Quotient groups induced by fuzzy subgroups

Yong Lin Liu

Abstract

We construct a quotient group induced by a fuzzy normal subgroup and prove the corresponding isomorphism theorems. Obtained results are used to the characterization of selected classes of quotient groups.

1. Introduction

In [16] L. A. Zadeh introduced the concept of fuzzy sets and fuzzy set operations. A. Rosenfeld [14] applied this concept to the theory of groupoids and groups. The various constructions of fuzzy quotient groups and fuzzy subgroup isomorphisms have been investigated by several researchers (see e.g. [1, 3, 6, 9, 11, 13]). In this paper we give a new method of construction of quotient groups by fuzzy normal subgroups and apply this construction to the characterization of selected classes of quotient groups.

2. Preliminaries

A fuzzy subset of a group G, i.e. a function μ from G into [0,1], is called a fuzzy subgroup of G if

 $(\mathbf{F}_1) \quad \mu(xy) \geqslant \min\{\mu(x), \mu(y)\} \text{ for all } x, y \in G, \text{ and }$

(F₂)
$$\mu(x^{-1}) \ge \mu(x)$$
 for all $x \in G$,

or, equivalently, if $\mu(xy^{-1}) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in G$.

A fuzzy subgroup μ of a group G is called *normal* if for all $x, y \in G$ it satisfies one of the following equivalent conditions (cf. [15]):

²⁰⁰⁰ Mathematics Subject Classification: 20E10, 94D05

Keywords: Fuzzy (normal) subgroup, fuzzy isomorphism theorem

 $(\mathbf{F}_3) \ \ \mu(xyx^{-1}) \geqslant \mu(y),$

- (F₄) $\mu(xyx^{-1}) = \mu(y),$
- (F₅) $\mu(xy) = \mu(yx).$

It is not difficult to see that for all fuzzy subgroups μ of a group G and all $x,y\in G$

- (i) $\mu(e) \ge \mu(x)$,
- (*ii*) $\mu(x^{-1}) = \mu(x)$,
- (*iii*) $\mu(xy^{-1}) = \mu(e)$ implies $\mu(x) = \mu(y)$.

Fuzzy subgroups of G can be characterized by the collection of *levels*, i.e. sets of the form $\mu_t = \{g \in G \mid \mu(g) \ge t\}$, where $t \in [0, 1]$. Namely, as it is proved in [15], a fuzzy subset μ of a group G is a fuzzy (normal) subgroup of G if and only if for all $t \in [0, 1]$, μ_t is either empty or a (normal) subgroup of G.

The image $f(\eta)$ of a fuzzy subset η of G and preimage $f^{-1}(\mu)$ of a fuzzy subset μ of G' and a map $f: G \to G'$ are defined as

$$f(\eta)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \eta(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$f^{-1}(\mu)(x) = \mu(f(x)), \ x \in G.$$

It is not difficult to see that $f(\eta)$ and $f^{-1}(\mu)$ are fuzzy subsets.

3. Quotient groups induced by fuzzy subgroups

Let μ be a fuzzy normal subgroup of a group G. For any $x, y \in G$, define a binary relation \sim on G by

$$x \sim y \iff \mu(xy^{-1}) = \mu(e),$$

where e is the unit of G.

Lemma 1. \sim is a congruence of G.

Proof. The reflexivity and symmetry are obvious. To prove the transitivity let $x \sim y$ and $y \sim z$. Then $\mu(xy^{-1}) = \mu(yz^{-1}) = \mu(e)$ and $\mu(xz^{-1}) = \mu(xy^{-1}yz^{-1}) \ge \min\{\mu(xy^{-1}), \mu(yz^{-1})\} = \mu(e)$. Hence $\mu(xz^{-1}) = \mu(e)$, which proves that \sim is an equivalence relation.

Now, if $x \sim y$, then $\mu(xy^{-1}) = \mu(e)$. Thus for all $z \in G$ we have $\mu((xz)(yz)^{-1}) = \mu(xzz^{-1}y^{-1}) = \mu(xy^{-1}) = \mu(e)$. Hence $xz \sim yz$. Since μ is a fuzzy normal subgroup, we have $\mu((zx)(zy)^{-1}) = \mu(zxy^{-1}z^{-1}) = \mu(z^{-1}zxy^{-1}) = \mu(xy^{-1}) = \mu(e)$. This gives $zx \sim zy$.

Using these facts it is not difficult to see that \sim is a congruence.

The equivalence class containing x is denoted by μ_x . G/μ denotes the corresponding quotient set.

Proposition 1. If μ is a fuzzy normal subgroup of a group G, then G/μ is a group with the operation $\mu_x \mu_y = \mu_{xy}$.

Example. Let G be the additive group of all integers and let $\mu(x) = t_1$ if 2|x, and $\mu(x) = t_0$ if $2 \not|x$, where $0 \leq t_0 < t_1 \leq 1$. Then μ is a fuzzy normal subgroup of G and $G/\mu = \{\mu_0, \mu_1\}$ is a quotient group induced by μ . **Lemma 2.** [13] If $f: G \to G'$ is an epimorphism of groups and μ a fuzzy normal subgroup of G, then $f(\mu)$ is a fuzzy normal subgroup of G'.

Basing on this Lemma and Proposition 4.2 in [7] we can proved

Lemma 3. Let $f : G \to G'$ be a homomorphism of groups, μ a fuzzy subgroup of G and ν a fuzzy subgroup of G'.

(i) If f is an epimorphism, then $f(f^{-1}(\nu)) = \nu$.

(ii) If μ is a constant on kerf, then $f^{-1}(f(\mu)) = \mu$.

Let $G_{\mu} = \mu_{\mu(0)} = \{x \in G | \mu(x) = \mu(0)\}$. It is obvious that if μ is a fuzzy (normal) subgroup of G, then G_{μ} is a (normal) subgroup of G.

Theorem 1. Let $f: G \to G'$ be an epimorphism of groups and μ a fuzzy normal subgroup of G with $kerf \subseteq G_{\mu}$. Then $G/\mu \cong G'/f(\mu)$.

Proof. By Proposition 1 and Lemma 2, G/μ and $G'/f(\mu)$ are groups.

Let $\eta: G/\mu \to G'/f(\mu)$, where $\eta(\mu_x) = (f(\mu))_{f(x)}$. If $\mu_x = \mu_y$, then $\mu(xy^{-1}) = \mu(e)$. Since $kerf \subseteq G_\mu$, then μ is a constant on kerf, and by Lemma 3 (*ii*) we have $f^{-1}(f(\mu)) = \mu$. Thus $(f^{-1}(f(\mu)))(xy^{-1}) =$ $(f^{-1}(f(\mu)))(e)$, i.e. $f(\mu)(f(xy^{-1})) = f(\mu)(f(e))$, then $f(\mu)(f(x)(f(y))^{-1})$ $= f(\mu)(e')$, and so $(f(\mu))_{f(x)} = (f(\mu))_{f(y)}$. Hence η is well-defined.

It is also a homomorphism because $\eta(\mu_x\mu_y) = \eta(\mu_{xy}) = (f(\mu))_{f(xy)} = (f(\mu))_{f(x)f(y)} = (f(\mu))_{f(x)}(f(\mu))_{f(y)} = \eta(\mu_x)\eta(\mu_y)$. Since f is an epimorphism, for any $(f(\mu))_y \in G'/f(\mu)$, there exists $x \in G$ such that f(x) = y. So $\eta(\mu_x) = (f(\mu))_{f(x)} = (f(\mu))_y$, which means that η is an epimorphism. Moreover, $(f(\mu))_{f(x)} = (f(\mu))_{f(y)} \Rightarrow f(\mu)(f(x)(f(y))^{-1}) = f(\mu)(e') \Rightarrow$

 $f(\mu)(f(xy^{-1})) = f(\mu)(f(e)) \Rightarrow (f^{-1}(f(\mu)))(xy^{-1}) = (f^{-1}(f(\mu)))(e) \Rightarrow \mu(xy^{-1}) = \mu(e) \Rightarrow \mu_x = \mu_y, \text{ which proves that } \eta \text{ is an isomorphism.}$

Hence $G/\mu \cong G'/f(\mu)$.

Corollary 1. Let $f : G \to G'$ be an epimorphism of groups and ν a fuzzy normal subgroup of G'. Then $G/f^{-1}(\nu) \cong G'/\nu$.

Proof. Since $f^{-1}(\nu)$ is a fuzzy normal subgroup (cf. [12]), $G/f^{-1}(\nu)$ and G'/ν are groups. Moreover, by Lemma 3, we have $\nu = f(f^{-1}(\nu))$.

If $x \in kerf$, then f(x) = e' = f(e), and so $\nu(f(x)) = \nu(f(e))$, i.e. $f^{-1}(\nu)(x) = f^{-1}(\nu)(e)$. Hence $x \in G_{f^{-1}(\nu)}$, i.e. $kerf \subseteq G_{f^{-1}(\nu)}$. Theorem 1 completes the proof.

Proposition 2. Let χ_S be a characteristic function of a subset S of a group G. Then χ_S is a fuzzy normal subgroup of G if and only if S is a normal subgroup of G.

Proof. If $x, y \in S$, where S is a normal subgroup of G, then $\chi_S(xy^{-1}) = \chi_S(x) = \chi_S(y) = 1$. Hence $\chi_S(xy^{-1}) = \min\{\chi_S(x), \chi_S(y)\}$. If at least one of x and y is not in S, then at least one of $\chi_S(x)$ and $\chi_S(y)$ is 0. Therefore $\chi_S(xy^{-1}) \ge \min\{\chi_S(x), \chi_S(y)\}$. Hence χ_S is a fuzzy subgroup of G. Moreover, for any $x, y \in G$, if $y \in S$, then $xyx^{-1} \in S$ and $\chi_S(xyx^{-1}) = 1 = \chi_S(y)$. If $y \notin S$, then $\chi_S(y) = 0$, so $\chi_S(xyx^{-1}) \ge \chi_S(y)$. Hence χ_S is a fuzzy normal subgroup of G.

Conversely, if χ_S be a fuzzy normal subgroup of G, then for any $x, y \in S$, we have $\chi_S(xy^{-1}) \ge \min\{\chi_S(x), \chi_S(y)\} = 1$. Thus $\chi_S(xy^{-1}) = 1$ and $xy^{-1} \in S$. Similarly for any $y \in S$, $x \in G$ we have $\chi_S(xyx^{-1}) \ge \chi_S(y) = 1$. Hence $\chi_S(xyx^{-1}) = 1$ and $xyx^{-1} \in S$. This proves that S is a normal subgroup of G.

Corollary 2. $G/\chi_{kerf} \cong G'$ for any epimorphism $f: G \to G'$ of groups. Proof. It follows from the fact that $\chi_{\{e\}}f = \chi_{kerf}$ and $G'/\chi_{\{e\}} \cong G'$. \Box

Let N be a normal subgroup of a group G. Recall that a quotient group G/N induced by a normal subgroup N is determined by an equivalent relation \sim , where $x \sim y$ is defined by $xy^{-1} \in N$. For no confusion, we write $x \sim y(N)$ if x is equivalent to y with respect to N, and $x \sim y(\chi_N)$ if x is equivalent to y with respect to the fuzzy normal subgroup χ_N .

Lemma 4. If N is a normal subgroup of a group G, then $x \sim y(N)$ if and only if $x \sim y(\chi_N)$.

Corollary 3. Let $f: G \to G'$ be an epimorphism of groups and N be a normal subgroup of G such that $kerf \subseteq N$. Then $G/\chi_N \cong G'/\chi_{f(N)}$.

Proof. By Proposition 2, χ_N and $\chi_{f(N)}$ are fuzzy normal subgroups of G and G', respectively. Putting $\mu = \chi_N$ in Theorem 1, we obtain $G_{\mu} =$

 $\begin{array}{l} G_{\chi_N}=N\supseteq kerf. \text{ Since } f \text{ is an epimorphism, for any } x'\in G', \text{ there exists } \\ x\in G \text{ such that } x'=f(x). \text{ If } x'\in f(N), \text{ then } x\in N, \text{ which by Lemma 3} \\ (ii) \text{ gives } f(\mu)(x')=f(\chi_N)(x')=f(\chi_N)(f(x))=\chi_N(x)=1=\chi_{f(N)}(x'). \text{ If } \\ x'\not\in f(N), \text{ then } x\notin N \text{ and } f(\mu)(x')=f(\chi_N)(x')=\chi_N(x)=0=\chi_{f(N)}(x'). \\ \text{Hence } G/\chi_N\cong G'/\chi_{f(N)}. \end{array}$

Observe that by Lemma 4, we obtain $G/\chi_N \cong G/N$ and $G'/\chi_{f(N)} \cong G'/f(N)$. This together with Corollary 3 implies the First Isomorphism Theorem for groups.

Moreover, if $f: G \to G'$ is an epimorphism of groups and K is a normal subgroup of G', then, by Proposition 2, we see that $\chi_{f^{-1}(K)}$ and χ_K are fuzzy normal subgroups of G and G', respectively.

Putting $\nu = \chi_K$, we have $f^{-1}(\nu) = f^{-1}(\chi_K) = \chi_{f^{-1}(K)}$. Indeed, if $x \in f^{-1}(K)$, then $f(x) \in K$, $f^{-1}(\chi_K)(x) = \chi_K f(x) = 1 = \chi_{f^{-1}(K)}(x)$. If $x \notin f^{-1}(K)$, then $f(x) \notin K$, $f^{-1}(\chi_K)(x) = \chi_K f(x) = 0 = \chi_{f^{-1}(K)}(x)$. Thus for $\nu = \chi_K$, as a consequence of Corollary 1, we obtain

Corollary 4. If $f: G \to G'$ is an epimorphism of groups and K is a normal subgroup of G', then $G/\chi_{f^{-1}(K)} \cong G'/\chi_K$.

Lemma 5. If N is a normal subgroup and μ is a fuzzy normal subgroup of a group G, then μ restricted to N is a fuzzy normal subgroup of N and N/μ is a normal subgroup of G/μ .

Proof. Indeed, if $\mu_a, \mu_b \in N/\mu$, where $a, b \in N$, then $\mu_a(\mu_b)^{-1} = \mu_a \mu_{b^{-1}} = \mu_{ab^{-1}} \in N/\mu$. If $\mu_a \in N/\mu$, $\mu_x \in G/\mu$, where $a \in N$ and $x \in G$, then $xax^{-1} \in N$ and $\mu_x \mu_a(\mu_x)^{-1} = \mu_x \mu_a \mu_{x^{-1}} = \mu_{xax^{-1}} \in N/\mu$. Thus N/μ is a normal subgroup of G/μ .

Theorem 2. If μ and ν are two fuzzy normal subgroups of a group G such that $\mu(e) = \nu(e)$, then $G_{\mu}G_{\nu}/\nu \cong G_{\mu}/(\mu \cap \nu)$.

Proof. By Lemma 5, ν is a fuzzy normal subgroup of $G_{\mu}G_{\nu}$. By [11] $\mu \cap \nu$ is a fuzzy normal subgroup of G_{μ} . Thus $G_{\mu}G_{\nu}/\nu$ and $G_{\mu}/(\mu \cap \nu)$ are groups.

For any $x \in G_{\mu}G_{\nu}$, x = ab, where $a \in G_{\mu}$ and $b \in G_{\nu}$, we define $g: G_{\mu}G_{\nu}/\nu \to G_{\mu}/(\mu \cap \nu)$ putting $g(\nu_x) = (\mu \cap \nu)_a$.

If $\nu_x = \nu_y$, where $y = a_1b_1$, $a_1 \in G_\mu$ and $b_1 \in G_\nu$, then

$$\nu(ab(a_1b_1)^{-1}) = \nu(abb_1^{-1}a_1^{-1}) = \nu(a_1^{-1}abb_1^{-1}) = \nu(a_1^{-1}a(b_1b^{-1})^{-1}) = \nu(e).$$

Hence $\nu(a_1^{-1}a) = \nu(b_1b^{-1}) = \nu(e)$. Thus

$$\begin{aligned} (\mu \cap \nu)(aa_1^{-1}) &= \min\{\mu(aa_1^{-1}), \nu(aa_1^{-1})\} = \min\{\mu(e), \nu((a_1^{-1}a)^{-1})\} \\ &= \min\{\mu(e), \nu(e)\} = (\mu \cap \nu)(e), \end{aligned}$$

i.e. $(\mu \cap \nu)_a = (\mu \cap \nu)_{a_1}$. Hence g is well-defined.

If $\nu_x, \nu_y \in G_\mu G_\nu / \nu$, where x = ab, $y = a_1b_1$, $a, a_1 \in G_\mu$ and $b, b_1 \in G_\nu$, then $xy = aba_1b_1$. Since G_μ is normal, $ba_1b_1 \in G_\mu$. Hence $g(\nu_x\nu_y) = g(\nu_{xy}) = (\mu \cap \nu)_{a(ba_1b_1)} = (\mu \cap \nu)_a(\mu \cap \nu)_{ba_1b_1}$ and $(\mu \cap \nu)((ba_1b_1)a_1^{-1}) = \min\{\mu(ba_1b_1a_1^{-1}), \nu(ba_1b_1a_1^{-1})\} = \min\{\mu((ba_1b_1)a_1^{-1}), \nu(b(a_1b_1a_1^{-1}))\} = \min\{\mu(e), \nu(e)\} = (\mu \cap \nu)(e)$. Hence $(\mu \cap \nu)_{ba_1b_1} = (\mu \cap \nu)_{a_1}$, i.e. $g(\nu_x\nu_y) = (\mu \cap \nu)_a(\mu \cap \nu)_{a_1} = g(\nu_x)g(\nu_y)$, which shows that g is a homomorphism.

It is also endomorphism since for $(\mu \cap \nu)_a \in G_{\mu}/(\mu \cap \nu)$ and $b \in G_{\nu}$, we have $x = ab \in G_{\mu}G_{\nu}$ and $g(\nu_x) = (\mu \cap \nu)_a$.

Moreover, if $x, y \in G_{\mu}G_{\nu}$, where x = ab, $y = a_1b_1$, $a, a_1 \in G_{\mu}$, $b, b_1 \in G_{\nu}$, and $(\mu \cap \nu)_a = (\mu \cap \nu)_{a_1}$, then $(\mu \cap \nu)(aa_1^{-1}) = (\mu \cap \nu)(e)$, i.e., $\min\{\mu(aa_1^{-1}), \nu(aa_1^{-1})\} = \min\{\mu(e), \nu(e)\}$. But $\mu(e) = \nu(e)$ and $\mu(aa_1^{-1}) = \mu(e)$ imply $\nu(aa_1^{-1}) = \nu(e)$. Therefore $\nu(xy^{-1}) = \nu(ab(a_1b_1)^{-1}) = \nu(abb_1^{-1}a_1^{-1}) = \nu(a_1^{-1}abb_1^{-1}) \ge \min\{\nu(a_1^{-1}a), \nu(bb_1^{-1})\} = \min\{\nu(e), \nu(e)\} = \nu(e)$. Thus $\nu_x = \nu_y$. Hence $G_{\mu}G_{\nu}/\nu \cong G_{\mu}/(\mu \cap \nu)$.

Corollary 5. Let N, K be two normal subgroups of a group G. Then $NK/\chi_K \cong N/\chi_{N\cap K}$.

Proof. By Proposition 2, χ_N and χ_K are fuzzy normal subgroups of G. Putting $\mu = \chi_N$ and $\nu = \chi_K$ in Theorem 2, we obtain $G_\mu = N$, $G_\nu = K$, $\mu \cap \nu = \chi_N \cap \chi_K = \chi_{N \cap K}$ and $\mu(e) = 1 = \nu(e)$. Hence $NK/\chi_K \cong N/\chi_{N \cap K}$.

Since $NK/\chi_K \cong NK/K$ and $N/\chi_{N\cap K} \cong N/N \cap K$, as a consequence of the above two lemmas we obtain the Second Isomorphism Theorem of groups. The Third Isomorphism Theorem is a consequence of the following

Theorem 3. Let μ and ν be two fuzzy normal subgroups of a group G with $\nu \leq \mu$ and $\nu(e) = \mu(e)$. Then $(G/\nu)/(G_{\mu}/\nu) \cong G/\mu$.

Proof. By Lemma 5, G_{μ}/ν is a normal subgroup of G/ν .

Putting $f(\nu_x) = \mu_x$ for all $x \in G$, we define $f: G/\nu \to G/\mu$ such that $\nu(xy^{-1}) = \nu(e) = \mu(e)$ for all $\nu_x = \nu_y$. Because $\nu \leq \mu$, we have $\mu(xy^{-1}) \geq \nu(xy^{-1}) = \mu(e)$, and so $\mu(xy^{-1}) = \mu(e)$, i.e. $\mu_x = \mu_y$, which means that f is well-defined. Since $f(\nu_x\nu_y) = f(\nu_{xy}) = \mu_{xy} = \mu_x\mu_y = f(\nu_x)f(\nu_y)$, f is a homomorphism. By the definition, it is an epimorphism, too. But $kerf = \{\nu_x \in G/\nu \mid f(\nu_x) = \mu_e\} = \{\nu_x \in G/\nu \mid \mu_x = \mu_e\} = \{\nu_x \in G/\nu \mid \mu(x) = \mu(e)\} = \{\nu_x \in G/\nu \mid x \in G_\mu\} = G_\mu/\nu$. Thus $kerf = G_\mu/\nu$ and $(G/\nu)/(G_\mu/\nu) \cong G/\mu$.

Corollary 6. $(G/\chi_K)/(N/\chi_K) \cong G/\chi_N$ for any normal subgroups $N \subseteq K$ of a group G.

Finally we consider *fuzzy abelian subgroups*, i.e. fuzzy subgroups μ of a group G satisfying the identity $\mu(xyx^{-1}y^{-1}) = \mu(e)$.

Proposition 3. A fuzzy subgroup μ of a group G is abelian if and only if G/μ is abelian.

Proof. If μ is a fuzzy abelian subgroup, then $\mu(xyx^{-1}y^{-1}) = \mu(e)$, and hence $\mu(xy) = \mu(yx)$. Thus μ is fuzzy normal. Since $\mu(xy(yx)^{-1}) = \mu(xyx^{-1}y^{-1}) = \mu(e)$, we have $\mu_{xy} = \mu_{yx}$, i.e. $\mu_x\mu_y = \mu_y\mu_x$. Hence G/μ is an abelian group.

Conversely, if G/μ is abelian, then $\mu_{xy} = \mu_{yx}$ and $\mu(xy(yx)^{-1}) = \mu(e)$. So $\mu(xyx^{-1}y^{-1}) = \mu(e)$.

Let μ be a fuzzy subgroup of a group G. The smallest positive integer n (if it exists) such that $\mu(x^n) = \mu(e)$ is called the *fuzzy order* of x with respect to μ and is denoted by $FO_{\mu}(x)$ (cf. [4]). If $FO_{\mu}(x)$ is finite for every $x \in G$, then μ is called *fuzzy torsion*. In the case when for all $x \in G$ $FO_{\mu}(x)$ is a power of a prime number p, we say that μ is a *fuzzy p-subgroup* of G.

Proposition 4. A fuzzy normal subgroup μ of a group G is a fuzzy p-subgroup if and only if G/μ is a p-group.

Proof. If μ is a fuzzy *p*-subgroup of *G*, then for any $\mu_x \in G/\mu$ there is a nonnegative integer *s* such that $\mu(x^{p^s}) = \mu(e)$, i.e. $\mu_{x^{p^s}} = \mu_e$. Hence $(\mu_x)^{p^s} = \mu_e$. Conversely, if G/μ is a *p*-group of *G*, then for any $x \in G$ and some nonnegative integer *t* we have $(\mu_x)^{p^t} = \mu_e$, i.e. $\mu_{x^{p^t}} = \mu_e$. Thus $\mu(x^{p^t}) = \mu(e)$, which completers the proof. \Box

Proposition 5. A fuzzy subgroup μ of an abelian group G is fuzzy torsion if and only if G/μ is torsion.

Proof. Because G is an abelian group, μ is normal. Let G/μ be torsion. For any $x \in G$, there is a positive integer n such that $(\mu_x)^n = \mu_e$, i.e. $\mu_{x^n} = \mu_e$, and so $\mu(x^n) = \mu(e)$. Hence $FO_{\mu}(x)$ is finite and μ is fuzzy torsion.

The converse is obvious.

References

- N. Ajmal: Homomorphism of fuzzy groups, correspondence theorem and fuzzy quotient groups, Fuzzy Sets and Systems 61 (1994), 329 - 339.
- [2] P. S. Das: Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), 264 - 269.

- [3] J. X. Fang: Fuzzy homomorphism and fuzzy isomorphism, Fuzzy Sets and Systems 63 (1994), 237 – 242.
- [4] J. G. Kim: Some characterizations of fuzzy subgroups, Fuzzy Sets and Systems 87 (1997), 243 249.
- [5] J. G. Kim and H. D. Kim: A characterization of fuzzy subgroups of some abelian groups, Inform. Sci. 80 (1994), 243 – 252.
- [6] I. J. Kumar, P. K. Saxena and P. Yadav: Fuzzy normal subgroups and fuzzy quotients, Fuzzy Sets and Systems 46 (1992), 121 – 132.
- [7] H. V. Kumbhojkar and M. S. Bapat: Correspondence theorem for fuzzy ideals, Fuzzy Sets and Systems 41 (1991), 213 – 219.
- [8] Y. L. Liu, J. Meng and X. L. Xin: Quotient rings induced via fuzzy ideals, Korean J. Comput & Appl. Math. 8 (2001), 631-643.
- B. B. Makamba: Direct products and isomorphism of fuzzy subgroups, Inform. Sci. 65 (1992), 33 - 43.
- [10] N. N. Morsi and S. E. B. Yehia: Fuzzy-quotient groups, Inform. Sci. 81 (1994), 177 - 191.
- [11] N. P. Mukherjee and P. Bhattacharya: Fuzzy groups: some grouptheoretic analogs, Inform. Sci. 39 (1986), 247 - 268.
- [12] N. P. Mukherjee and P. Bhattacharya: Fuzzy normal subgroups and fuzzy cosets, Inform. Sci. 34 (1984), 225 – 239.
- [13] S. Ray: Isomorphic fuzzy groups, Fuzzy Sets and Systems 50 (1992), 201 207.
- [14] A. Rosenfeld: Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512 517.
- [15] W. M. Wu: Normal fuzzy subgroups, Fuzzy Math. 1 (1981), 21 30.
- [16] L. A. Zadeh: *Fuzzy sets*, Inform. Control 8 (1965), 338 353.

Department of Applied Mathematics Received July 23, 2002 Xidian University Xi Zan 710071, Shaanxi P.R.China and Department of Mathematics Nanping Teachers College Nanping 153000 Fujian P.R.China e-mail: ylliun@163.net