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Characterization of division µ-LA-semigroups

Qaiser Mushtaq and Khalid Mahmood

Abstract

Let G be a left almost semigroup (LA-semigroup), also known as Abel-Grassman’s
groupoid and a left invertive groupoid. In this paper we have shown that G is a di-
vision µ-LA-semigroup if and only if it has a linear form. Characterization of division
µ-LA-semigroups is also done by using permutations.

1. Introduction

A left almost semigroup [2], abbreviated as LA-semigroup, is an algebraic
structure midway between a groupoid and a commutative semigroup. Al-
though the structure is non-associative and non-commutative, nevertheless,
it possesses many interesting properties which we usually find in associative
and commutative algebraic structures.

Kazim and Naseerudin have introduced the concept of an LA-semigroup
and have investigated some basic but important characteristics of this struc-
ture in [2]. They have generalized some useful results of semigroup theory.
Relationships between LA-semigroups and quasigroups, semigroups, loops,
monoids, and groups have been established.

Later, Mushtaq and others in [1], [5], [6], [7], [8], and [10] have stud-
ied the structure further and added many results to the theory of LA-
semigroups. Holgate [1], has called the same structure as left invertive
groupoid. It is also known as Abel-Grassman’s groupoid or AG-groupoid.
In this paper we shall call it LA-semigroup.

Kepka [4] has done extensive study of quasigroups satisfying some weak
forms of the medial law. In this paper we have extended some of his results
to LA-semigroups.
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A groupoid G = (G, ·) is called a left almost semigroup, abbreviated as
LA-semigroup, if its elements satisfy the left invertive law: (ab)c = (cb)a.
Examples of LA-semigroups can be found in [5] and [6].

An element e ∈ G is called a left identity if ea = a for all a ∈ G. An
element a′ ∈ G is called a left inverse of a if G contains left identity e and
a′a = e. As in the case of semigroups, both e and a′ are unique [5]. In
[5] it is proved also that if G contains a left identity then ab = cd implies
ba = dc for all a, b, c, d ∈ G. As in the case of semigroups, an element a
of an LA-semigroup G is called left cancellative if ab = ac implies b = c.
Similarly, it is right cancellative if ba = ca implies b = c. If it is both left
and right, it is called cancellative.

It is also known [2] that in an LA-semigroup G, the medial law: (ab)(cd)
= (ac)(bd) holds for every a, b, c, d ∈ G. An LA-semigroup with a left
identity is called an LA-monoid. In [9] an LA-monoid with a left inverse
is called an LA-group. Because in an LA-group every left inverse is a right
inverse, therefore, we can re-define an LA-group as follows: An LA-monoid
G is called a left almost group, abbreviated as LA-group, if it contains
inverses.

Suppose that (G, ·) is a commutative group. Then it is easy to see that
(G, ∗), where a ∗ b = ba−1, is an example of an LA-group.

Let G be an LA-semigroup and a ∈ G. A mapping La : G → G, defined
by La(x) = ax, is called the left translation by a. Similarly a mapping
Ra : G → G, defined by Ra(x) = xa is called the right translation by a. An
LA-semigroup G is called a division LA-semigroup if the mappings La and
Ra are onto for all a ∈ G.

An LA-semigroup G is called a µ-LA-semigroup if there are two map-
pings α, β of the set G onto G and an LA-monoid (G, ◦) such that ab =
α(a) ◦ β(b) for all a, b ∈ G. Note that if we take α, β to be identity maps
and (G, ◦) = (G, ·), then an LA-monoid (G, ·) is trivially a µ-LA-monoid.

Let G be a division µ-LA-semigroup. Then ((G, ◦), α, ψ, g) is said to be
a right linear form of G if (G, ◦) is an LA-group, α a mapping of G onto
G, ψ an endomorphism of (G, ◦), g ∈ G and ab = α(a) ◦ (g ◦ ψ(b)) for all
a, b ∈ G. Similarly ((G, ◦), ψ, α, g) is said to be a left linear form of G if
ab = ψ(a) ◦ (g ◦ α(b)) for all a, b ∈ G. If ϕ = α is an endomorphism of G,
then ((G, ◦), ϕ, ψ, g) is a called a linear form of G.
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2. Division LA-semigroups

Having set the terminology and given the basic definitions we are now in a
position to prove the following results.

Proposition 2.1. Every LA-group is a division µ-LA-group.

Proof. Let G be an LA-group and La its left translation. Then

ab = (ea)b = (ba)e
yields

La((xe)a−1) = a((xe)a−1) = (((xe)a−1)a)e = ((aa−1)(xe))e

= (e(xe))e = (xe)e = (ee)x = ex = x.

Thus for every x ∈ G there exists (xe)a−1 ∈ G such that Lx((xe)a−1) =
x. Hence La is onto. Also Ra is onto because Ra(xa−1) = (xa−1)a =
(aa−1)x = ex = x for every x ∈ G. Hence G is a division LA-group.
Thus, the observation that every LA-monoid is trivially a µ-LA-monoid,
and Theorem 9 in [3], imply that G is in fact a division µ-LA-group.

Let C(G, ◦) denote the centre of LA-semigroup (G, ◦).
Theorem 2.2. If G is an LA-semigroup, then the following statements are
equivalent:
(i) G is a division µ-LA-semigroup,

(ii) G has a linear form ((G, ◦), ϕ, ψ, g) such that ϕψ(a) ◦ g = g ◦ ψϕ(a)
for every a ∈ G. In this case C(G, ◦) = G.

Proof. (i) ⇒ (ii). Since G is a division µ-LA-semigroup satisfying the
medial law, by Theorem 15 in [3], ((G, ◦), ϕ, ψ, g) is the linear form of G
such that ϕψ(a)◦h = h◦ψϕ(a) for all a ∈ G, where h = ψϕ(x)◦g for some
x ∈ G. But by Theorem 15 in [3], we can assume that x is the left identity
of (G, ◦). Thus h = x ◦ g = g.

(ii) ⇒ (i). Since G has a linear form ((G, ◦), ϕ, ψ, g), therefore by the
definition, G is a division µ-LA-semigroup and so ab = ϕ(a) ◦ (g ◦ ψ(b)) for
all a, b ∈ G, where (G, ◦) is an LA-group. If e is the left identity in (G, ◦),
then this last equation can be written as ϕ(a) ◦ (e ◦ ψ(b) = ϕ(a) ◦ ψ(b),
which implies that G is a division µ-LA-semigroup.

Let x ∈ C(G, ◦). We wish to show that x ∈ G. Let a, b, c ∈ G, then

(ax)(bc) = (ϕ(a) ◦ (g ◦ ψ(x)) (ϕ(b) ◦ (g ◦ ψ(c))

= ϕ(ϕ(a) ◦ (g ◦ ψ(x)) ◦ (g ◦ ψ(ϕ(b) ◦ (g ◦ ψ(c))))

= ϕ2(a) ◦ (ϕ(g) ◦ ϕψ(x)) ◦ (g ◦ (ψϕ(b) ◦ (ψ(g) ◦ ψ2(c))).
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Since (G, ◦) is an LA-group, we can apply the medial and the left invertive
laws (which hold in (G, ◦)) to the above identity. Hence

(ax)(bc) = (ϕ2(a) ◦ g) ◦ ((ψϕ(x) ◦ (ψ(g) ◦ ψ2(c))) ◦ (ϕ(g) ◦ ϕψ(b))).

Since (ϕψ(a) ◦ g) ◦ (g ◦ ψϕ(b)) = (ψϕ(b) ◦ g) ◦ (g ◦ ψϕ(a)), therefore

(ax)(bc) = (ϕ2(a) ◦ g) ◦ ((ψϕ(b) ◦ ψ(g)) ◦ ((ψ(g) ◦ ψ2(c)) ◦ ϕψ(x)))

= (ϕ2(a) ◦ g) ◦ ((ϕ(g) ◦ ϕψ(b)) ◦ ((ψϕ(x) ◦ (ψ(g) ◦ ψ2(c))).

Applying the medial law again, we get

(ax)(bc) = (ϕ2(a) ◦ (ϕ(g) ◦ ϕψ(b))) ◦ (g ◦ (ψϕ(x) ◦ (ψ(g) ◦ ψ2(c))))

= ϕ(ϕ(a) ◦ (g ◦ ψ(b))) ◦ (g ◦ ψ(ϕ(x) ◦ (g ◦ ψ(c))))

= (ϕ(a) ◦ (g ◦ ψ(b))) (ϕ(x) ◦ (g ◦ ψ(c))) = (ab)(xc).

Thus x ∈ G, and so C(G, ◦) ⊆ G.
Conversely, let y ∈ G. Then

(ϕψ(a) ◦ g) ◦ ψϕ(y) = (ψϕ(y) ◦ g) ◦ ϕψ(a).

Since ϕψ(a) ◦ g = g ◦ ψϕ(a), therefore the above identity gives

(g ◦ ψϕ(a)) ◦ ψϕ(y) = (g ◦ ϕψ(y)) ◦ ϕψ(a),
i.e.

(ψϕ(y) ◦ ψϕ(a)) ◦ g = (ϕψ(a) ◦ ϕψ(y)) ◦ g.

Since (G, ◦) is cancellative, ψϕ(y) ◦ψϕ(a) = ϕψ(a) ◦ϕψ(y). But ψϕ = ϕψ,
by Theorem 16 in [3]. So ψϕ(y) ◦ ψϕ(a) = ψϕ(a) ◦ ψϕ(y). Thus ψϕ(y) ∈
C(G, ◦). This together with the fact that ψϕ : G → G is a homomorphism,
imply y ∈ G. Hence G ⊆ C(G, ◦), and in consequence G = C(G, ◦).
Corollary 2.3. A division µ-LA-semigroup G is commutative if it has a
linear form ((G, +), ϕ, ψ, g) such that (G,+) is a commutative group and
ψϕ = ϕψ.

Proof. If a division µ-LA-semigroup G has a linear form as above, then
ϕψ(a) + g = ψϕ(a) + g = g + ψϕ(a). Therefore G = C(G, ◦) by Theorem
2.2.

Theorem 2.4. For any division µ-LA-semigroup G there are mappings α, β
of G onto G such that α(a)β(b) = α(b)β(a) for every a, b ∈ G.

Proof. Since G is a division µ-LA-semigroup, therefore α = Lc and β = Rc

are onto mappings (for all c ∈ G), and α(a)β(b) = Lc(a)Rc(b) = (ca)(bc) =
(bc)(ca) = (cb)(ac) = Lc(b)Rc(a) = α(b)β(a).
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Theorem 2.5. A division µ-LA-semigroup G is commutative if and only if
the mapping a 7→ aa is an endomorphism of G.
Proof. If a 7→ aa is an endomorphism of G. Then (ab)(ab) = (aa)(bb) for
every a, b ∈ G, because G is medial, and so G = C(G, ◦) by Theorem 2.2.

Conversely, if G is commutative, then (ab)(ab) = (aa)(bb) implies that
the mapping a 7→ aa is an endomorphism of G.
Proposition 2.6. The mapping a 7→ aa is an endomorphism of G if G is
an LA-semigroup.

Proof. The proof is a trivial consequence of the medial law.

Note here that the converse is not true because there are medial groupoids,
which are not LA-semigroups.

An LA-semigroup G is called idempotent if aa = a for all a ∈ G. An
LA-semigroup G in which aa = bb for all a, b ∈ G is called unipotent.

Proposition 2.7. Let G be a left cancellative LA-semigroup. Then:
(i) α and ψ are permutations of G, if ((G, ◦), α, ψ, g) is a right linear

form of G, ,
(ii) ϕ and β are permutations of G, if ((G, ◦), ϕ, β, g) is a left linear

form of G.
Proof. (i) Since ((G, ◦), α, ψ, g) is a right linear form of a left cancellative
LA-semigroup G, therefore α is a mapping from G onto G and ψ is an
endomorphism of G. We prove that α and ψ are one-to-one.

Let α(a) = (aj) ◦ g−1 = Rj(a) ◦ g−1. If α(a) = α(b), then Rj(a) ◦ g−1 =
Rj(b) ◦ g−1. Since (G, ◦) is cancellative, therefore Rj(a) = Rj(b), which by
Theorem 2.6 from [5], implies a = b. Hence α is one-to-one.

Let ψ(a) = Ly(a), where y = α−1(g−1). Since α(a) = Rj(a) ◦ g−1,
therefore α(y) = Rj(y)◦g−1. But α(y) = g−1 implies g−1 = Rj(y)◦g−1, i.e.
y = α−1(Rj(y)◦g−1) = α−1(g−1). Now ψ(a) = Ly(a) = α−1(Rj(y)◦g−1)a.
If ψ(a) = ψ(b), then α−1(y j ◦ g−1)a = α−1(y j ◦ g−1)b. Since α is one-to-
one, therefore (y j ◦ g−1)a = (y j ◦ g−1)b, which by Theorem 2.6 from [5]
implies a = b. Thus ψ is one-to-one.

(ii) Analogously as (i).

Theorem 2.8. Let G be an LA-semigroup. Then the following conditions
are equivalent:
(i) G is a division µ-LA-semigroup,

(ii) G has a linear form ((G,+), σ, ψ, g) such that (G,+) is a commutative
group and σ(ψ(a) + g) = σ(g) + ψσ(a).
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Proof. Since a division LA-semigroup G is medial, by Theorem 16 in [3], G
has a linear form ((G,+), σ, ψ, g) such that (G,+) is a commutative group
and σψ = ψσ. Thus σ(ψ(a) + g) = σ(g) + σψ(a) = σ(g) + ψσ(a) because
σ is an endomorphism.

Conversely, if an LA-semigroup G has a linear form as in (ii), then
ab = σ(a) + g + ψ(b), which for g = 0 shows that G is a division µ-LA-
semigroup.

Theorem 2.9. Let an LA-semigroup G has a linear form ((G, ◦), ϕ, ψ, g).
Then G is a commutative group, if ϕ, ψ are central automorphism of (G, ◦)
and ϕψ = ψϕ.
Proof. If ϕ,ψ are central automorphisms of (G, ◦) such ϕψ = ψϕ, then
ϕ(a), ψ(a) ∈ C(G, ◦) for every a ∈ G. Thus ϕψ(a) ∈ C(G, ◦) and ϕψ(a) ◦
g = g ◦ ψϕ(a) for every g ∈ G. Theorem 2.2 completes the proof.
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