Abel-Grassmann's bands

Petar V. Protić and Nebojša Stevanović

Abstract

Abel-Grassmann's groupoids or shortly $A G$-groupoids have been considered in a number of papers, although under the different names. In some papers they are named $L A$-semigroups [3] in others left invertive groupoids [2]. In this paper we deal with $A G$-bands, i.e., $A G$-groupoids whose all elements are idempotents. We introduce a few congruence relations on $A G$-band and consider decompositions of Abel-Grassmann's bands induced by these congruences. We also give the natural partial order on AbelGrassmann's band.

1. Introduction

A groupoid S in which the following

$$
\begin{equation*}
(\forall a, b, c \in S) \quad a b \cdot c=c b \cdot a, \tag{1}
\end{equation*}
$$

is true is called an Abel-Grassmann's groupoid, [5]. It is easy to verify that in every $A G$-groupoid the medial law $a b \cdot c d=a c \cdot b d$ holds.

Abell-Grassmann's groupoids are not associative in general, however they have a close relation with semigroups and with commutative structures. Introducing a new operation on $A G$-groupoid makes it a commutative semigroup. On the other hand introducing a new operation on a commutative inverse semigroup turns it into an $A G$-groupoid.

Abel-Grassmann's groupoid satisfying $(\forall a, b, c \in S) a b \cdot c=b \cdot c a$ (called weak associative law in [4]) is an $A G^{*}$-groupoid. It is easy to prove that any $A G^{*}$-groupoid satisfies the permutation identity of a next type

$$
a_{1} a_{2} \cdot a_{3} a_{4}=a_{\pi(1)} a_{\pi(2)} \cdot a_{\pi(3)} a_{\pi(4)}
$$

2000 Mathematics Subject Classification: 20N02
Keywords: AG-groupoid, antirectangular $A G$-band, AG-band decompositions
Supported by Grant 1379 of Ministry of Science through Math. Inst.SANU
where π is any permutation on a set $\{1,2,3,4\}$, [5].
Let (S, \cdot) be $A G$-groupoid, $a \in S$ be a fixed element. We can define the "sandwich" operation on S as follows:

$$
x \circ y=x a \cdot y, \quad x, y \in S
$$

It is easy to verify that $x \circ y=y \circ x$ for any $x, y \in S$, in other words (S, \circ) is a commutative groupoid. If S is $A G^{*}$-groupoid and $x, y, z \in S$ are arbitrary elements, then

$$
(x \circ y) \circ z=((x a \cdot y) a) z=z a \cdot(x a \cdot y)
$$

and

$$
x \circ(y \circ z)=x a \cdot(y \circ z)=x a \cdot(y a \cdot z)=z a \cdot(y a \cdot x)=z a \cdot(x a \cdot y),
$$

whence $(x \circ y) \circ z=x \circ(y \circ z)$. Consequently (S, \circ) is a commutative semigroup.

Let S be the commutative inverse semigroup. We define a new operation on S as follows:

$$
a \bullet b=b a^{-1}, \quad a, b \in S .
$$

It has been shown in [3] that (S, \bullet) is Abel-Grassmann's groupoid. Connections mentioned above makes $A G$-groupoid to be among the most interesting nonassociative structures. Same as in Semigroup Theory bands and band decompositions appears as the most fruitful methods for research on $A G$-groupoids.

If in $A G$-groupoid S every element is an idempotent, then S is an $A G$ band.

An $A G$-groupoid S is an $A G$-band Y of $A G$-groupoids S_{α} if

$$
S=\bigcup_{\alpha \in Y} S_{\alpha},
$$

Y is an $A G$-band, $S_{\alpha} \cap S_{\beta}=\emptyset$ for $\alpha, \beta \in Y, \alpha \neq \beta$ and $S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$.
A congruence ρ on S is called band congruence if S / ρ is a band.

2. Some decompositions of $A G$-bands

Let S be a semigroup and for each $a \in S, a^{2}=a$. That is, let S be an associative band. If for all $a, b \in S, a b=b a$, then S is a semilattice. If for all $a, b \in S, a=a b a$, then S is the rectangular band. It is a well known
result in Semigroup Theory that the associative band S is a semilattice of rectangular bands. It is not hard to prove that a commutative $A G$-band is a semilattice.

Let us now introduce the following notion.
Definition 2.1. Let S be an $A G$-band, we say that S is an antirectangular $A G$-band if for every $a, b \in S, a=b a \cdot b$.

Let us remark that in that case it holds

$$
\begin{equation*}
a=b a \cdot b=b a \cdot b b=b b \cdot a b=b \cdot a b . \tag{2}
\end{equation*}
$$

From above it follows that each antirectangular $A G$-band is a quasigroup.
Example 2.1. Let a groupoid S be a given by the following table.

\cdot	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

Then S is an antirectangular $A G$-band and a quasigroup. Let us remark that S is the unique $A G$-band of order 4 and we shall see below that it appears frequently in band decompositions both as an $A G$-band into which other bands can be decomposed and like a component. For this reasons from now on we shall call this band Traka 4 or simply T4. We also remark that nonassociative $A G$-bands of order $\leqslant 3$ do not exist.

An $A G$-band is anticommutative if for all $a, b \in S, a b=b a$ impies that $a=b$.

Lemma 2.1. Every antirectangular $A G$-band is anticommutative.
Proof. Let S be an antirectangular band, $a, b \in S$ and $a b=b a$. Then

$$
a=b a \cdot b=a b \cdot b=b b \cdot a=b a=a b=a a \cdot b=b a \cdot a=a b \cdot a=b \text {. }
$$

Theorem 2.1. If S is an $A G$-band, then S is an $A G$-band Y of, in general case nontrivial, antirectangular $A G$-bands $S_{\alpha}, \alpha \in Y$.

Proof. Let S be an $A G$-band. Then we define the relation ρ on S as

$$
\begin{equation*}
a \rho b \Longleftrightarrow a=b a \cdot b, b=a b \cdot a . \tag{3}
\end{equation*}
$$

Clearly, the relation ρ is reflexive and symmetric. If $a \rho b, b \rho c$, then by (2) and (3) we have

$$
\begin{aligned}
a c \cdot a & =a c \cdot(b a \cdot b)=((b a \cdot b) c) a=(c b \cdot b a) a \\
& =(a \cdot b a) \cdot c b=b \cdot c b=c .
\end{aligned}
$$

Similarly, $a=c a \cdot c$ thus the relation ρ is transitive. Hence, ρ is an equivalence relation.

Let $a \rho b$ and $c \in S$. Then by (1) and the medial law we have

$$
\begin{aligned}
a c & =(b a \cdot b) c=c b \cdot b a=(c c \cdot b) \cdot b a=(b c \cdot c) \cdot b a \\
& =(b a \cdot c) \cdot b c=(b a \cdot c c) \cdot b c=(b c \cdot a c) \cdot b c .
\end{aligned}
$$

Dually, $b c=(a c \cdot b c) \cdot a c$ and so $a c \rho b c$. Also,

$$
\begin{aligned}
c a & =c c \cdot a=a c \cdot c=((b a \cdot b) c) c=(c b \cdot b a) c=(c \cdot b a) \cdot c b \\
& =(c c \cdot b a) \cdot c b=(c b \cdot c a) \cdot c b .
\end{aligned}
$$

Dually, $c b=(c a \cdot c b) \cdot c a$ and so $c a \rho c b$. Hence, ρ is a congruence on S.
Since S is a band we have that ρ is a band congruence on S. From $a \rho b$ we have $a=a^{2} \rho a b$, whence it follows that ρ-classes are closed under the operation. By the definition of ρ it follows that ρ-classes are antirectangular $A G$-bands. By Lemma 2.1, ρ classes are anticommutative $A G$-bands.

In Example 2.1. we have $\rho=S \times S$.
Example 2.2. Let $A G$-band S be given by the following table.

\cdot	1	2	3	4	5	6
1	1	2	2	5	6	4
2	2	2	2	5	6	4
3	2	2	3	5	6	4
4	6	6	6	4	2	5
5	4	4	4	6	5	2
6	5	5	5	2	4	6

Now, $S=S_{\alpha} \cup S_{\beta} \cup S_{\gamma}$ where $S_{\alpha}=\{1\}, S_{\beta}=\{3\}, S_{\gamma}=\{2,4,5,6\}$ are equivalence classes $\bmod \rho$ and $Y=\{\alpha, \beta, \gamma\}$ is a semilattice. Obviously, S_{α}, S_{β} are trivial $A G$-bands and S_{γ} is anti-isomorphic with $A G$-band $T 4$ (as is Example 2.1.).
Lemma 2.2. Let S be an $A G$-band and $e, a, b \in S$. Then $e a=e b$ implies that $a e=b e$ and conversely.

Proof. Suppose that $e a=e b$, then

$$
\begin{aligned}
a e & =a a \cdot e=e a \cdot a=e b \cdot a=e b \cdot a a=e a \cdot b a=e b \cdot b a \\
& =(e e \cdot b) \cdot b a=(b e \cdot e) \cdot b a=(b a \cdot e) \cdot b e=(e a \cdot b) \cdot b e \\
& =(e b \cdot b) \cdot b e=(b b \cdot e) \cdot b e=b e \cdot b e=b e
\end{aligned}
$$

Conversely, suppose that $a e=b e$, then

$$
e a=e e \cdot a=a e \cdot e=b e \cdot e=e e \cdot b=e b .
$$

Remark 2.1. As a consequence of Lemma 2.2, $e=e f$ and so $e=f e$ and conversely.

Theorem 2.2. Let S be an $A G$-band. Then the relation ν defined on S by

$$
a \nu b \Longleftrightarrow(\exists e \in S) e a=e b
$$

is a band congruence relation on S.
Proof. Reflexivity and symmetry is obvious. Suppose that $a \nu b$ and $b \nu c$ for some $a, b, c \in S$. Then there exist elements $e, f \in S$ such that $e a=e b$ and $f b=f c$. According to the Lemma 2.2 we also have $a e=b e, b f=c f$. Now

$$
\begin{aligned}
f e \cdot a & =a e \cdot f=b e \cdot f=b e \cdot f f=b f \cdot e f=c f \cdot e f \\
& =c e \cdot f f=c e \cdot f=f e \cdot c,
\end{aligned}
$$

implies that ν is transitive.
It remains to prove compatibility. Suppose $a \nu b$ and let $c \in S$ be an arbitrary element. Then there exists $e \in S$ such that $e a=e b$. We have, now

$$
c \cdot e a=c \cdot e b \Longrightarrow c c \cdot e a=c c \cdot e b \Longrightarrow c e \cdot c a=c e \cdot c b,
$$

so $a \nu c b$. Similarly

$$
e a \cdot c=e b \cdot c \Longrightarrow e a \cdot c c=e b \cdot c c \Longrightarrow e c \cdot a c=e c \cdot b c,
$$

so acıbc.
In Example 2.1 we have $\nu \equiv \triangle$, since S is a quasigroup. In Example 2.2, $S=S_{\alpha} \cup S_{\beta} \cup S_{\gamma} \cup S_{\delta}$, where $S_{\alpha}=\{1,2,3\}, S_{\beta}=\{4\}, \quad S_{\gamma}=\{5\}$, $S_{\delta}=\{6\}$ are the equivalence classes $\bmod \nu$. Let us remark that $A G$-band $Y=\{\alpha, \beta, \gamma, \delta\}$ is anti-isomorphic with $T 4$.

Lemma 2.3. Let S be an $A G$-groupoid. Then the relation σ on S defined by the formula

$$
a \sigma b \Longleftrightarrow a b=b a
$$

is reflexive, symmetric and compatible.

Proof. Clearly σ is reflexive and symmetric. If $a \sigma b$ and $c \in S$, then by medial law we have

$$
\begin{aligned}
a c \cdot b c & =a b \cdot c c=b a \cdot c c=b c \cdot a c, \\
c a \cdot c b & =c c \cdot a b=c c \cdot b a=c b \cdot c a .
\end{aligned}
$$

Hence $a c \sigma b c, c a \sigma c b$, and so σ is left and right compatible. This means that σ is compatible.

Definition 2.2. Let S be an $A G$-band. Then S is transitively commutative if for every $a, b, c \in S$ from $a b=b a$ and $b c=c b$ it follows that $a c=c a$.

It is easy to verify that $A G$-bands in examples 2.1 and 2.2 are transitively commutative.

Theorem 2.3. Let S be a transitively commutative $A G$-band. Then S is an $A G$-band Y of, in general case nontrivial, semilattices $S_{\alpha}, \alpha \in Y$.

Proof. In this way the relation σ defined by (3) is transitive. Now, by Lemma 2.3 we have that relation σ is a band congruence on S. Clearly, σ-classes are commutative $A G$-bands, i.e., semilattices.

In Example 2.2 we have that $S=S_{\alpha} \cup S_{\beta} \cup S_{\gamma} \cup S_{\delta}, A G$-band $Y=$ $\{\alpha, \beta, \gamma, \delta\}$ is anti-isomorphic with $A G$-band $T 4, S_{\alpha}=\{1,2,3\}$ is nontrivial semilattice and $S_{\beta}=\{4\}, S_{\gamma}=\{5\}, S_{\delta}=\{6\}$ are trivial semilattices.

Now, let S be a transitively commutative $A G$-band, and let $a \sigma b \Longleftrightarrow$ $a b=b a$. Then from

$$
\begin{aligned}
a b \cdot a & =b a \cdot a=a a \cdot b=a a \cdot b b=a b \cdot a b, \\
a b \cdot b & =b b \cdot a=b b \cdot a a=b a \cdot b a=a b \cdot a b
\end{aligned}
$$

it follows that $a b \cdot a=a b \cdot b$, and so $a \nu b$. Hence, if S is an transitively commutative $A G$-band, then $\sigma \subseteq \nu$.

3. The natural partial order of AG-band

Theorem 3.1. If S is $A G$-band, then the relation \leqslant defined on $E(S)$

$$
e \leqslant f \Longleftrightarrow e=e f
$$

is a (natural) partial order relation and \leqslant is compatible with the right and with the left with multiplication.

Proof. Clearly, $e \leqslant e$ and relation \leqslant is reflexive. Let $e \leqslant f, f \leqslant e$, then $e=e f, f=f e$ and by the Remark 2.1 we have $e=f$ so relation \leqslant is antisymmetric. If $e \leqslant f, f \leqslant g$ then $e=e f, f=f g$ also by the Remark 2.1 it holds that $f=g f$. Now by (1) it follows that

$$
e g=e f \cdot g=g f \cdot e=f e=e .
$$

Hence, $e \leqslant g$ and relation \leqslant is transitive thus \leqslant is a partial order relation. Now, $e \leqslant f \Longleftrightarrow e=e f$ and $g \in S$ yields

$$
\begin{aligned}
& e g=e f \cdot g=e f \cdot g g=e g \cdot f g, \\
& g e=g \cdot e f=g g \cdot e f=g e \cdot g f
\end{aligned}
$$

so $e g \leqslant f g, g e \leqslant g f$. Hence, the relation \leqslant is left and right compatible with multiplication.

In Example 2.1, $\leqslant \equiv \triangle$. In Example 2.2 we have $2<1,2<3$ while other elements are uncomparable.

References

[1] J. Dénes and A. D. Keedwell: Latin squares and their applications, Akadémia Kiadó, Budapest (1974).
[2] P. Holgate: Groupoids satisfying simple invertive law, Math. Student 61 (1992), 101 - 106.
[3] Q. Mushtaq and S. M. Yusuf: On LA-semigroup defined by a commutative inverse semigroup, Matematički vesnik 40 (1988), $59-62$.
[4] Q. Mushtaq and M. S. Kamran: On LA-semigroups with weak associative law, Scientific Khyber 1 (1989), $69-71$.
[5] P. V. Protić and N. Stevanović: On Abel-Grassmann's groupoids (review), Proc. math. conf. in Pristina (1994), $31-38$.
[6] P. V. Protić and N. Stevanović: AG-test and some general properties of Abel-Grasmann's groupoids, PU.M.A. 6 (1995), $371-383$.

