A note on Salem numbers and Golden mean

Qaiser Mushtaq and Arshad Mahmood

Abstract

It is known that every Pisot number is a limit of Salem numbers. At present there are 47 known Salem numbers less than 1.3 and the list is known to be complete through degree 40. There is a well known relationship between Coxeter systems, Salem numbers, and Golden mean. In this short note, we have discovered the existence of Golden mean in the action of $P S L_{2}(Z)$ on $Q(\sqrt{5} \cup\{\infty\}$ and investigated some interesting properties of these.

1. Introduction

An algebraic integer $\lambda>1$ is a Pisot number if its conjugates (other than λ itself) satisfy $\left|\lambda^{\prime}\right|<1$. Similarly, an algebraic integer $\lambda>1$ is a Salem number if its conjugates (other than λ itself) satisfy $\left|\lambda^{\prime}\right| \leqslant 1$ and include $\frac{1}{\lambda}$.

It is known that the Pisot numbers form a closed subset $P \subset R$, where R is a field of real numbers, and that every Pisot number is a limit of Salem numbers [4]. The smallest Pisot number λ_{P}, equivalent to 1.324717 , is a root of $x^{3}-x-1=0$, while the smallest accumulation point in P is the Golden mean, $\lambda_{G}=\frac{1+\sqrt{5}}{2}$ equivalent to 1.61803. Note that $\lambda_{G}^{2}=\frac{3+\sqrt{5}}{2}$ is equivalent to 2.61803...

2. Golden mean

Theorem. In an action of the modular group on $Q\left(\sqrt{5} \cup\{\infty\}, \lambda_{G}\right.$ is the fixed point of the commutator of the modular group.

2000 Mathematics Subject Classification: 11E04, 20G15
Keywords: Salem number, Pisot number, Golden mean, modular group, commutator

Proof. It is well known that the modular group $P S L_{2}(Z)$ is generated by the linear fractional transformations $x: z \mapsto \frac{-1}{z}$ and $y: z \mapsto \frac{z-1}{z}$ which obviously satisfy the relations $x^{2}=y^{3}=1$.

Then $\quad \lambda_{G} x=\frac{1-\sqrt{5}}{2}, \quad \lambda_{G} x y=\frac{3+\sqrt{5}}{2}, \quad \lambda_{G} x y^{2}=\frac{-1+\sqrt{5}}{2}$, $\lambda_{G} x y^{2} x=\frac{-1-\sqrt{5}}{2}, \quad \lambda_{G} x y^{2} x y^{2}=\frac{3-\sqrt{5}}{2} \quad$ and $\quad \lambda_{G} x y^{2} x y=\frac{1+\sqrt{5}}{2}=$ λ_{G}.

Corollary 1. $\lambda_{G}^{2}-\lambda_{G}-1=0$.
Proof. $\quad \lambda_{G} x y^{2} x y=\left(\lambda_{G}+1\right) y x y=\left(\frac{\lambda_{G}+1-1}{\lambda_{G}+1}\right) x y=\frac{\lambda_{G}+1-1}{\lambda_{G}+1}+1$.
Therefore $\quad \lambda_{G} x y^{2} x y=\lambda_{G}, \quad$ and so $\quad \frac{\lambda_{G}+1-1}{\lambda_{G}+1}+1=\lambda_{G} \quad$ yields $\lambda_{G}^{2}-\lambda_{G}-1=0$.

Corollary 2. Let $\bar{\lambda}_{G}$ denote the algebraic conjugate of λ_{G}. Then:
(i) $\quad \lambda_{G} x=\bar{\lambda}_{G}, \quad \lambda_{G} x y=\lambda_{G}^{2}, \quad \lambda_{G} x y^{2}=-\bar{\lambda}_{G}$,
(ii) $\quad\left(\lambda_{G} x y^{2}\right) x=-\lambda_{G}, \quad\left(\lambda_{G} x y^{2}\right) x y=\lambda_{G}, \quad\left(\lambda_{G} x y^{2}\right) x y^{2}=\left(\bar{\lambda}_{G}\right)^{2}$.

Proof. The proof follows directly from Corollary 1.
All Pisot numbers $\lambda, \lambda_{G}+\epsilon$ are known [1]. The Salem numbers are less well understood. The catalog of 39 Salem numbers given in [1] includes all Salem numbers $\lambda<1.3$ of degree less than or equal to 20 over the field of rationals. At present there are 47 known Salem numbers $\lambda<1.3$, and the list of such is known to be complete through degree 40 [2] and [3].

Next we give approximation of the golden mean. The Golden mean $\lambda_{G}=$ $\frac{1+\sqrt{5}}{2}$ is the quadratic irrationality, which is hardest to approximate by rational numbers, that is, $\lambda_{G}-\frac{p}{q} \neq 0$, where p and q are co-prime integers. We make $\left|\lambda_{G}-\frac{p}{q}\right|$ as small as possible for a fixed q, i.e., $\left|\lambda_{G}-\frac{p}{q}\right|<\varepsilon_{q}\left(\lambda_{G}\right)$, when $\varepsilon_{q}\left(\lambda_{G}\right)$ tends to zero as q tends to infinity. Trivially, $\varepsilon_{q}\left(\lambda_{G}\right)<\frac{1}{2 q}$. We can, in fact, for any irrational α, choose a sequence $q_{1}, q_{2}, \ldots, q_{n}, \ldots$ tending to infinity such that $\varepsilon_{q_{i}}(\alpha)<\frac{1}{q_{i}^{2}}$. For the number $\lambda_{G}=\frac{1+\sqrt{5}}{2}$,
we cannot do better than this. If $\beta=\frac{a \alpha+b}{c \alpha+d}$, where $a d-b c= \pm 1$ and a, b, c, d are integers then by Liouvelli's Theorem approximation by rational integers is roughly the same for α as for β. In other words, if α is nearly $\frac{p}{q}$ then $\frac{a \frac{p}{q}+b}{c^{p}+d}$ is a good approximation to β.

References

[1] D. Boyd: Small Salem Numbers, Duke Math. J. 44 (1977), 315 - 328.
[2] D. Boyd: Pisot and Salem Numbers in intervals of the real line, Math. Comp. 32 (1978), 1244 - 1260.
[3] V. Flammang, M. Grandcolas and G. Rhin: Small Salem Numbers, in Number Theory in Progress, Vol.1, de Gruyter, 1999, 165 - 168.
[4] R. Salem: Algebraic Numbers and Fourier Analysis, Wadsworth 1983.

[^0]
[^0]: Qaiser Mushtaq
 Received June 10, 2003
 Department of Mathematics
 Quaid-i-Azam University
 Islamabad
 Pakistan
 e-mail: qmushtaq@apollo.net.pk
 and

 Arshad Mahmood
 Department of Mathematics and Statistics
 Allama Iqbal Open University
 Islamabad
 Pakistan
 e-mail: mscs@aiou.edu.pk

