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Abel-Grassmann’s bands

Petar V. Protić and Nebojša Stevanović

Abstract

Abel-Grassmann’s groupoids or shortly AG-groupoids have been considered in a
number of papers, although under the different names. In some papers they are named
LA-semigroups [3] in others left invertive groupoids [2]. In this paper we deal with
AG-bands, i.e., AG-groupoids whose all elements are idempotents. We introduce a
few congruence relations on AG-band and consider decompositions of Abel-Grassmann’s
bands induced by these congruences. We also give the natural partial order on Abel-
Grassmann’s band.

1. Introduction

A groupoid S in which the following

(∀a, b, c ∈ S) ab · c = cb · a, (1)

is true is called an Abel-Grassmann’s groupoid, [5]. It is easy to verify that
in every AG-groupoid the medial law ab · cd = ac · bd holds.

Abell-Grassmann’s groupoids are not associative in general, however
they have a close relation with semigroups and with commutative struc-
tures. Introducing a new operation on AG-groupoid makes it a commu-
tative semigroup. On the other hand introducing a new operation on a
commutative inverse semigroup turns it into an AG-groupoid.

Abel-Grassmann’s groupoid satisfying (∀a, b, c ∈ S) ab · c = b · ca (called
weak associative law in [4]) is an AG∗-groupoid. It is easy to prove that
any AG∗-groupoid satisfies the permutation identity of a next type

a1a2 · a3a4 = aπ(1)aπ(2) · aπ(3)aπ(4),
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where π is any permutation on a set {1, 2, 3, 4}, [5].
Let (S, ·) be AG-groupoid, a ∈ S be a fixed element. We can define the

"sandwich" operation on S as follows:

x ◦ y = xa · y, x, y ∈ S.

It is easy to verify that x ◦ y = y ◦ x for any x, y ∈ S, in other words
(S, ◦) is a commutative groupoid. If S is AG∗-groupoid and x, y, z ∈ S are
arbitrary elements, then

(x ◦ y) ◦ z = ((xa · y)a)z = za · (xa · y)

and

x ◦ (y ◦ z) = xa · (y ◦ z) = xa · (ya · z) = za · (ya · x) = za · (xa · y),

whence (x ◦ y) ◦ z = x ◦ (y ◦ z). Consequently (S, ◦) is a commutative
semigroup.

Let S be the commutative inverse semigroup. We define a new operation
on S as follows:

a • b = ba−1, a, b ∈ S.

It has been shown in [3] that (S, •) is Abel-Grassmann’s groupoid. Con-
nections mentioned above makes AG-groupoid to be among the most inter-
esting nonassociative structures. Same as in Semigroup Theory bands and
band decompositions appears as the most fruitful methods for research on
AG-groupoids.

If in AG-groupoid S every element is an idempotent, then S is an AG-
band.

An AG-groupoid S is an AG-band Y of AG-groupoids Sα if

S =
⋃

α∈Y

Sα,

Y is an AG-band, Sα ∩ Sβ = ∅ for α, β ∈ Y , α 6= β and SαSβ ⊆ Sαβ.
A congruence ρ on S is called band congruence if S/ρ is a band.

2. Some decompositions of AG-bands

Let S be a semigroup and for each a ∈ S, a2 = a. That is, let S be an
associative band. If for all a, b ∈ S, ab = ba, then S is a semilattice. If for
all a, b ∈ S, a = aba, then S is the rectangular band. It is a well known
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result in Semigroup Theory that the associative band S is a semilattice of
rectangular bands. It is not hard to prove that a commutative AG-band is
a semilattice.

Let us now introduce the following notion.

Definition 2.1. Let S be an AG-band, we say that S is an antirectangular
AG-band if for every a, b ∈ S, a = ba · b.

Let us remark that in that case it holds

a = ba · b = ba · bb = bb · ab = b · ab. (2)

From above it follows that each antirectangular AG-band is a quasigroup.

Example 2.1. Let a groupoid S be a given by the following table.

· 1 2 3 4

1 1 4 2 3
2 3 2 4 1
3 4 1 3 2
4 2 3 1 4

Then S is an antirectangular AG-band and a quasigroup. Let us remark
that S is the unique AG-band of order 4 and we shall see below that it
appears frequently in band decompositions both as an AG-band into which
other bands can be decomposed and like a component. For this reasons
from now on we shall call this band Traka 4 or simply T4. We also remark
that nonassociative AG-bands of order 6 3 do not exist.

An AG-band is anticommutative if for all a, b ∈ S, ab = ba impies that
a = b.

Lemma 2.1. Every antirectangular AG-band is anticommutative.

Proof. Let S be an antirectangular band, a, b ∈ S and ab = ba. Then

a = ba · b = ab · b = bb · a = ba = ab = aa · b = ba · a = ab · a = b.

Theorem 2.1. If S is an AG-band, then S is an AG-band Y of, in general
case nontrivial, antirectangular AG-bands Sα, α ∈ Y .

Proof. Let S be an AG-band. Then we define the relation ρ on S as

aρb ⇐⇒ a = ba · b, b = ab · a. (3)
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Clearly, the relation ρ is reflexive and symmetric. If aρb, bρc, then by (2)
and (3) we have

ac · a = ac · (ba · b) = ((ba · b)c)a = (cb · ba)a

= (a · ba) · cb = b · cb = c.

Similarly, a = ca · c thus the relation ρ is transitive. Hence, ρ is an equiva-
lence relation.

Let aρb and c ∈ S. Then by (1) and the medial law we have

ac = (ba · b)c = cb · ba = (cc · b) · ba = (bc · c) · ba
= (ba · c) · bc = (ba · cc) · bc = (bc · ac) · bc.

Dually, bc = (ac · bc) · ac and so acρbc. Also,

ca = cc · a = ac · c = ((ba · b)c)c = (cb · ba)c = (c · ba) · cb
= (cc · ba) · cb = (cb · ca) · cb.

Dually, cb = (ca · cb) · ca and so caρcb. Hence, ρ is a congruence on S.
Since S is a band we have that ρ is a band congruence on S. From aρb

we have a = a2ρab, whence it follows that ρ-classes are closed under the
operation. By the definition of ρ it follows that ρ-classes are antirectangular
AG-bands. By Lemma 2.1, ρ classes are anticommutative AG-bands.

In Example 2.1. we have ρ = S × S.

Example 2.2. Let AG-band S be given by the following table.

· 1 2 3 4 5 6

1 1 2 2 5 6 4
2 2 2 2 5 6 4
3 2 2 3 5 6 4
4 6 6 6 4 2 5
5 4 4 4 6 5 2
6 5 5 5 2 4 6

Now, S = Sα ∪ Sβ ∪ Sγ where Sα = {1}, Sβ = {3}, Sγ = {2, 4, 5, 6} are
equivalence classes modρ and Y = {α, β, γ} is a semilattice. Obviously,
Sα, Sβ are trivial AG-bands and Sγ is anti-isomorphic with AG-band T4
(as is Example 2.1.).

Lemma 2.2. Let S be an AG-band and e, a, b ∈ S. Then ea = eb implies
that ae = be and conversely.
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Proof. Suppose that ea = eb, then

ae = aa · e = ea · a = eb · a = eb · aa = ea · ba = eb · ba
= (ee · b) · ba = (be · e) · ba = (ba · e) · be = (ea · b) · be
= (eb · b) · be = (bb · e) · be = be · be = be.

Conversely, suppose that ae = be, then

ea = ee · a = ae · e = be · e = ee · b = eb.

Remark 2.1. As a consequence of Lemma 2.2, e = ef and so e = fe and
conversely.

Theorem 2.2. Let S be an AG-band. Then the relation ν defined on S by

aνb ⇐⇒ (∃e ∈ S) ea = eb

is a band congruence relation on S.

Proof. Reflexivity and symmetry is obvious. Suppose that aνb and bνc for
some a, b, c ∈ S. Then there exist elements e, f ∈ S such that ea = eb and
fb = fc. According to the Lemma 2.2 we also have ae = be, bf = cf . Now

fe · a = ae · f = be · f = be · ff = bf · ef = cf · ef
= ce · ff = ce · f = fe · c,

implies that ν is transitive.
It remains to prove compatibility. Suppose aνb and let c ∈ S be an

arbitrary element. Then there exists e ∈ S such that ea = eb. We have,
now

c · ea = c · eb =⇒ cc · ea = cc · eb =⇒ ce · ca = ce · cb,
so aνcb. Similarly

ea · c = eb · c =⇒ ea · cc = eb · cc =⇒ ec · ac = ec · bc,
so acνbc.

In Example 2.1 we have ν ≡ 4, since S is a quasigroup. In Example
2.2, S = Sα ∪ Sβ ∪ Sγ ∪ Sδ, where Sα = {1, 2, 3}, Sβ = {4}, Sγ = {5},
Sδ = {6} are the equivalence classes mod ν. Let us remark that AG-band
Y = {α, β, γ, δ} is anti-isomorphic with T4.

Lemma 2.3. Let S be an AG-groupoid. Then the relation σ on S defined
by the formula

aσb ⇐⇒ ab = ba

is reflexive, symmetric and compatible.
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Proof. Clearly σ is reflexive and symmetric. If aσb and c ∈ S, then by
medial law we have

ac · bc = ab · cc = ba · cc = bc · ac,

ca · cb = cc · ab = cc · ba = cb · ca.

Hence acσbc, caσcb, and so σ is left and right compatible. This means that
σ is compatible.

Definition 2.2. Let S be an AG-band. Then S is transitively commutative
if for every a, b, c ∈ S from ab = ba and bc = cb it follows that ac = ca.

It is easy to verify that AG-bands in examples 2.1 and 2.2 are transitively
commutative.

Theorem 2.3. Let S be a transitively commutative AG-band. Then S is
an AG-band Y of, in general case nontrivial, semilattices Sα, α ∈ Y .

Proof. In this way the relation σ defined by (3) is transitive. Now, by
Lemma 2.3 we have that relation σ is a band congruence on S. Clearly,
σ-classes are commutative AG-bands, i.e., semilattices.

In Example 2.2 we have that S = Sα ∪ Sβ ∪ Sγ ∪ Sδ, AG-band Y =
{α, β, γ, δ} is anti-isomorphic with AG-band T4, Sα = {1, 2, 3} is nontrivial
semilattice and Sβ = {4}, Sγ = {5}, Sδ = {6} are trivial semilattices.

Now, let S be a transitively commutative AG-band, and let aσb ⇐⇒
ab = ba. Then from

ab · a = ba · a = aa · b = aa · bb = ab · ab,

ab · b = bb · a = bb · aa = ba · ba = ab · ab

it follows that ab · a = ab · b, and so aνb. Hence, if S is an transitively
commutative AG-band, then σ ⊆ ν.

3. The natural partial order of AG-band

Theorem 3.1. If S is AG-band, then the relation 6 defined on E(S)

e 6 f ⇐⇒ e = ef

is a (natural ) partial order relation and 6 is compatible with the right and
with the left with multiplication.
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Proof. Clearly, e 6 e and relation 6 is reflexive. Let e 6 f, f 6 e, then
e = ef, f = fe and by the Remark 2.1 we have e = f so relation 6 is
antisymmetric. If e 6 f, f 6 g then e = ef, f = fg also by the Remark
2.1 it holds that f = gf. Now by (1) it follows that

eg = ef · g = gf · e = fe = e.

Hence, e 6 g and relation 6 is transitive thus 6 is a partial order relation.
Now, e 6 f ⇐⇒ e = ef and g ∈ S yields

eg = ef · g = ef · gg = eg · fg,

ge = g · ef = gg · ef = ge · gf

so eg 6 fg, ge 6 gf . Hence, the relation 6 is left and right compatible
with multiplication.

In Example 2.1, 6 ≡ 4. In Example 2.2 we have 2 < 1, 2 < 3 while
other elements are uncomparable.
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