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Quotient hyper BCK-algebras

Arsham Borumand Saeid and Mohammad M. Zahedi

Abstract

In this note �rst we use the equivalence relation ∼I which has been introduced in [1]
and construct a quotient hyper BCK-algebra H/I from a hyper BCK-algebra H via
a re�exive hyper BCK-ideal I of H. Then we study the properties of this algebra, in
particular we give some examples of this algebra. Finally we obtain some relationships
between H/I and H.

1. Introduction
The hyperalgebraic structure theory was introduced by F. Marty [7] in
1934. Imai and Iséki [4] in 1966 introduced the notion of a BCK-algebra.
Recently [6] Jun, Borzooei and Zahedi et.al. applied the hyperstructure to
BCK-algebras and introduced the concept of hyper BCK-algebra which is
a generalization of BCK-algebra. Now, in this note we use the equivalence
relation given in [1] and construct a quotient hyper BCK-algebra H/I via
a hyper BCK-ideal I, then we obtain some related results which have been
mentioned in the abstract.

2. Preliminaries
De�nition 2.1. Let H be a nonempty set and “ ◦ ” be a hyperoperation on
H, that is “ ◦ ” is a function from H ×H to P∗(H) = P(H)\{∅}. Then H
is called a hyper BCK-algebra if it contains a constant 0 and satis�es the
following axioms:
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(HK1) (x ◦ z) ◦ (y ◦ z) ¿ x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ◦H ¿ {x},
(HK4) x ¿ y and y ¿ x imply x = y,

for all x, y, z ∈ H, where x ¿ y is de�ned by 0 ∈ x ◦ y and for every
A,B ⊆ H, A ¿ B is de�ned by ∀a ∈ A, ∃b ∈ B such that a ¿ b.
Proposition 2.2. [6] In any hyper BCK-algebra H, for all x, y, z ∈ H,
the following statements hold:

(i) 0 ◦ 0 = {0}, (iv) 0 ◦ x = {0},
(ii) 0 ¿ x, (v) x ◦ y ¿ x,

(iii) x ¿ x, (vi) x ◦ 0 = {x}.
De�nition 2.3. Let I be a nonempty subset of a hyper BCK-algebra
(H, ◦, 0) and 0 ∈ I. Then, I is called a hyper BCK-ideal of H if x ◦ y ¿ I
and y ∈ I imply that x ∈ I, for all x, y ∈ H. If additionally x ◦ x ⊆ I for
all x ∈ H, then I is called a re�exive hyper BCK-ideal.
Lemma 2.4. [5] Let A, B and I be subsets of H.

(i) If A ⊆ B ¿ C, then A ¿ C.
(ii) If A ◦ x ¿ I for x ∈ H, then a ◦ x ¿ I for all a ∈ A.

(iii) If I is a hyper BCK-ideal of H and if A ◦ x ¿ I for x ∈ I,
then A ¿ I.

(iv) If I be a re�exive hyper BCK-ideal of H and let A be a subset
of H. If A ¿ I, then A ⊆ I.

De�nition 2.5. [3] A hyper BCK-algebra H is said to be
� weak positive implicative if (x ◦ z) ◦ (y ◦ z) ¿ (x ◦ y) ◦ z),
� positive implicative if (x ◦ z) ◦ (y ◦ z) = (x ◦ y) ◦ z,
� implicative if x ¿ x ◦ (y ◦ x)

holds for all x, y, z ∈ H.
De�nition 2.6. [3] A nonempty subset I of a hyper BCK-algebra H
containing 0 is called

� a weak implicative hyper BCK-ideal if for all x, y, z ∈ H

(x ◦ z) ◦ (y ◦ x) ⊆ I and z ∈ I imply x ∈ I,
� an implicative hyper BCK-ideal if for all x, y, z ∈ H

(x ◦ z) ◦ (y ◦ x) ¿ I and z ∈ I imply x ∈ I.
De�nition 2.7. [6] Let H be a hyper BCK-algebra. De�ne the set
∇(a, b) := {x ∈ H | 0 ∈ (x ◦ a) ◦ b}. If for any a, b ∈ H, the set ∇(a, b) has
the greatest element, then we say that H satis�es the hyper condition.
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Proposition 2.8. [1] Let I be a re�exive hyper BCK-ideal of H and let

x ∼I y if and only if x ◦ y ⊆ I and y ◦ x ⊆ I.

Then ∼I is an equivalence relation on H.
Proposition 2.9. [1] Let A, B are subsets of H, and I a re�exive hyper
BCK-ideal of H. Then we de�ne A ∼I B if and only if ∀a ∈ A, ∃b ∈ B in
which a ∼I b, and ∀b ∈ B, ∃a ∈ A in which a ∼I b. Then relation ∼I is an
equivalence relation on P∗(H).

3. Quotient hyper BCK-algebras
From now on H is a hyper BCK-algebra and I is a re�exive hyper BCK-
ideal of H, unless otherwise is stated.
Lemma 3.1. Let A,B ∈ P∗(H), and I be a hyper BCK-ideal of H. Then
A ◦B ¿ I and B ◦A ¿ I imply that A ∼I B.
Proof. For all a ∈ A and b ∈ B we have b ◦ a ⊆ B ◦ A and a ◦ b ⊆ A ◦ B.
Since A ◦ B ¿ I, and B ◦ A ¿ I, then we have b ◦ a ¿ I, and a ◦ b ¿ I.
Since I is re�exive then a ∼I b, which implies that A ∼I B.
Theorem 3.2. The relation ∼I is a congruence relation on H.
Proof. By considering Proposition 2.8, it is enough to show that If x ∼I y
and u ∼I v , then x ◦ u ∼I y ◦ v. Since x ∼I y, we have x ◦ y ¿ I
and y ◦ x ¿ I. So (x ◦ v) ◦ (y ◦ v) ¿ x ◦ y and x ◦ y ¿ I imply that
(x◦ v)◦ (y ◦v) ¿ I. Similarly (y ◦ v)◦ (x◦ v) ¿ I. Therefore by Lemma 3.1
x ◦ v ∼I y ◦ v.

Also we have (x◦u)◦ (v ◦u) ¿ x◦ v. Then for all t ∈ x◦u and r ∈ v ◦u
we have t ◦ r ⊆ (x ◦ u) ◦ (v ◦ u). Therefore for all s ∈ t ◦ r there exists
a ∈ x ◦ v such that s ¿ a, hence (s ◦ a) ∩ I 6= ∅. Since s ◦ a ⊆ (t ◦ r) ◦ a,
then ((t ◦ r) ◦ a) ∩ I 6= ∅. By Lemma 2.4 we have (t ◦ r) ◦ a ¿ I. Thus
(t ◦ a) ◦ r ¿ I and r ∈ I, which implies that t ◦ a ¿ I. Since t ∈ x ◦ u and
r ∈ v ◦u we can get that (x◦u)◦ (x◦v) ¿ I. Similarly (x◦ v)◦ (x◦u) ¿ I.
Then by Lemma 3.1 we can see that x ◦ v ∼I x ◦ u.

Since ∼I is an equivalence relation on P∗(H), then x ◦ v ∼I y ◦ v and
x ◦ v ∼I x ◦ u imply that x ◦ u ∼I y ◦ v.

Suppose I is a re�exive hyper BCK-ideal of (H, ◦, 0). Denote the equiv-
alence classes of x by Cx.
Lemma 3.3. In any hyper BCK-algebra H we have I = C0.
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Proof. Let x ∈ I. Since x ∈ x◦0, we have (x◦0)∩I 6= ∅. Then x◦0 ⊆ I and
since 0 ◦ x = 0 hence 0 ◦ x ⊆ I. Then 0 ∼I x therefore x ∈ C0. Conversely
let x ∈ C0 hence x ∼I 0 which means that x ◦ 0 ⊆ I. Since x ∈ x ◦ 0 then
we have x ∈ I.

Denote H/I = {Cx : x ∈ H} and de�ne Cx ∗ Cy = {Ct | t ∈ x ◦ y}. If
Cx = Cx′ and Cy = Cy′ , then Cx ∗ Cy = Cx′ ∗ Cy′ . Indeed, if Cx = Cx′ and
Cy = Cy′ then x ∼I x′ and y ∼I y′, we can conclude that x ◦ y ∼I x′ ◦ y′

since ∼I is a congruence relation. Now let Ct ∈ Cx ∗ Cy then t ∈ x ◦ y.
Then there exist r ∈ x′ ◦ y′ such that t ∼I r hence Ct = Cr. Therefore
Cx ∗ Cy ⊆ Cx′ ∗ Cy′ , and similarly Cx′ ∗ Cy′ ⊆ Cx ∗ Cy. Hence ∗ is well-
de�ned.

On H/I we de�ne ¿ putting: Cx ¿ Cy if and only if C0 ∈ Cx ∗ Cy.
Observe that: x ¿ y =⇒ 0 ∈ x ◦ y =⇒ C0 ∈ Cx ∗ Cy =⇒ Cx ¿ Cy.

Theorem 3.4. Let (H, ◦, 0) be a hyper BCK-algebra and let I be a re�exive
hyper BCK-ideal of H. Then (H/I, ∗, C0) is a hyper BCK-algebra.

Proof. (HK1): Since H is a hyper BCK-algebra, we have (x ◦ z) ◦ (y ◦ z) ¿
(x ◦ y). So for all t ∈ a ◦ b ⊆ (x ◦ z) ◦ (y ◦ z) there exists s ∈ (x ◦ y) such
that t ¿ s. Therefore Ct ¿ Cs, where Ct ∈ Ca ∗Cb ⊆ (Cx ∗Cz) ∗ (Cy ∗Cz)
and Cs ∈ Cx ∗ Cy, hence (Cx ∗ Cz) ∗ (Cy ∗ Cz) ¿ Cx ∗ Cy.

(HK2): We must show that (Cx ∗ Cy) ∗ Cz = (Cx ∗ Cz) ∗ Cy. Let
Ct ∈ (Cx ∗Cy) ∗Cz. Then t ∈ a ◦ z ⊆ (x ◦ y) ◦ z = (x ◦ z) ◦ y, which means
that Ct ∈ (Cx ∗Cz) ∗Cy. Hence (Cx ∗Cy) ∗Cz ⊆ (Cx ∗Cz) ∗Cy. Similarly
(Cx ∗ Cz) ∗ Cy ⊆ (Cx ∗ Cy) ∗ Cz.

(HK3): Cx ∗ {Ct | t ∈ H} = {Cx ∗ Ct | t ∈ H} =
⋃

t∈H

{Cy | y ∈ x ◦ t}.

By Proposition 2.2 for all y ∈ x ◦ t we have y ¿ x. So Cy ¿ Cx, therefore
{Cy | y ∈ x ◦ t} ¿ Cx. Thus

⋃

t∈H

{Cy | y ∈ x ◦ t} ¿ Cx. Therefore

Cx ∗H/I ¿ Cx.
(HK4): Let Cx ¿ Cy and Cy ¿ Cx. We must show that Cx = Cy.

Since Cx ¿ Cy then C0 ∈ Cx ∗ Cy. So there exists a t ∈ x ◦ y such that
t ∼I 0. Therefore t ◦ 0 ¿ I, thus t ∈ I. Hence (x ◦ y) ∩ I 6= ∅. Now, since
I is a re�exive hyper BCK-ideal we conclude that x ◦ y ⊆ I. Similarly
y ◦ x ⊆ I. Thus x ∼I y which means that Cx = Cy.

Theorem 3.5. If H is a bounded hyper BCK-algebra with the greatest
element 1, then (H/I, ∗, C0) is also a bounded hyper BCK-algebra with the
greatest element C1.
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Proof. It is enough to prove that C1 is the greatest element of H/I. For
any x ∈ H, since 0 ∈ x ◦ 1 then C0 ∈ Cx ∗ C1. This means that C1 is the
greatest element of H/I.

The inverse of the above theorem does not hold.
Example 3.6. Let H = {0, 1, 2}. Then the following table shows a hyper
BCK-algebra structure on H, which is not bounded.

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {2} {0, 2}

Then I = {0, 2} is a re�exive hyper BCK-ideal of H. Now construct the
quotient hyper BCK-algebra H/I via I. Because

C0 = I = {0, 2} = C2 = {y | y ∼I 2}, C1 = {y | y ∼I 1} = {1},

then H/I = {C0, C1} and
∗ C0 C1

C0 C0 C0

C1 C1 C0

We can check that (H/I, ∗, C0) is a bounded hyper BCK-algebra.

Theorem 3.7. If J is a re�exive hyper BCK-ideal of H and I ⊆ J , then:
(a) I is a hyper BCK-ideal of the hyper BCK-subalgebra J of H,
(b) the quotient hyper BCK-algebra J/I is a hyper BCK-ideal of H/I.

Proof. (a) At �rst we show that J is a hyper BCK-subalgebra of H. To
show this let x, y ∈ J we must show that x ◦ y ⊆ J . Since x ◦ y ¿ x, then
for all a ∈ x◦y we have a ¿ x. Hence 0 ∈ a◦x. Thus (a◦x)∩I 6= ∅, since
I is re�exive then a ◦ x ⊆ I and therefore a ◦ x ⊆ J . Now x ∈ J implies
that a ∈ J , thus x ◦ y ⊆ J . Hence J is a hyper BCK-subalgebra of H. It
is clear that I is hyper BCK-ideal of the hyper BCK-subalgebra of J .

(b) We can check that J/I ⊆ H/I. If Cx ∗ Cy ¿ J/I and Cy ∈ J/I,
then for any t ∈ x ◦ y, there exists s ∈ J such that Ct ¿ Cs . Thus
C0 ∈ Ct ∗ Cs. So C0 = Cr for some r ∈ t ◦ s. Therefore 0 ∼I r and this
implies that 0 ◦ r ⊆ I and r ◦ 0 ⊆ I. Hence r ∈ I, which means that
(t ◦ s)∩ I 6= ∅. Since I is re�exive, then t ◦ s ⊆ I. Now t ◦ s ⊆ J , and s ∈ J
implies that t ∈ J . Thus x◦y ¿ J . Since y ∈ J , so x ∈ J , thus Cx ∈ J/I.
Hence J/I is a hyper BCK-ideal of H/I.
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Theorem 3.8. If L is a hyper BCK-ideal of H/I, then J = {x | Cx ∈ L}
is a hyper BCK-ideal of H and moreover I ⊆ J . Furthermore L = J/I.

Proof. Since I = C0 ∈ L, then 0 ∈ J . Let x ◦ y ¿ J and y ∈ J . Then for
any t ∈ x ◦ y there exists s ∈ J such that t ¿ s. Hence Ct ¿ Cs, which
implies that Cx ∗ Cy ¿ L. Since y ∈ J , we get that Cy ∈ L, thus Cx ∈ L.
Therefore x ∈ J , hence J is a hyper BCK-ideal of H. Let x ∈ I = C0.
Then x ∼I 0, thus Cx = C0 and hence Cx ∈ L. Therefore x ∈ J , that is
I ⊆ J . Clearly L = J/I.

Theorem 3.9. If I is a hyper BCK-ideal of H, then there is a bijection
from the set I(H, I) of all hyper BCK-ideals of H containing I to the set
I(H/I) of all hyper BCK-ideals of H/I.

Proof. De�ne f : I(H, I) → I(H/I) by f(J) = J/I. By Theorem 3.7(b) f
is well-de�ned, also Theorems 3.8 implies that f is onto. Let A,B ∈ I(H, I)
and A 6= B. Without loss of generality, we may assume that there is an
x ∈ (B\A). If f(A) = f(B), then Cx ∈ f(B) = B/I and Cx ∈ f(A) = A/I.
Thus there exists y ∈ A such that Cx = Cy so x ∼I y, that is x ◦ y ¿ I
and y ◦ x ¿ I. Since I ⊆ A we have x ◦ y ¿ A. Thus y ∈ A implies that
x ∈ A, which is a contradiction. So f is one-to-one.

Theorem 3.10. Let I be a hyper BCK-ideal of H. Then there exists a
canonical surjective homomorphism ϕ : H −→ H/I by ϕ(x) = Cx, and
kerϕ = I, where kerϕ = ϕ−1(C0).

Proof. It is clear that ϕ is well-de�ned. Let x, y ∈ H. Then ϕ(x ◦ y) =
{ϕ(t) | t ∈ x ◦ y} = {Ct | t ∈ x ◦ y} = Cx ∗ Cy = ϕ(x) ∗ ϕ(y). Hence ϕ
is homomorphism. Clearly ϕ is onto. We have kerϕ = {x ∈ H | ϕ(x) =
C0} = {x ∈ H | Cx = C0 = I} = {x ∈ H | x ∈ I} = I.

Theorem 3.11. Let f : H1 −→ H2 be a homomorphism of hyper BCK-
algebras, and let I be a hyper BCK-ideal of H1 such that I ⊆ kerf . Then
there exists a unique homomorphism f̄ : H1/I −→ H2 such that f̄(Cx) =
f(x) for all x ∈ H1, Im(f̄) = Im(f) and kerf̄ = kerf/I. Moreover f̄ is
an isomorphism if and only if f is surjective and I = kerf .

Proof. Let Cx = Cx′ . Then x ∼I x′, which implies that x ◦ x′ ⊆ I and
x′ ◦ x ⊆ I. Thus there exists t ∈ (x ◦ x′)

⋂
I. Then 0 = f(t) ∈ f(x ◦ x′) =

f(x) ◦ f(x′), hence f(x) ¿ f(x′). Similarly f(x′) ¿ f(x), therefore f̄ is
well-de�ned.

We have f̄(Cx ∗ Cy) = f̄({Ct | t ∈ x ◦ y}) = {f̄(Ct) | t ∈ x ◦ y} =
{f(t) | t ∈ x ◦ y} = f(x ◦ y) = f(x) ◦ f(y) = f̄(Cx) ∗ f̄(Cy). Then f̄ is a
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homomorphism. On the other hand

Cx ∈ kerf̄ ⇐⇒ f̄(Cx) = 0 ⇐⇒ f(x) = 0 ⇐⇒ x ∈ kerf.

Note that f̄ is unique, since it is completely determined by f . Finally it is
clear that f̄ is surjective if and only if f is surjective.

Theorem 3.12. Let f : H1 −→ H2 be a homomorphism of hyper BCK-
algebras. Then H1/kerf ∼= Im(f).

Theorem 3.13. Let I, J be hyper BCK-ideals of H. Then there is a
(natural ) homomorphism of hyper BCK-algebras between I/(I ∩ J) and
< I ∪J > /J , where < I ∪J > is the hyper BCK-ideal generated by I ∪J .

Proof. De�ne ϕ : I →< I ∪ J > /J by ϕ(x) = CJ
x , where CJ

x is the
equivalence classes Cx via the hyper BCK-ideal J . If x1 = x2, then it is
clear that CJ

x1
= CJ

x2
, which means that ϕ is well-de�ned. Also we have

ϕ(x◦y) = {ϕ(t) | t ∈ x◦y} = {CJ
t | t ∈ x◦y} = CJ

x ∗CJ
y = ϕ(x)∗ϕ(y).

So that ϕ is a homomorphism. Moreover
kerϕ = {x ∈ I | ϕ(x) = CJ

0 } = {x ∈ I | CJ
x = CJ

0 = J}
= {x ∈ I | x ∈ J} = I ∩ J.

Thus by Theorem 3.12 the proof is completed.

Open Problem 1. Under what condition(s) is the de�ned homomorphism
in Theorem 3.11 an isomorphism ?

Theorem 3.14. Let I, J be hyper BCK-ideals of H such that I ⊆ J .
Then (H/I)/(J/I) ∼= H/J .

Proof. It is clear that J/I ⊆ H/I. De�ne f : H/I −→ H/J by CI
x 7→ CJ

x ,
where CI

x ∈ H/I and CJ
x ∈ H/J .

If CI
x = CI

y , then x ∼I y which implies that x ◦ y ⊆ I and y ◦ x ⊆ I.
Since I ⊆ J hence x ◦ y ⊆ J and y ◦ x ⊆ J . Thus x ∼J y then CJ

x = CJ
y

which means that f is well-de�ned.

f(CI
x∗CI

y ) = f({CI
t | t ∈ x◦y}) = {CJ

t | t ∈ x◦y} = CJ
x ∗CJ

y = f(CI
x)∗f(CI

y ).

Clearly f is onto and
kerf = {CI

x ∈ H/I | f(CI
x) = CJ

0 } = {CI
x ∈ H/I | CJ

x = CJ
0 }

= {CI
x ∈ H/I | x ∈ J} = J/I.

Now by Theorem 3.12 the proof is completed.
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4. Some result in quotient hyper BCK-algebras
Let Ca, Cb ∈ H/I. Then according to De�nition 2.7 we have

∇(Ca, Cb) := {Cx ∈ H/I | C0 ∈ (Cx ∗ Ca) ∗ Cb}.
Obviously C0, Ca, Cb ∈ ∇(Ca, Cb), ∇(C0, C0) = {C0} and ∇(Ca, Cb) =
∇(Cb, Ca) for all Ca, Cb ∈ H/I.
Theorem 4.1. If H satis�es the hyper condition, then H/I so is.
Proof. If x ∈ ∇(a, b), then we have x◦a ¿ b. Thus for all t ∈ x◦a, t ¿ b.
Therefore Ct ¿ Cb, thus Cx ∗ Ca ¿ Cb. Hence Cx ∈ ∇(Ca, Cb). Since
∇(a, b) has the greatest element, then by Theorem 3.5, ∇(Ca, Cb) has the
greatest element too.
Remark 4.2. The converse of the above theorem is not correct in general.
Let H = {0, 1, 2} and

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {1}
2 {2} {2} {0}

Then I = {0, 1} is a re�exive hyper BCK-ideal of a hyper BCK-algebra
(H, ◦, 0) and the elements of the quotient hyper BCK-algebra H/I are as
follows: C0 = I = {0, 1} = C1 = {y | y ∼I 1}, C2 = {y | y ∼I 2} = {2}.
Hence H/I = {C0, C2} and

∗ C0 C2

C0 C0 C0

C2 C2 C0

It can be checked that the quotient hyper BCK-algebra H/I satis�es the
hyper condition, but H does not satisfy the hyper condition, since∇(1, 2) =
{0, 1, 2}, 1 6¿ 2 and 2 6¿ 1.
Theorem 4.3. If H is an implicative hyper BCK-algebra, then so is H/I.
Proof. The proof is easy.

Note that the converse of the above theorem is not correct in general.
Example 4.4. The set H = {0, 1, 2} with the operation

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {1} {0, 1}

is a hyper BCK-algebra. I = {0, 1} is a re�exive hyper BCK-ideal such
that C0 = I = {0, 1} = C1 = {y | y ∼I 1}, C2 = {y | y ∼I 2} = {2} and
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∗ C0 C2

C0 C0 C0

C2 C2 C0

We can check that H/I = {C0, C2} is an implicative hyper BCK-algebra,
while the hyper BCK-algebra H is not, since 1 6¿ 1 ◦ (2 ◦ 1).
Theorem 4.5. If H is a (weak ) positive implicative hyper BCK algebra,
then so is H/I.
Proof. Let H be a positive implicative hyper BCK-algebra. Then we have
Ct ∈ (Cx ∗ Cz) ∗ (Cy ∗ Cz) ⇐⇒ Ct = Cs for some s ∈ (x ◦ z) ◦ (y ◦ x), t ∼I s

⇐⇒ Ct = Cs for some s ∈ (x ◦ y) ◦ z, s ∼I t

⇐⇒ Ct ∈ (Cx ∗ Cy) ∗ Cz.
The other case is similar.

Note that Example 4.4 shows that the converse of the above theorem
is not correct in general. Since H/I is positive implicative while H is not,
since (2 ◦ 2) ◦ (2 ◦ 2) = {0, 1} 6= {0} = (2 ◦ 2) ◦ 2.
Theorem 4.6. Let I and J be re�exive hyper BCK-ideals of H and I ⊆
J . If J is a weak implicative hyper BCK-ideal of H, then J/I is a weak
implicative hyper BCK-ideal of H/I.
Proof. Let J be a weak implicative hyper BCK-ideal of H and (Cx ∗Cz) ∗
(Cy ∗ Cx) ⊆ J/I and Cz ∈ J/I. Then for all Cs ∈ (Cx ∗ Cz) ∗ (Cy ∗ Cx)
where s ∈ (x ◦ z) ◦ (y ◦ x), we have Cs ∈ J/I. Thus s ∼I r, for some r ∈ J .
So s ◦ r ⊆ I, hence s ◦ r ⊆ J . Consequently r ∈ J implies that s ∈ J . Thus
(x ◦ z) ◦ (y ◦ x) ⊆ J , and from Cz ∈ J/I we can conclude that z ∈ J . Since
J is a weak implicative hyper BCK-ideal, then we get that x ∈ J . Hence
Cx ∈ J/I, which means that J/I is a weak implicative hyper BCK-ideal of
H/I.
Open Problem 2. Does the converse of the above theorem true ?
Theorem 4.7. Let I ⊆ J be re�exive hyper BCK-ideals of H. Then J/I
is an implicative hyper BCK-ideal of H/I if and only if J is an implicative
hyper BCK-ideal of H.
Proof. Let J be an implicative hyper BCK-ideal and Cx ∗ (Cy ∗Cx) ¿ J/I.
Then for all Ct ∈ Cx ∗ (Cy ∗ Cx) there exists Cr ∈ J/I such that Ct ¿ Cr,
where t ∼I s, s ∈ x ◦ (y ◦ x) and r ∈ J . Since Ct ¿ Cr then C0 ∈ Ct ∗ Cr,
hence there exists u ∈ t◦r such that 0 ∼I u. Thus u◦0 ⊆ I, therefore u ∈ I.
Then (t◦ r)∩ I 6= ∅ which means that t◦ r∩J 6= ∅. Therefore r ∈ J implies
that t ∈ J . Since t ∼I s thus s ◦ t ⊆ I and hence s ◦ t ⊆ J . Thus t ∈ J
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implies that s ∈ J , hence x ◦ (y ◦ x) ¿ J . Since J is an implicative hyper
BCK-ideal by Theorem 3.6 of [3] we can get that x ∈ J . Hence Cx ∈ J/I.
Now Theorem 3.6 [3] implies that J/I is an implicative hyper BCK-ideal
of H/I.

Conversely, let J/I be an implicative hyper BCK-ideal of H/I and
x ◦ (y ◦ x) ¿ J . Then for all t ∈ x ◦ (y ◦ x) there exists r ∈ J such that
t ¿ r. Thus Ct ¿ Cr, and we can conclude that Cx ∗ (Cy ∗ Cx) ¿ J/I.
Since J/I is an implicative hyper BCK-ideal of H, then Cx ∈ J/I, we can
get that x ∈ J . Therefore J is an implicative hyper BCK-ideal of H, by
Theorem 3.6 of [3].
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