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Zeroids and idempoids in AG-groupoids

Qaiser Mushtaq

Abstract

Clifford and Miller (Amer. J. Math. 70, 1948) and Dawson (Acta Sci. Math. 27, 1966)
have studied semigroups having left or right zeroids in a semigroup. In this paper, we have
investigated AG-groupoids, and AG-groupoids with weak associative law, having zeroids
or idempoids. Some interesting characteristics of these structures have been explored.

An Abel-Grassman’s groupoid [8], abbreviated as AG-groupoid, is a gro-
upoid G whose elements satisfy the left invertive law: (ab)c = (cb)a. It is
also called a left almost semigroup [4, 5, 6, 7]. In [3], the same structure is
called a left invertive groupoid. In this note we call it an AG-groupoid. It is a
useful non-associative algebraic structure, midway between a groupoid and
a commutative semigroup, with wide applications in the theory of flocks.

AG-groupoid is medial [5], that is, (ab)(cd) = (ac)(bd) for all a, b, c, d in
G. It has been shown in [5] that if an AG-groupoid contains a left identity
then it is unique. It has been proved also that an AG-groupoid with right
identity is a commutative monoid, that is, a semigroup with identity ele-
ment. An element a◦ of an AG-groupoid G is called a left zero if a◦a = a◦
for all a ∈ G.

It has been shown in [5] that if ab = cd then ba = dc for all a, b, c, d in
an AG-groupoid with left identity. If for all a, b, c in an AG-groupoid G,
ab = ac implies that b = c, then G is called left cancellative. Similarly, if
ba = ca implies that b = c, then G is called right cancellative. It is known
[5] that every left cancellative AG-groupoid is right cancellative but the
converse is not true. However, every right cancellative AG-groupoid with
left identity is left cancellative.

Clifford and Miller [1] have defined an element zl as a left zeroid in a
semigroup G if for each element x in G, there exists a in G such that ax = zl.
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A right zeroid is similarly defined. An element is a zeroid in G if it is both
left and right zeroid.

Dawson [2] has studied semigroups having left or right zeroid elements
and investigated some of their properties. In this paper we introduce the
concept of left idempoids in AG-groupoid and investigate some of their
properties.

Next we prove the following result.

Theorem 1. An AG-groupoid G is a semigroup if and only if a(bc) = (cb)a
for all a, b, c ∈ G.

Proof. Let a(bc) = (cb)a. Since G is an AG-groupoid, (ab)c = (cb)a. As the
right hand sides of the two equations are equal, we conclude that (ab)c =
a(bc). Thus G is a semigroup.

Conversely, suppose that an AG-groupoid G is a semigroup. This means
that (ab)c = (cb)a and (ab)c = a(bc). Since the left hand sides of these
equations are equal, we get a(bc) = (cb)a for all a, b, c ∈ G.

An element zr of an AG-groupoid G is called a right idempoid if, for
each x ∈ G, there exists a ∈ G such that (xa)a = zr.

Note that G contains a right idempoid because for any x, y ∈ G there
exists a ∈ G such that ax, ay ∈ G. So (ax)(ay) = (aa)(xy) = (aa)z =
(za)a, where z = xy is an arbitrary element in G, implies that G contains
a right idempoid.

Proposition 1. An AG-groupoid G is a semigroup if and only if zr = a(ax)
is a right idempoid for some fixed a and any x ∈ G.

Proof. The proof follows directly from Theorem 1.

Theorem 2. An AG-groupoid G with G2 = G is a commutative semigroup
if and only if (ab)c = a(cb) for all a, b, c ∈ G.

Proof. Suppose (ab)c = a(cb). Since G is an AG-groupoid, (cb)a = (ab)c.
Combining the two equations we obtain (cb)a = a(cb) implying that G
is commutative. Thus (ab)c = (cb)a = a(cb) = a(bc) shows that G is a
commutative semigroup.

The converse follows immediately.

Corollary 1. An AG-groupoid is a commutative semigroup if and only if
zr = xa2 is a right idempoid for fixed a ∈ G and any z ∈ G.

Proof. The proof follows immediately from Theorem 2.



Zeroids and idempoids in AG-groupoids 81

Proposition 2. The square of every left zeroid in an AG-groupoid G with
an idempotent is a right idempoid.

Proof. Let x be an idempotent and zl a left zeroid in G. Since zl is a left
zeroid, there exists a in G such that ax = zl. Therefore

zlzl = (ax)(ax) = (aa)(xx) = (aa)x = (xa)a = zr,

which completes the proof.

Corollary 2. In an AG-groupoid G there exists a left zeroid element.

Proof. If we define a mapping la : G → G by (x)la = ax by for all x in
G, then obviously these mappings are related to left zeroids in a natural
way.

In the following we shall examine the necessary and sufficient conditions
for la to be an epimorphism, endomorphism, automorphism, monomorphism
and anti-homomorphism.

Theorem 3. If in a left cancellative AG-groupoid G we define for a fixed
a and some x, a mapping la : x 7→ ax, from G onto G, then the following
statements are equivalent:

(i) la is an epimorphism,
(ii) a is an idempotent in G,

(iii) la is an automorphism.

Proof. Suppose (i) holds. Then there exists x in G such that for some fixed
a, ax = y, in G. This implies that for some x in G and a fixed a in G, there
exists an element y in G such that y = (x)la. Now (a)lay = (a)la(x)la =
(aa)(ax) and (a)la(x)la = (ax)la = a(ax) = ay imply that (a)la = a, that
is, a is an idempotent in G. Hence (i) implies (ii).

Also (x)la(y)la = (ax)(ay) = (aa)(xy) = a(xy) because a is idempotent.
This implies that (x)la(y)la = (xy)la, which further implies that la is an
endomorphism. In order to show that la in an automorphism it is sufficient
to show that la is one-to-one. But this is obvious since (x)la = (y)la and
ax = ay implies that x = y by virtue of left cancellation. Thus (ii) implies
(iii).

Since la is an automorphism, (iii) implies (i).

Theorem 4. In an AG-groupoid G the following statements are equivalent:
(i) G has a right zero,
(ii) la : x 7−→ ax an automorphism and G has an idempotent element,

(iii) G has a zero.
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Proof. If x is a right zero of G, then ax = x for somea ∈ G. But x = ax =
(x)la for every x in G. This implies that la is the identity mapping, which
is an automorphism and, in particular, a = (a)la. It follows that a = aa,
that is, a is an idempotent. Thus (i) implies (ii).

Further, for any x and some a in G, we have a(xx) = (xx)la = xx and
(xx)a = (ax)x = (x)lax = xx. This implies that a(xx) = (xx)a = xx,
showing that xx is a zero in G. Hence (ii) implies (iii).

(iii) obviously implies (i).

Theorem 5. If (G)la = {(x)la : x ∈ G}, where a is a fixed idempotent of
an AG-groupoid G, then (G)la is an AG-groupoid with an idempotent a.

Proof. Let (x)la, (y)la belong to (G)la. Then

(x)la(y)la = (ax)(ay) = (aa)(xy) = a(xy) = (xy)la.

This implies that (x)la(y)la ∈ (G)la. Now

(x)la(y)la(z)la = ((ax)(ay))(az) = ((az)(ay))(ax) = ((z)la(y)(x)la.

Hence (G)la is an AG-groupoid.

Theorem 6. If (G)la = {(x)la : x ∈ G}, where a is a fixed element of a
right cancellative AG-groupoid G, then la is an endomorphism if and only
if a is an idempotent of G.

Proof. Let la be an endomorphism. Then (xx′) = (x)la(x′)la. Hence

a(xx′) = (ax)(ax′) = (aa)(xx′)

imply that a = aa.
Conversely, if a = aa then

(x)la(x′)la = (ax)(ax′) = (aa)(xx′) = a(xx′) = (xx′)la,

which completes our proof.

Theorem 7. If G is an AG-groupoid with an idempotent a and la is an
anti-homomorphism, then a commutes with every element of G.

Proof. Let x be an arbitrary element of G. Then there exists x′ ∈ G such
that (x′)la = x. Consider xa for any x and some idempotent a in G. Then

xa = x(aa) = x(a)la = (x′)la(a)la = (ax′)la = a(ax′) = a(x′)la = ax.

This implies that a commutes with every x in G.
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Theorem 8. In a right cancellative AG-groupoid G with an idempotent a,
if la : x 7→ ax is an anti-homomorphism, then the following statements are
equivalent:

(i) la is an anti-epimorphism,
(ii) G is a commutative monoid,

(iii) la is an anti-automorphism.

Proof. Suppose (i) holds. Then for a fixed a ∈ G, there exist x and y in G
such that, y = ax = (x)la. Now

ya = y(aa) = (x)la(a)la = (ax)la = a(ax) = a(x)la = ay

because la is an anti-epimorphism.
Further ay = (aa)y = (ya)a, which implies that ya = (ya)a. So y =

ya = ay. Hence a is the identity of G. But an AG-groupoid with right
identity is a commutative monoid by a result in [5]. Hence (i) implies(ii).

Now, since a is the identity in G, then for any x in G, we have ax = x
implying that (x)la = x and so la is the identity mapping. This implies
that la is an anti-automorphism. It follows that (ii) implies (iii).

Also, (iii) implies (i), follows immediately since an anti-automorphism
must necessarily be an anti-epimorphism.
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