or (Q, f) ∼=
(A, f1) × (B, f2), where (A, f1) is a medial n-ary quasigroup with exactly

one idempotent element and (B, f2) is an isotope of an n-ary medial idem-

potent quasigroup.

Proof. If the map sf is a permutation of the set Q, then by Lemma 12
(Q, f) is an isotope of a special form of an idempotent medial quasigroup.

If sm
f (Q) = a, where a is a �xed element of the setQ, then the quasigroup

(Q, f) is a quasigroup with a unique idempotent element a.
Let us to suppose that |sm(Q)| = |sm+1(Q)|, where m > 1.
We de�ne a binary relation δ on the n-ary quasigroup (Q, f) putting:

xδy if and only if sm(x) = sm(y), where s(x) = f(
(n)
x ) for any element

x ∈ Q, m is the order of the endomorphism s.
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From Lemma 7 it follows that sm(Q, f) = (H, f) is a normal n-ary
subquasigroup of the n-ary quasigroup (Q, f).

We de�ne the binary relation ρ on the n-ary quasigroup (Q, f) putting:
xρy if and only if there exist elements h2, h3, . . . , hn−1 of the n-ary sub-
quasigroup (H, f) such that

f(x, hn−1
2 ,H) = f(y, hn−1

2 ,H),

where f(x, hn−1
2 ,H) = {f(x, hn−1

2 , h′) |h′ ∈ H}.
It is easy to check that so de�ned binary relations δ and ρ are equivalence

relations.
To prove that these equivalence relations δ and ρ are normal congruences

it is su�cient to check that these relations are congruences because in n-ary
�nite quasigroup (Q, f) all congruences are normal (Lemma 7).

To prove that equivalence relation δ is a congruence we must show that
the following implication is true: xiδyi for all i ∈ 1, n⇒ f(xn

1 )δf(yn
1 ). Using

the de�nition of the binary relation δ we re-write this implication in the
following equivalent form: sm(xi) = sm(yi) for all i ∈ 1, n =⇒ sm(f(xn

1 )) =
sm(f(yn

1 )). Since map sm is an endomorphism of the quasigroup (Q, f)
(Lemma 10) further we have

sm(xi) = sm(yi) for all i ∈ 1, n =⇒
f(sm(x1), sm(x2), . . . , sm(xn)) = f(sm(y1), sm(y2), . . . , sm(yn)).

The last implication is true. Therefore equivalence relation δ is a normal
congruence of the quasigroup (Q, f).

We prove that binary relation ρ is a normal congruence, i.e. that the
following implication is true: xiρyi for all i ∈ 1, n =⇒ f(xn

1 )ρf(yn
1 ).

Using the de�nition of the relation ρ we can re-write the last implication
in the following equivalent form: if

f(x1, h1,2, h1,3, . . . , h1,n−1,H) = f(y1, h1,2, h1,3, . . . , h1,n−1,H),
f(x2, h2,2, h2,3, . . . , h2,n−1,H) = f(y2, h2,2, h2,3, . . . , h2,n−1,H),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f(xn, hn,2, hn,3, . . . , hn,n−1,H) = f(yn, hn,2, hn,3, . . . , hn,n−1,H),

(14)

then there exist h′2, h
′
3, . . . , h

′
n−1 ∈ H such that the following equality is

true

f(f(xn
1 ), h′2, h

′
3, . . . , h

′
n−1,H) = f(f(yn

1 ), h′2, h
′
3, . . . , h

′
n−1,H).
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If we apply to both sides of equalities (14) the operation f , then we obtain
the following equality

f(f(x1, h1,2, h1,3, . . . , h1,n−1,H), f(x2, h2,2, h2,3, . . . , h2,n−1,H), . . . ,
f(xn, hn,2, hn,3, . . . , hn,n−1,H))

= f(f(y1, h1,2, h1,3, . . . , h1,n−1,H), f(y2, h2,2, h2,3, . . . , h2,n−1,H), . . . ,
f(yn, hn,2, hn,3, . . . , hn,n−1,H)).

Using medial identity we can re-write the last equality in the form

f(f(xn
1 ), f(h1,2, h2,2, . . . , hn,2), . . . , f(h1,n−1, h2,n−1, . . . , hn,n−1), f(

(n)

H ))

= f(f(yn
1 ), f(h1,2, h2,2, . . . , hn,2), . . . , f(h1,n−1, h2,n−1, . . . , hn,n−1), f(

(n)

H )).

Since (H, f) is a subquasigroup of the quasigroup (Q, f), we have f(h1,2, h2,2, . . . ,

hn,2), . . . , f(h1,n−1, h2,n−1, . . . , hn,n−1) ∈ H, f(
(n)

H ) = H. Then from the
above equality we obtain

f(f(xn
1 ), h′2, h

′
3, . . . , h

′
n−1,H) = f(f(yn

1 ), h′2, h
′
3, . . . , h

′
n−1,H),

where h′2 = f(h1,2, h2,2, . . . , hn,2), h′3 = f(h1,3, h2,3, . . . , hn,3), . . . , h′n−1 =
f(h1,n−1, h2,n−1, . . . , hn,n−1). Therefore the binary relation ρ is a normal
congruence.

We prove that δ ∩ ρ = Q̂ = {(x, x)| ∀x ∈ Q}. From re�exivity of
relations δ, ρ it follows that δ ∩ ρ ⊇ Q̂.

Let (x, y) ∈ δ ∩ ρ, i.e. let xδy and xρy, where x, y ∈ Q. Using the
de�nitions of relations δ, ρ we have sm(x) = sm(y) and there exist elements
hn−1

2 ∈ H such that f(x, hn−1
2 ,H) = f(y, hn−1

2 ,H). Then there exist ele-
ments h′, h′′ ∈ H such that f(x, hn−1

2 , h′) = f(y, hn−1
2 , h′′). Thus we have

smf(x, hn−1
2 , h′) = smf(y, hn−1

2 , h′′),

f(sm(x), sm(hn−1
2 ), sm(h′)) = f(sm(y), sm(hn−1

2 ), sm(h′′)).

Since in the last equality all elements are in a subquasigroup (H, f),
we can conclude that sm(h′) = sm(h′′). Therefore h′ = h′′ since s|H is
a permutation of the set H. Then f(x, hn−1

2 , h′) = f(y, hn−1
2 , h′) and we

obtain x = y. Therefore δ ∩ ρ ⊆ Q̂, and, �nally, δ ∩ ρ = Q̂.

To prove that δ ∨ ρ = Q×Q, let a, b be any �xed elements of the set Q.
We prove this equality if it will be shown that there exists element y ∈ Q
such that aδy and yρb.
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From the de�nition of the congruence δ it follows that the condition aδy
is equivalent to the equality sm(a) = sm(y).

From the de�nition of the congruence ρ it follows that the condition
yρb is equivalent to the following conditions: there exists elements c ∈ Q,
hn−1

2 , h′, h′′ ∈ H such that y = f(c, hn−1
2 , h′) and b = f(c, hn−1

2 , h′′).
Then in our new denotations the condition "there exists an element

y ∈ Q such that aδy and yρb" takes the following equivalent form "there
exists an element h′ ∈ H such that sm(a) = smf(c, hn−1

2 , h′) and b =
f(c, hn−1

2 , h′′), where c ∈ Q and hn−1
2 , h′′ ∈ H."

Passing to images of endomorphism sm further we have

sm(a) = f(sm(c), sm(hn−1
2 ), sm(h′)).

In the last equality we have that all elements possibly with the exception
of the last element there are in the set H. Since (H, f) is a subquasigroup,
sm(h′) ∈ H. But the map s |H is a permutation of the set H and we obtain
that h′ ∈ H too.

Then there exists an element h′ such that y = f(c, hn−1
2 , h′), i.e. such

that aδy and yρb for any pair (a, b) ∈ Q × Q. Thus (a, b) ∈ δ ∨ ρ for any
pair (a, b) ∈ Q×Q, i.e. Q×Q ⊆ δ ∨ ρ. Therefore δ ∨ ρ = Q×Q.

Taking into consideration Theorem 3 now we can say that the n-ary
quasigroup (Q, f) is isomorphic to a direct product of quasigroups (H, f)
and (Q, f)/(H, f).

It is easy to see that the medial identity holds in quasigroups (H, f) and
(Q, f)/(H, f). The quasigroup (H, f) is medial as an endomorphic image
of a medial quasigroup (Q, f). It is possible to check that the quasigroup
(Q, f)/(H, f) is a medial quasigroup too.

Any element of the quasigroup (Q, f)/(H, f) we can be presented as aρ.
Let xρ

11, . . . , x
ρ
nn ∈ (Q, f)/(H, f). The medial identity in the quasigroup

(Q, f)/(H, f) takes the form

f(f(xρ
11, . . . , x

ρ
1n), . . . , f(xρ

n1, . . . , x
ρ
nn)) =

f(f(xρ
11, . . . , x

ρ
n1), . . . , f(xρ

1n, . . . , x
ρ
nn)).

If we suppose that there exist elements bρ11, . . . , b
ρ
nn ∈ (Q, f)/(H, f) such

that the medial identity is not true for these elements, then the medial
identity will not be true for some elements of the quasigroup (Q, f). We
receive a contradiction that shows that our supposition was not true, and,
really, the medial identity holds in the quasigroup (Q, f)/(H, f).
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By Lemma 12 the quasigroup (H, f) is an isotope of a medial idempotent
n-ary quasigroup (H, g), where g(xn

1 ) = s−1
f (f(xn

1 )).
Prove that the quasigroup sj(Q, f)/sj+1(Q, f) is an unipotent quasi-

group for all suitable values j.

Denote the quasigroup sj+1(Q, f) by K. Any element of the quasigroup
sj(Q, f)/sj+1(Q, f) we can write in the form: f(a, hn−2

2 ,K), where a ∈
sj(Q, f), hn−2

2 ∈ K. Further we have s(f(a, hn−2
2 ,K)) = f(s(a), s(hn−2

2 ), s(K)) ⊆
K since s(a) ∈ K. Therefore we obtain that the quasigroup sj(Q, f)/sj+1(Q, f)
is an unipotent quasigroup for all suitable values of j.

Prove that the quasigroup (A, f) ∼= (Q, f)/(H, f), where sm(Q, f) =
(H, f), is an n-ary medial quasigroup with exactly one idempotent element
over an abelian group (A,+).

From the properties of quasigroup (A, f) it follows that sm(A) = a,
where the element a is a �xed element of the set A that corresponds to the
coset H. Further, taking into consideration the properties of an endomor-
phism s of the quasigroup (A, f), we have sm+1A = s(smA) = s(a) = a.
Therefore s(a) = a, i.e. the element a is an idempotent element of an n-ary
quasigroup (A, f).

Prove that there exists exactly one idempotent element in the quasigroup
(A, f). Suppose that there is an element b of the quasigroup (A, f) such
that f(bn) = b, i.e. that s(b) = b. Then we have sm(b) = b = a.

An isotopy of the form (ε, ε, . . . , ε, γ) is called a principal isotopy [5]. A
quasigroup (Q, f) is called an unipotently-solvable quasigroup of degree m, if
there exists the following �nite chain of unipotent quasigroups: Q/s(Q), s(Q)/s2(Q), . . . , sm(Q)/sm+1(Q),
where |sm(Q)/sm+1(Q)| = 1. Using the last de�nitions we can re-formulate
Theorem 6 in the following form.

Corollary 4. Any �nite medial n-ary quasigroup is isomorphic to the direct

product of a medial unipotently-solvable quasigroup and a principal isotope

of a medial idempotent quasigroup (Q, f), where γ ∈ Aut(Q, f).

5. Automorphisms of n-ary medial quasigroups

In this section we apply the n-ary analog of Murdoch theorem to obtain
information about structure of the automorphism group of any �nite n-ary
medial quasigroup.
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Automorphisms and automorphism groups of some binary and n-ary
quasigroups were studied in many articles, see, for example, [19, 30, 32, 33,
36, 37, 42, 49, 50, 51, 52, 56].

We shall use information about the structure of the automorphism group
of an n-ary medial quasigroup that has at least one idempotent element [39].

Theorem 7. If an n-T-quasigroup (Q, g) with the form g(xn
1 ) =

n∑
i=1

ϕixi+a

has at least one idempotent element and K = {L+
b | b ∈ Q,

n∑
i=1

ϕib = b},

then

Aut(Q, g) ∼= K h C,

where C = {ω ∈ Aut(Q,+) | ωϕi = ϕiω ∀i ∈ 1, n}.

Corollary 5. If an n-T-quasigroup (Q, g) with the form g(xn
1 ) =

n∑
i=1

ϕixi

has exactly one idempotent element, then

Aut(Q, g) ∼= C,

where C = {ω ∈ Aut(Q,+) |ωϕi = ϕiω ∀ i ∈ 1, n}.

Corollary 6. If an n-T-quasigroup (Q, g) is an idempotent quasigroup with

the form g(xn
1 ) =

n∑
i=1

ϕixi over an abelian group (Q,+), then

Aut(Q, g) ∼= (Q,+) h C,

where C = {ω ∈ Aut(Q,+) |ωϕi = ϕiω ∀ i ∈ 1, n}.

Corollary 7. If an n-ary quasigroup (Q, f) is an isotope of an n-ary idem-

potent T-quasigroup (Q, g), g(xn
1 ) =

n∑
i=1

αixi, and the isotopy has the form

(ε, . . . , ε, βi+1, ε, . . . , ε), i ∈ 0, n, βi+1 = L+
d , then

Aut(Q, f) ∼= (Q,+) h S,

where S = {θ ∈ C | θd = d}, C = {ω ∈ Aut(Q,+) |ωαi = αiω ∀ i ∈ 1, n}.

Corollary 8. If (Q, f) = (Q, g)T0 is an isotope of an n-ary idempotent T-

quasigroup (Q, g) such that T0 has the form (ε, . . . , ε, βi+1, ε, . . . , ε), i ∈ 0, n
and βi+1 = ϕ ∈ Aut(Q,+), then

Aut(Q, f) ∼= B hN

where B = {L+
b | b ∈ Q,ϕb = b}, N = {σ ∈ C |σϕ = ϕσ}.
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Remark 13. It is easy to see that there exist four classes of n-ary medial
quasigroups over the group Z2, namely:

1) a (2k + 1)-ary quasigroup (Z2, f1) of the form f1(x2k+1
1 ) =

2k+1∑
i=1

xi,

2) a (2k)-ary quasigroup (Z2, f2) of the form f2(x2k
1 ) =

2k∑
i=1

xi,

3) a (2k+1)-ary quasigroup (Z2, f3) of the form f3(x2k+1
1 ) =

2k+1∑
i=1

xi +1,

4) a (2k)-ary quasigroup (Z2, f4) of the form f4(x2k
1 ) =

2k∑
i=1

xi + 1.

Lemma 13. For indicated cases we have:

1) sf1 = ε, Aut(Z2, f1) ∼= Z2,

2) sf20 = 0, sf21 = 0, Aut(Z2, f2) ∼= ε,

3) sf3 = (01), Aut(Z2, f3) ∼= Z2,

4) sf40 = 1, sf41 = 1, Aut(Z2, f4) ∼= ε.

Proof. 1). We have sf1 = ε, since sf1(0) = 0, sf1(1) = 1. This quasigroup is
a medial (αiαj = αjαi) idempotent ((2k+ 1)1 = 1, (2k+ 1)0 = 0) (2k+ 1)-
ary quasigroup. From Corollary 6 it follows Aut(Z2, f1) ∼= Z2 h C ∼= Z2

since |C| = 1.
2). We have sf20 = 0, sf21 = 0. This quasigroup is an unipotent quasi-

group and by Corollary 5 we obtain Aut(Z2, f2) ∼= Aut(Z2) = ε.

3). In this case a map sf3 has the form sf3 = (01), since sf3(0) = 1,
sf3(1) = 0, the map sf3 is a permutation of the set Z2.

This quasigroup is an isotope of an idempotent T-quasigroup. From
our Corollary 7 it follows that Aut(Z2, f3) ∼= Z2 h C ∼= S ∼= Z2 since
S = {θ ∈ C | θ1 = 1} = ε.

4). We have sf40 = 1, sf41 = 1. This quasigroup is an unipotent quasi-
group, from Corollary 5 it follows Aut(Z2, f4) ∼= Aut(Z2) = ε.

Theorem 8. If (Q, f) is a �nite medial n-ary quasigroup of the form

f(xn
1 ) =

n∑
i=1

αixi + a, s(x) = f(
(n)
x ) for any element x ∈ Q and m is the

smallest natural number such that smQ = sm+1Q, then

Aut(Q, f) ∼= Aut(Q1, f1)×Aut(Q2, f2),
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(Q1, f1) = sm(Q, f), Aut(Q1, f1) ∼= CAut(Q1,g)(sf1), g(x
n
1 ) = s−1

f1
(f1(xn

1 )),

Q2
∼= Q/Q1, f2(xn

1 ) =
n∑

i=1
(αixi), Aut(Q2, f2) ∼= C = {ω ∈ Aut(Q2,+) |

ωαi = αiω ∀ i ∈ 1, n}.

Proof. From Theorem 6 it follows that any �nite medial n-ary quasigroup
(Q, f) it is possible to present as a direct product of two n-ary medial
quasigroups, namely (Q, f) ∼= (Q1, f1) × (Q2, f2), where Q1 = smQ, Q2

∼=
Q/Q1, s(x) = f(

(n)
x ) for any element x ∈ Q and m is the smallest natural

number such that smQ = sm+1Q, the quasigroup (Q, f1) is an isotope of
special form of a medial idempotent quasigroup and the quasigroup (Q, f2)
is a medial quasigroup with exactly one idempotent element.

Therefore we have Aut(Q, f) ⊇ Aut(Q1, f1)×Aut(Q2, f2). Now we shall
prove that Aut(Q, f) ⊆ Aut(Q1, f1) × Aut(Q2, f2), i.e. that Aut(Q, f) ∼=
Aut(Q1, f1)×Aut(Q2, f2).

For |Q| > 3 quasigroups (Q1, f1) and (Q2, f2) are non-isomorphic since
in the quasigroup (Q1, f1) the map sf1 is a permutation of the set Q1 and
in the quasigroup (Q2, f2) we have sf2(x) = e for any x ∈ Q2 and some
�xed element e of the set Q2. Moreover, any pair of subquasigroups (S, f1)
and (S2, f2) of quasigroups (Q1, f1) and (Q2, f2) respectively with |S1| > 2
or |S2| > 2 are non-isomorphic too.

Indeed, in any subquasigroup (S1, f1) (|S1| > 1) of the quasigroup
(Q1, f1) the endomorphism s is a permutation of the set S1 but in any
subquasigroup (S2, f2) (|S2| > 1) of the quasigroup (Q2, f2) the endomor-
phism s is not a permutation of the set S2.

Therefore in this case there does not exist an automorphism ϕ of the
quasigroup (Q, f) such that ϕ is an isomorphism of the quasigroups (Q1, f1)
and (Q2, f2) or the automorphism ϕ is an isomorphism of their subquasi-
groups, i.e. ϕ(S1, f1) ∼= (S2, f2) where the quasigroup (S1, f1) (|S1| > 2) is
a subquasigroup of the quasigroup (Q1, f1) and the quasigroup (S2, f2) is a
subquasigroup of the quasigroup (Q2, f2).

Let |S1| = |S2| = 1. We have to prove that in this case as well there
is not any automorphism ϕ of a �nite medial n-ary quasigroup (Q, f) such
that ϕS1

∼= S2.

It is clear that (S1, f1)× (S2, f2) is an n-ary medial quasigroup of order
2 and in this quasigroup a map s can not be a permutation.

It is well known that up to isomorphism there exists the unique abelian
group of order 2, namely, Z2. In Lemma 13 some properties of all up to
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isomorphism possible classes of n-ary medial quasigroups over the group Z2

are described.
We see that only n-ary medial quasigroups from classes 2) and 4) ful�ll

our condition that the map s is not a permutation. From Lemma 13 it
follows that in cases 2), 4) there exists only the identity automorphism.

Then ϕQ1 = Q1 and ϕQ2 = Q2 for any automorphism of the quasigroup
(Q, f).

Structure of the group Aut(Q1, f1) follows from Theorem 7 and structure
of the group Aut(Q2, f2) follows from Corollary 5.

Corollary 9. If (Q, f) is a �nite medial n-ary quasigroup and sf1 is an

automorphism of Aut(Q1,+), then

Aut(Q, f) ∼= (B hN)× C2,

where B = {L+
b | b ∈ Q1, sf1(b) = b}, N is a centralizer of the map sf1 in the

group C1 = CAut(Q1,+)(αn
1 ), C2 = {ω ∈ Aut(Q2,+) |ωαi = αiω ∀ i ∈ 1, n}.

Proof. This follows from Theorem 8 and Corollary 8.

Corollary 10. If (Q, f) is a �nite medial n-ary quasigroup and sf1 = L+
d ,

d ∈ Q1, then

Aut(Q, f) ∼= ((Q1,+) h S)× C2,

where S = {θ ∈ C1 | θd = d}, C1 = {ω ∈ Aut(Q1,+) |ωαi = αiω ∀ i ∈ 1, n},
C2 = {ω ∈ Aut(Q2,+) |ωαi = αiω ∀ i ∈ 1, n}.

Proof. This follows from Theorem 8 and Corollary 7.

6. Examples

Example 2. The European Article Number code (EAN) is the code with
the check equation

1 · x1 + 3 · x2 + 1 · x3 + 3 · x4 + 1 · x5 + 3 · x6 + 1 · x7+
+3 · x8 + 1 · x9 + 3 · x10 + 1 · x11 + 3 · x12 + 1 · x13 ≡ 0(mod 10),

where xi ∈ Z10, i ∈ 1, 13, elements x1, . . . , x12 are the information digits
and element x13 is a check digit [53].

We can associate with this code in the following way 12-ary medial
quasigroup (Z10, f). From the last check equation we have
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−x13 ≡ 1 · x1 + 3 · x2 + 1 · x3 + 3 · x4 + 1 · x5+ 3 · x6 + 1 · x7

+3 · x8 + 1 · x9 + 3 · x10 + 1 · x11 + 3 · x12 (mod 10),

x13 ≡ 9 · x1 + 7 · x2 + 9 · x3 + 7 · x4 + 9 · x5 + 7 · x6 + 9 · x7

+7 · x8 + 9 · x9 + 7 · x10 + 9 · x11 + 7 · x12 (mod 10).

Therefore we obtain the 12-ary medial quasigroup (Z10, f) with the form

f(x12
1 ) ≡ 9 · x1 + 7 · x2 + 9 · x3 + 7 · x4 + 9 · x5 + 7 · x6

+9 · x7 + 7 · x8 + 9 · x9 + 7 · x10 + 9 · x11 + 7 · x12 (mod 10).

For this quasigroup we have sf (x) = 6 · (9 + 7)x = 96x = 6x for any
x ∈ Z10, sf (Z10) = {0, 6, 2, 8, 4} = A, sf (A) = A. Therefore m = 1 in this
case. We notice, in this example the endomorphism sf of the quasigroup
(Z10, f) is also an endomorphism of the group (Z10,+). It is easy to see
that sf (Z10,+) ∼= (Z5,+).

From Theorem 6 it follows that (Z10, f) ∼= (Z2, f1)× (Z5, f2).
Information from the subsection 3.2 gives us the possibility to �nd the

forms f1 and f2, if we de�ne the group (Z10,+) as the direct sum of groups
(Z2,+) and (Z5,+) and de�ne an isomorphism between these groups.

Let Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, Z5 = {0, 1, 2, 3, 4}, Z2 = {0, 1},
Z2 ⊕ Z5 = {(0; 0), (0; 1), (0; 2), (0; 3), (0; 4), (1; 0), (1; 1), (1; 2), (1; 3), (1; 4)}.

De�ne an isomorphism ξ between the group (Z10,+) and the group
(Z2 ⊕ Z5,+) as follows: ξ(0) = (0; 0), ξ(1) = (1; 1), ξ(2) = (0; 2), ξ(3) =
(1; 3), ξ(4) = (0; 4), ξ(5) = (1; 0), ξ(6) = (0; 1), ξ(7) = (1; 2), ξ(8) = (0; 3),
ξ(9) = (1; 4).

Multiplication of elements of the group (Z10,+) on element 7 or on
element 9 is an automorphism of this group. Since ξ(7) = (1, 2), then
the following ordered pair of automorphisms: 1 : x 7→ 1 · x (mod 2) and
2 : x 7→ 2 · x (mod 5) corresponds to the automorphism 7 : x 7→ 7 · x
(mod 10).

Similarly, since ξ(9) = (1; 4), we have, that the following ordered pair of
automorphisms 1 : x 7→ 1 ·x (mod 2) and 4 : x 7→ 4 ·x (mod 5) corresponds
to the automorphism 9x 7→ 9 · x (mod 10).

Now we can say, that the 12-ary medial quasigroup (Z10, f) with the
above form is isomorphic to the 12-ary medial quasigroup (Z2, f1)×(Z5, f2),
where

f1(x12
1 ) ≡ 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6

+1 · x7 + 1 · x8 + 1 · x9 + 1 · x10 + 1 · x11 + 1 · x12 (mod 2)
and
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f2(x12
1 ) ≡ 4 · x1 + 2 · x2 + 4 · x3 + 2 · x4 + 4 · x5 + 2 · x6

+4 · x7 + 2 · x8 + 4 · x9 + 2 · x10 + 4 · x11 + 2 · x12 (mod 5).

From Theorem 8 it follows that Aut(Z10, f) ∼= Aut(Z2, f1)×Aut(Z5, f2).
From Lemma 13 (the case 2) it follows that Aut(Z2, f1) =< ε >.
Further we have sf2(x) = 6 · (4 + 2)x = 1 · x for every x ∈ Z5. The

quasigroup (Z5, f2) is a 12-ary medial idempotent quasigroup. We can use
Corollary 6 in order to �nd Aut(Z5, f2). Since the group Aut(Z5,+) is a
commutative group and Aut(Z5,+) ∼= Z4, we have Aut(Z5, f2) ∼= Z5 h Z4.

Finally we obtain Aut(Z10, f) ∼= (Z5 h Z4)× < ε >∼= Z5 h Z4.

Remark 14. We could use also Corollary 9 in order to �nd Aut(Z10, f).

Remark 15. In [39] the automorphism group of the quasigroup (Z10, f)
was found without use of Theorem 6, since this quasigroup has an idempo-
tent element (for example, the element 0 is such element) and we have a
possibility to use Theorem 7.

Example 3. We �nd the structure and the automorphism group of the
ternary medial quasigroup (Z12, f) over the group (Z12,+) with the form
f(x3

1) = 1 · x1 + 7 · x2 + 1 · x3 + 7.
We have: s(x) = 9 ·x+7. It is easy to see that this quasigroup does not

contain any idempotent element. Indeed, if 9 · x + 7 = x (mod 12), then
8 · x = −7 = 5 (mod 12). It is clear that the last equation does not have
a solution and in this case we do not have a possibility to apply directly
Theorem 7 or its corollaries.

Further we have s(Z12) = {7, 4, 1, 10} = A, s(A) = A. Therefore m = 1.
In this case s(Z12,+) ∼= (Z4,+).

As in previous example, �rst of all we �x an isomorphism ξ between
the group (Z12,+) de�ned on the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and the
group (Z3 ⊕ Z4,+) de�ned on the set

{(0; 0), (0; 1), (0; 2), (0; 3), (1; 0), (1; 1), (1; 2), (1; 3), (2; 0), (2; 1), (2; 2), (2; 3)}.
Let ξ(1) = (1, 1). Then ξ(7) = (1; 3).

Thus from Theorem 6 it follows that (Z12, f) ∼= (Z3, f1)×(Z4, f2), where
f1(x3

1) = 1 · x1 + 1 · x2 + 1 · x3 + 1 and f1(x3
1) = 1 · x1 + 3 · x2 + 1 · x3 + 3

are the forms of quasigroups (Z3, f1) and (Z4, f2) respectively over groups
(Z3,+) and (Z4,+).

From Theorem 8 it follows that Aut(Z12, f) ∼= Aut(Z3, f1)×Aut(Z4, f2).
The quasigroup Aut(Z3, f1) has exactly one idempotent element (namely,
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the element 1 is an idempotent element). By Corollary 5 Aut(Z3, f1) ∼= C.
Therefore Aut(Z3, f1) ∼= Z2.

The quasigroup (Z4, f2) is an isotope of the form (ε, ε, L+
3 , ε) of an idem-

potent 3-ary medial quasigroup (Z4, g) with the form g(x3
1) = 1 · x1 + 3 ·

x2 + 1 · x3. Use of Corollary 7 gives us that Aut(Z4, f2) ∼= Z4h < ε >∼= Z4

since from two automorphisms of the group (Z4,+) only the identity auto-
morphism �xes element 3.

Finally we obtain Aut(Z12, f) ∼= Z2 × Z4.
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