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Abel-Grassmann’s bands

Petar V. Proti¢ and Nebojsa Stevanovié¢

Abstract

Abel-Grassmann’s groupoids or shortly AG-groupoids have been considered in a
number of papers, although under the different names. In some papers they are named
LA-semigroups [3] in others left invertive groupoids [2]. In this paper we deal with
AG-bands, i.e., AG-groupoids whose all elements are idempotents. We introduce a
few congruence relations on AG-band and consider decompositions of Abel-Grassmann’s
bands induced by these congruences. We also give the natural partial order on Abel-

Grassmann’s band.

1. Introduction

A groupoid S in which the following
(Va,b,c€ S) ab-c=cb-a, (1)

is true is called an Abel-Grassmann’s groupoid, [5]. It is easy to verify that
in every AG-groupoid the medial law ab - cd = ac - bd holds.

Abell-Grassmann’s groupoids are not associative in general, however
they have a close relation with semigroups and with commutative struc-
tures. Introducing a new operation on AG-groupoid makes it a commu-
tative semigroup. On the other hand introducing a new operation on a
commutative inverse semigroup turns it into an AG-groupoid.

Abel-Grassmann’s groupoid satisfying (Va,b,c € S) ab-c = b-ca (called
weak associative law in [4]) is an AG*-groupoid. It is easy to prove that
any AG*-groupoid satisfies the permutation identity of a next type

a1az - a3a4 = Qr(1)Ar(2) * Ar(3)Ar(4),
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where 7 is any permutation on a set {1,2,3,4}, [5].
Let (S,-) be AG-groupoid, a € S be a fixed element. We can define the
"sandwich" operation on S as follows:

roy==xa-y, x,yES.

It is easy to verify that x oy = y o x for any x,y € S, in other words
(S,0) is a commutative groupoid. If S is AG*-groupoid and z,y,z € S are
arbitrary elements, then

(xoy)oz=((za-y)a)z = za- (za-y)
and
zo(yoz)=za-(yoz)==za-(ya-2)=za-(ya-x)=za-(za-y),

whence (zoy) oz = xo(yoz). Consequently (S,0) is a commutative
semigroup.
Let S be the commutative inverse semigroup. We define a new operation
on S as follows:
aeb=ba"t, abes.

It has been shown in [3] that (.S, @) is Abel-Grassmann’s groupoid. Con-
nections mentioned above makes AG-groupoid to be among the most inter-
esting nonassociative structures. Same as in Semigroup Theory bands and
band decompositions appears as the most fruitful methods for research on
AG-groupoids.

If in AG-groupoid S every element is an idempotent, then S is an AG-
band.

An AG-groupoid S is an AG-band Y of AG-groupoids S, if

S=J Sa
a€eY

Y is an AG-band, Sy, NSz =0 fora,B €Y, a# B and S3Ss C Sap.
A congruence p on S is called band congruence if S/p is a band.

2. Some decompositions of AG-bands

Let S be a semigroup and for each a € S, a®> = a. That is, let S be an
associative band. If for all a,b € S, ab = ba, then S is a semilattice. If for
all a,b € S, a = aba, then S is the rectangular band. It is a well known
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result in Semigroup Theory that the associative band S is a semilattice of
rectangular bands. It is not hard to prove that a commutative AG-band is
a semilattice.

Let us now introduce the following notion.

Definition 2.1. Let S be an AG-band, we say that S is an antirectangular
AG-band if for every a,b € S, a = ba - b.

Let us remark that in that case it holds
a=ba-b=0ba-bb=>0bb-ab=">-ab. (2)

From above it follows that each antirectangular AG-band is a quasigroup.

Example 2.1. Let a groupoid S be a given by the following table.

Then S is an antirectangular AG-band and a quasigroup. Let us remark
that S is the unique AG-band of order 4 and we shall see below that it
appears frequently in band decompositions both as an AG-band into which
other bands can be decomposed and like a component. For this reasons
from now on we shall call this band Traka 4 or simply T4. We also remark
that nonassociative AG-bands of order < 3 do not exist.

An AG-band is anticommutative if for all a,b € S, ab = ba impies that
a=hb.

Lemma 2.1. FEvery antirectangular AG-band is anticommutative.
Proof. Let S be an antirectangular band, a,b € S and ab = ba. Then
a=ba-b=ab-b=bb-a=ba=ab=aa-b=ba-a=ab-a=0b. O

Theorem 2.1. If S is an AG-band, then S is an AG-band Y of, in general
case nontrivial, antirectangular AG-bands S, a € Y.

Proof. Let S be an AG-band. Then we define the relation p on S as

apb <= a=ba-b, b=ab-a. (3)
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Clearly, the relation p is reflexive and symmetric. If apb, bpec, then by (2)
and (3) we have

ac-a=ac- (ba-b) = ((ba-b)c)a= (cb-ba)a

=(a-ba)-cb=b-cb=c.
Similarly, a = ca - ¢ thus the relation p is transitive. Hence, p is an equiva-
lence relation.
Let apb and ¢ € S. Then by (1) and the medial law we have
ac = (ba-b)e=cb-ba = (cc-b)-ba= (bc-c)-ba

= (ba-c)-bc= (ba-cc)-bc=(bc-ac)-bec.

Dually, be = (ac - be) - ac and so acpbe. Also,
ca=cc-a=ac-c=((ba-b)c)c= (cb-ba)c= (c-ba)-ch
= (cc-ba)-cb=(cb-ca)-ch.

Dually, ¢b = (ca - ¢b) - ca and so capch. Hence, p is a congruence on S.
Since S is a band we have that p is a band congruence on S. From apb
we have a = a®pab, whence it follows that p-classes are closed under the
operation. By the definition of p it follows that p-classes are antirectangular
AG-bands. By Lemma 2.1, p classes are anticommutative AG-bands. [

In Example 2.1. we have p =5 x S.

Example 2.2. Let AG-band S be given by the following table.
23456

S ULk W N =
QU= O N N = =
T OO N NN
G O W NN
N O = Ut Ut Ut
= ot O O O
SN O s

Now, § = S, U SgU S, where S, = {1}, Sg = {3}, S, = {2,4,5,6} are
equivalence classes modp and Y = {a, 3,7} is a semilattice. Obviously,
Sa, Sp are trivial AG-bands and S, is anti-isomorphic with AG-band T'4
(as is Example 2.1.).

Lemma 2.2. Let S be an AG-band and e,a,b € S. Then ea = eb implies
that ae = be and conversely.
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Proof. Suppose that ea = eb, then
ae=aa-e=ea-a=eb-a=eb-aa=ea-ba=ceb-ba
= (ee-b)-ba= (be-e)-ba=(ba-e)-be=(ea-b)-be
= (eb-b)-be = (bb-e)-be=be-be = be.
Conversely, suppose that ae = be, then
ea =ee-a=ae-e=be-e=-ee-b=ceb. O
Remark 2.1. As a consequence of Lemma 2.2, e = ef and so e = fe and
conversely.

Theorem 2.2. Let S be an AG-band. Then the relation v defined on S by
avb <= (Je € S) ea = eb

s a band congruence relation on S.

Proof. Reflexivity and symmetry is obvious. Suppose that avb and bvc for
some a,b,c € S. Then there exist elements e, f € S such that ea = eb and
fb = fc. According to the Lemma 2.2 we also have ae = be, bf = c¢f. Now

feca=ae-f=be-f=be-ff=bf -ef =cf- -ef
=ce-ff=ce-f=fe-c
implies that v is transitive.
It remains to prove compatibility. Suppose avb and let ¢ € S be an
arbitrary element. Then there exists e € S such that ea = eb. We have,

now
c-ea=c-eb= cc-ea =cc-eb= ce-ca=ce-ch,

so avch. Similarly
ea-c=eb-c=ea-cc=eb-cc=ec-ac=ec-bc,
so acvbe. O

In Example 2.1 we have v = A\, since S is a quasigroup. In Example
22,8 =5,U83U8,USs, where S, = {1,2,3}, Sg = {4}, Sy = {5},
Ss = {6} are the equivalence classes modv. Let us remark that AG-band
Y ={«,,7,d} is anti-isomorphic with 74.

Lemma 2.3. Let S be an AG-groupoid. Then the relation o on S defined
by the formula
acb <= ab = ba

1s reflexive, symmetric and compatible.
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Proof. Clearly o is reflexive and symmetric. If aocb and ¢ € S, then by
medial law we have
ac-bc=ab-cc=ba-cc=bc-ac,
ca-cb=cc-ab=cc-ba=cbh-ca.

Hence acobe, caoch, and so o is left and right compatible. This means that
o is compatible. ]

Definition 2.2. Let S be an AG-band. Then S is transitively commutative
if for every a,b,c € S from ab = ba and bc = ¢b it follows that ac = ca.

It is easy to verify that AG-bands in examples 2.1 and 2.2 are transitively
commutative.

Theorem 2.3. Let S be a transitively commutative AG-band. Then S is

an AG-band Y of, in general case nontrivial, semilattices Sy, o € Y.

Proof. In this way the relation o defined by (3) is transitive. Now, by
Lemma 2.3 we have that relation o is a band congruence on S. Clearly,
o-classes are commutative AG-bands, i.e., semilattices. O

In Example 2.2 we have that S = S, U SgU S, U S5, AG-band Y =
{a, 8,7, d} is anti-isomorphic with AG-band T4, S, = {1, 2,3} is nontrivial
semilattice and Sg = {4}, S, = {5}, S5 = {6} are trivial semilattices.

Now, let S be a transitively commutative AG-band, and let aocb <=
ab = ba. Then from

ab-a=ba-a=aa-b=aa-bb=ab-ab,
ab-b=>bb-a=>bb-aa =ba-ba=ab-ab

it follows that ab-a = ab- b, and so avb. Hence, if S is an transitively
commutative AG-band, then o C v.

3. The natural partial order of AG-band
Theorem 3.1. If S is AG-band, then the relation < defined on E(S5)
e f<=e=ef

is a (natural) partial order relation and < is compatible with the right and
with the left with multiplication.
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Proof. Clearly, e < e and relation < is reflexive. Let e < f, f < e, then
e = ef, f = fe and by the Remark 2.1 we have e = f so relation < is
antisymmetric. If e < f, f < g then e = ef, f = fg also by the Remark
2.1 it holds that f = gf. Now by (1) it follows that

eg=ef-g=gf-e=fe=e.
Hence, e < g and relation < is transitive thus < is a partial order relation.
Now, e < f <= e =c¢ef and g € S yields

eg=ef-g=ef-g9=eg-fg,

ge=g-ef=gg-ef =ge-gf

so eg < fg, ge < gf. Hence, the relation < is left and right compatible
with multiplication. O

In Example 2.1, < = A. In Example 2.2 we have 2 < 1, 2 < 3 while
other elements are uncomparable.
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