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On groupoids with identity x(xy) = y

Lidija Gora£inova-Ilieva, Smile Markovski and Ana Sokolova

Abstract

The groupoid identity x(xy) = y appears in de�ning several classes of groupoids, such
as Steiner's loops which are closely related to Steiner's triple systems, the class of can-
cellative groupoids with property (2, 5), Boolean groups, and groupoids which exhibit
orthogonality of quasigroups. Its dual identity is one of the de�ning identities for the
variety of quasigroups corresponding to strongly 2-perfect m-cycle systems. In this paper
we consider the following varieties of groupoids: V = V ar(x(xy) = y), Vc = V ar(x(xy) =

y, xy = yx), Vu = V ar(x(xy) = y, (xy)y = xy), Vi = V ar(x(xy) = y, (xy)y = yx).
Suitable canonical constructions of free objects in each of these varieties are given and
several other structural properties are presented. Some problems of enumeration of
groupoids are also resolved. It is shown that each Vi-groupoid de�nes a Steiner quintuple
system and vice versa, implying existence of Steiner quintuple systems of enough large
�nite cardinality.

1. Preliminaries
A groupoid is a pair (G, ·) consisting of a nonempty set G and a binary
operation · on G. Some well known classes of groupoids are semigroups Sem
i.e. groupoids satisfying the identity x(yz) = (xy)z, commutative groupoids
Com with the identity xy = yx, groupoids with unit Un (satisfying the law
(∃x)(∀y) yx = xy = y), etc. We note that some of these classes are de�ned
by identities, i.e. they are varieties of groupoids. The class Un is not a
variety, but it is functionally equivalent ([10]) to the variety of groupoids
determined by the identities xe = ex = x, where e is a nullary operation.
For that reason we will think of Un as being a variety.
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In this paper we are mainly interested in varieties of groupoids satisfying
the identity x(xy) = y and we consider the following varieties:

V = V ar(x(xy) = y),
Ve = V ∩ Un (with extended signature),
Vc = V ∩ Com,
Vu = V ar(x(xy) = y, (xy)y = xy),
Vi = V ar(x(xy) = y, (xy)y = yx).

Suitable constructions of free objects in each of these varieties and several
other structural properties and properties of freeness are presented in next
sections.

The variety
Vcs = V ar(x(xy) = y, xy = yx, x(yz) = (xy)z)

is the variety of Boolean groups (i.e. elementary 2-Abelian groups). Several
results on this variety as well as the variety

Vsem = V ar(x(xy) = y, x(yz) = (xy)z)
are presented in [8].

In the sequel B 6= ∅ will be an arbitrary set and TB will denote the set of
all groupoid terms over B in signature ·. TB is the absolutely free groupoid
with (free) base B where the operation is de�ned by (u, v) 7→ uv. Length
|u| of an element u ∈ TB is de�ned inductively by:

u ∈ B =⇒ |u| = 1, u = xy =⇒ |u| = |x|+ |y|.
Let B(TB) be the boolean of TB, i.e. the set of all subsets of TB. We

de�ne inductively a mapping P : TB → B(TB) by:
t ∈ B =⇒ P (t) = {t}, t = t1t2 =⇒ P (t) = {t} ∪ P (t1) ∪ P (t2).

For instance, P ((xy)(xz)) = {x, y, z, xy, xz, (xy)(xz)} for x, y, z ∈ B.
The cardinal number of a base of a free groupoid F is said to be the

rank of F .

2. Variety V
Free objects in V are de�ned in [4]. Here we state another description.

Let F = {t ∈ TB | (∀u, v ∈ TB) u · uv /∈ P (t)}. Then for all u, v ∈ F we
have uv /∈ F ⇔ (∃w ∈ TB) v = uw). De�ne an operation ∗ on F by

u ∗ v =
{

uv uv ∈ F
w v = uw for some w ∈ F

for each u, v ∈ F.
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The product u ∗ v is well de�ned since v = uw1 = uw2 implies w1 = w2

in the absolutely free groupoid TB.
Theorem 1. (F, ∗) is a free groupoid in the variety V with free base B.
Theorem 2. Every subgroupoid (G, ∗) of (F, ∗) is free as well.

Proof. We show that the set R = (B ∩G) ∪ {uv ∈ G|{u, v} 6⊆ G} is a free
base of (G, ∗).

First, by induction on length of terms we show that R is nonempty and
generating for G. Let t ∈ G such that |t| = min{|s| | s ∈ G}. If t ∈ B,
then t ∈ R. If t = uv, then |u| < |t|, |v| < |t|, so {u, v} 6⊆ G. Hence t ∈ R.
Let uv ∈ G. If {u, v} 6⊆ G then uv ∈ R, else uv = u ∗ v and by inductive
hypothesis is generated by R.

Let (H, ◦) ∈ V and let f : R −→ H be a mapping. De�ne a mapping
f̂ : G −→ H by

f̂(t) =
{

f(t) t ∈ R

f̂(u) ◦ f̂(v) t = uv, u, v ∈ G

Let u, v ∈ G. If uv ∈ G, then f̂(u ∗ v) = f̂(uv) = f̂(u) ◦ f̂(v). Otherwise,
if v = uw, then f̂(u ∗ v) = f̂(w) = f̂(u) ◦ (f̂(u) ◦ f̂(w)) = f̂(u) ◦ f̂(uw) =
f̂(u) ◦ f̂(v).

Hence, the class of free objects in V is hereditary.
We next give two simple properties concerning the rank of a subgroupoid

of a free V-groupoid and the number of all V-groupoids on a �nite set.
Proposition 1. Every free V-groupoid F contains a subgroupoid with an
in�nite rank.

Proof. Let b be an arbitrary element of the free base of F . Then the sub-
groupoid G of F generated by the set {ci | i ∈ N}, where c0 = bb and
ci+1 = (cib)b has an in�nite rank.

Further on we will use the following lemma.
Lemma 1. The number of permutations whose disjoint cycles representa-
tion consists of cycles of length at most 2 on a set with n elements is

[n
2
]∑

k=0

n!
2kk!(n− 2k)!
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Proof. Consider a permutation of the wanted type with f �xed elements
and k disjoint cycles of length 2. Then n = f + 2k and 0 6 k 6 [n2 ].
The �xed elements can be chosen on

(
n

n−2k

)
ways. It can be proved by

induction that the number of di�erent disjoint cycles of length 2 that can
be made over a set with 2k elements is (2k − 1)!!. So, given k, there are(

n
n−2k

)
(2k − 1)!! = n!

2kk!(n−2k)!
such permutations.

Proposition 2. The number of di�erent V-groupoids on a set with n ele-

ments is
( [n

2
]∑

k=0

n!
2kk!(n− 2k)!

)n

.

Proof. Let G be a V-groupoid of cardinality n. Note that xy = z ⇐⇒ xz =
y holds in G and G is left-cancellative, so each row in the multiplication
table of G can be considered as a permutation on the set G whose disjoint
cycles representation consists of cycles of length at most 2. The number
of such permutations is ordered by Lemma 1, and there are n rows in the
multiplication table of G.

For example, there are 64 V-groupoids on the set {1, 2, 3}, and they can
be obtained by suitable arrangements of the strings 123, 132, 321 and 213
as rows of their multiplication tables. Here we have that the corresponding
permutations are (1)(2)(3), (1)(23), (13)(2) and (12)(3).

3. Variety Ve

The variety Ve consists of all V-groupoids with unit. Note that each groupoid
in this variety is involutory i.e. x2 = e is its identity. So, we can use the
free object F from V to obtain a free object in Ve. Namely, let e /∈ F and
let Fe = {t ∈ F | (∀u ∈ TB) u2 /∈ P (t)} ∪ {e}. De�ne an operation ∗ on Fe

by
e ∗ u = u ∗ e = u, e ∗ e = e,

u ∗ v =





uv uv ∈ Fe

e u = v
w v = uw, w ∈ Fe

where u, v ∈ Fe \ {e}.
Theorem 3. (Fe, ∗, e) is a free groupoid in Ve with a free base B.
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Proof. One can check that Fe ∈ Ve. B is a generating set of Fe since B
generates F and b ∗ b = e, for each b ∈ B 6= ∅. Given (G, ◦, 1) ∈ Ve and a
mapping f : B → G, in an inductive way we extend it to a homomorphism
f̂ : Fe → G as follows: f̂(e) = 1, f̂(b) = f(b) for b ∈ B, and f̂(xy) =
f̂(x) ◦ f̂(y).

Theorem 4. Every subgroupoid of (Fe, ∗, e) is free as well.
The proof of this theorem is similar to the proof of Theorem 2. Namely,

given a subgroupoid (G, ∗, e) of (Fe, ∗, e), if |G| = 1 then G = {e} is free
with empty base, and if |G| > 1 then we de�ne the set R as before. R 6= ∅
since it contains the elements t such that |t| = min{|s| | s ∈ G, s 6= e}.
Now, the proof follows the same lines as the proof of Theorem 2.

If the rank of Fe is 1, then Fe is a two-element groupoid. Therefore, the
corresponding property of Theorem 3 for the variety Ve can be stated as
follows.
Proposition 3. Every free Ve-groupoid Fe with a rank greater than one,
contains a subgroupoid with an in�nite rank.

Proof. Let B be the free base of Fe, a, b ∈ B, a 6= b. Then the subgroupoid
of Fe generated by the set {ci | i ∈ N}, where c0 = ab, ci+1 = (cib)b has an
in�nite rank.

Proposition 4. The number of di�erent Ve-groupoids on a set with n

elements, n > 1, is n

( [n
2
]−1∑

k=0

(n− 2)!
2kk!(n− 2− 2k)!

)n−1

.

Proof. If G is a Ve-groupoid with unit e, then x · x = e and x · e = x, for
each x ∈ G. So, in the multiplication table of G, the row for the unit e
is uniquely de�ned, and in the row of any other element x 6= e there are
two �xed elements, obtained from x · x = e and x · e = x. The remaining
n− 2 elements in the row of x correspond to a permutation of order n− 2
whose disjoint cycles representation consists of cycles of length at most 2.
The total number of such permutations is ordered by Lemma 1, there are
n− 1 rows that should be suitably ful�lled, and there are n ways a unit to
be chosen.

For example, exactly 32 distinct Ve-groupoids can be constructed over
the set {1, 2, 3, 4}. Fix a unit, for instance 1. Then, in the multiplication
table of the groupoid, the row and the column for 1 are determined, and
on the main diagonal it is only 1. The row for 2 can be completed by
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choosing the elements 3 and 4 in two di�erent ways (corresponding to the
permutation (3)(4) or the permutation (34)), and so on.

4. Variety Vc

In this section we focus on the variety Vc containing all V commutative
groupoids.
Proposition 5. Any two of the identities x · xy = y, yx · x = y, xy = yx
imply the third one.

Proof. Let x · xy = y and yx · x = y hold. Then
xy = y(y · xy) = y((x · xy) · xy) = yx.

Hence, Vc can be de�ned by any two of the preceding three identities,
and we have that the groupoids in Vc are TS-quasigroups (totally symmetric
quasigroups [3]). Further on we describe the free objects in this variety with
base B.

Let (G, ·) be a groupoid. For x, y, z = xy ∈ G, we say that x and y are
divisors of z. An element is prime if it has no divisors.
Proposition 6. ([2]) A groupoid (C, ·) is a free commutative groupoid with
free base B if and only if

(i) (∀x, y, t, u ∈ C)(xy = tu =⇒ {x, y} = {t, u});
(ii) B is the set of primes in (C, ·) and it generates (C, ·).

Let (C, ·) denote the free commutative groupoid with base B and Fc =
{t ∈ C | (∀u, v ∈ C) u(uv) /∈ Pc(t)}, where the mapping Pc : C → B(C)
is de�ned inductively by: t ∈ B ⇒ Pc(t) = {t}, t = uv ⇒ Pc(t) =
{t} ∪ Pc(u) ∪ Pc(v). Pc is well de�ned by Proposition 6(i). De�ne an
operation ∗ on Fc in the following way:

u ∗ v =
{

uv uv ∈ Fc

w v = uw or u = vw in (C, ·)

Theorem 5. (Fc, ∗) is a free groupoid in the variety Vc with a free base B.

Proof. Let u, v ∈ Fc and u·v /∈ Fc. Then u∗v = w for some w ∈ Pc(u)∪Pc(v)
and since y ∈ Pc(x) ∧ x ∈ Fc =⇒ y ∈ Fc, we get u ∗ v ∈ Fc. Therefore
(Fc, ∗) is a groupoid and it is commutative by construction. Also, for u, v ∈



On groupoids with identity x(xy) = y 45

Fc, if u∗v = uv then u∗(u∗v) = v. If u∗v = w, v = uw (or u = vw) in (C, ·)
then u∗(u∗v) = u∗w = uw = v (or u∗(u∗v) = vw∗(vw∗v) = vw∗w = v).
Hence, (Fc, ∗) ∈ Vc.

If (G, ◦) is a Vc-groupoid and f : B → G a mapping, let f̂ : C → G be
the homomorphism that extends f , i.e. f̂ |B = f . Then f̂ |Fc is a homomor-
phism from Fc to G that extends f .

By using similar ideas as in the proofs of Theorem 2 and Theorem 4, it
can be proved that the property of freeness in Vc is hereditary too:
Theorem 6. Each subgroupoid of a free Vc-groupoid is free as well.
Proposition 7. Every free Vc-groupoid contains a subgroupoid with in�nite
rank.

Proof. De�ne terms b<n> inductively in the following way: b<0> = b,
b<k+1> = b<k> · b<k>. If b is a base element of a free Vc-groupoid, then the
subgroupoid generated by the set {ci | i ∈ N}, where c0 = b<1>, ci+1 =
b<i+1> · b has an in�nite rank.

Let G be a subgroupoid of a free Vc-groupoid and let t be one of its
elements with minimal length. Since {t<n> | n ∈ N} is an in�nite set, we
conclude that every subgroupoid of a free groupoid in Vc is in�nite as well.
The same construction can be applied for V too, i.e. every subgroupoid of
a free V-groupoid is not �nite.

The problem concerning the enumeration of all TS-quasigroups de�ned
on n-element set remains open.
Example 1. Let (G, ·) be a commutative group and de�ne an operation ∗
on G by x ∗ y = cx−1y−1, c ∈ G. Then (G, ∗) ∈ Vc.
Example 2. The following 5-element quasigroup is a TS-quasigroup which
can not be obtained by the construction given in Example 1.

0 1 2 3 4
0 0 2 1 4 3
1 2 3 0 1 4
2 1 0 4 3 2
3 4 1 3 2 0
4 3 4 2 0 1

Note that Vc ∩Un is in fact the variety of Steiner's loops. For construc-
tions of free objects in that variety and some related topics the reader is
referred to [6, 7].
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5. Variety Vu

We now consider the variety Vu de�ned by the identities x(xy) = y, (xy)y =
xy. As it will soon become clear, its groupoids have very simple structure.
Proposition 8. Vu = V ar(xy = y2, x2 · x2 = x)

Proof. By de�nition Vu = V ar(x · xy = y, xy · y = xy) so we get �rst (1)
xy · xy = xy · (xy · y) = y and then (2) y · xy = (xy · xy) · xy = xy · xy = y.
Now (1) and (2) give xy = (y · xy)(y · xy) = y2, and (1) gives x2 · x2 = x.

On the other hand, xy = y2, x2 · x2 = x �rst imply x · xy = x · y2 =
y2 · y2 = y and after that yx = yx · (yx · yx) = yx · (x2 · x2) = yx · x.

As a consequence of the previous proposition we get that in the variety
Vu despite of xy = y2 and x2 ·x2 = x, the following identities hold: x2 · y =
y2, x · y2 = y, x2 · y2 = y. (Namely, x · y2 = x · xy = y =⇒ x2 · y2 = y =⇒
x2 · y = x2 · (x2 · y2) = y2.)

Note that x2 = x is not an identity, since ({0, 1}, ∗) ∈ Vu where 0 ∗ 0 =
1 ∗ 0 = 1, 0 ∗ 1 = 1 ∗ 1 = 0.

Let Fu = {b, b2 | b ∈ B} and de�ne an operation ∗ on Fu by u ∗ b =
b2, u ∗ b2 = b for all b ∈ B, u ∈ Fu. Then we have:
Theorem 7. (Fu, ∗) is a free groupoid with free base B in Vu.

As a result from the last theorem we get that any free groupoid in Vu

with �nite base of cardinality n is itself �nite and of order 2n.
Theorem 8. Every subgroupoid of a free groupoid in Vu is free too.

Proof. Let G be a subgroupoid of a free Vu-groupoid Fu and B1 = B ∩G,
where B is the free base of Fu. Since a ∈ G ⊆ Fu imply either a = b or
a = b2 for some b ∈ B, and y2 · y2 = y is an identity in Vu, it follows that
G \B1 = {b2 | b ∈ B1}. Hence, G is free in Vu with free base B1.

Hence, any subgroupoid of the free groupoid with base B coincides with
the free groupoid with some base B1 ⊆ B and we get the following corollary.
Corollary 1. Let |B| = n. Then the number of all subgroupoids of a free
groupoid of Vu with base B is 2n − 1.

Since �nite Vu-groupoids are exactly those V-groupoids which rows in
its multiplication tables are identical and all elements in a row are di�erent
(x2 = y2 ⇒ x = y in Vu), by Lemma 1 we get that the number of di�erent

Vu-groupoids de�ned on a set with n elements is
[n
2
]∑

k=0

n!
2kk!(n− 2k)!

.
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6. Variety Vi

The variety Vi is an interesting one, because its �nite members are closely
connected with the Steiner quintuple systems. Here �rstly we give a de-
scription of the free objects in Vi, and after that we discuss some aspects of
the mentioned connection with Steiner quintuple systems.

Proposition 9. Besides the de�ning identities
(1) x · xy = y and (2) yx · x = xy,

the following identities hold in Vi:
(3) xy · x = x · yx, (8) x(yx · y) = yx,
(4) xx = x, (9) yx · y = x · yx,
(5) xy · yx = y, (10) xy · (x · yx) = x,
(6) (xy · x)x = y, (11) (xy · x) · xy = yx,
(7) (xy · x)y = x, (12) (xy · x) · yx = xy,

as well as the cancellation laws and anticommutativity.

Proof. For any x, y in a Vi - groupoid we have
(3) xy · x (2)

= (yx · x)x
(2)
= x · yx;

(4) xx
(2)
= xx · x (3)

= x · xx
(1)
= x;

(5) xy · yx
(2)
= xy · (xy · y)

(1)
= y;

(6) (xy · x)x
(2)
= x · xy

(1)
= y;

(7) (xy · x)y
(6)
= (xy · x)((xy · x)x)

(1)
= x;

(8) x(yx · y)
(1)
= (y · yx)(yx · y)

(5)
= yx;

(9) yx · y (1)
= x(x(yx · y))

(8)
= x · yx;

(10) xy · (x · yx)
(3)
= xy · (xy · x)

(1)
= x;

(11) (xy · x) · xy
(3)
= xy · (x · xy)

(1)
= xy · y (2)

= yx;
(12) (xy · x) · yx

(3,9)
= (yx · y) · yx

(3)
= yx · (y · yx)

(1)
= yx · x (2)

= xy.
Also

xy = xz =⇒ y = x · xy = x · xz = z,

yx = zx =⇒ xy = yx · x = zx · x = xz,

xy = yx =⇒ y = x · xy = x · yx
(3,9)
= y · xy = y · yx = x.

From (1), (6) and the cancellation laws we have:

Corollary 2. Any groupoid in Vi is a quasigroup.
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Note that in any groupoid of Vi we have x · yx = xy · x = yx · y = y · xy
by (3) and (9). Let α be the congruence on TB generated by the preceding
equalities. We denote by uvu the class u(vu)/α and use the same operation
symbol for TB/α as we did for TB. Also, we shall sometimes continue using
the notions �term� and �subterm� for the elements of TB/α.

Let Fi ⊆ TB/α be the set of all terms that do not contain as a subterm
a left-hand side of (i)− (viii):

(i) ss = s, (v) s · sts = ts,
(ii) s · st = t, (vi) st · sts = s,
(iii) st · t = ts, (vii) sts · s = t,
(iv) st · ts = t, (viii) sts · st = ts,

where s, t ∈ TB.
The next proposition justi�es the de�nition of the set Fi as well as the

use of the notions �term� and �subterm�.

Proposition 10. If the term u(vu) ∈ TB for some u, v ∈ TB does not
contain as a subterm a term of the following forms: ss, s · st, st · t, st · ts,
s·s(ts), s·(st)s, s·(ts)t, s·t(st), st·s(ts), st·(st)s, st·(ts)t, st·t(st), (st)s·s,
s(ts) · s, t(st) · s, (ts)t · s, (st)s · st, s(ts) · st, t(st) · st, (ts)t · st, then the
same holds for the terms (uv)u, (vu)v and v(uv).

Proof. By checking all the possibilities it is easy to see that (vu)v does not
contain such a subterm. Namely, each assumption that the term has such
a subterm, means that the term is of the given form (having in mind that
the statement holds for u, v and vu) which always leads to contradiction for
u, v, vu or u(vu). For instance, (vu)v = (st)s · st =⇒ u(vu) = s · (st)s. In
the same way, it can be shown in all the cases for uv and then �nally for
v(uv) as well.

De�ne an operation ∗ on Fi in the following way. For u, v ∈ Fi, if
uv ∈ Fi then u ∗ v = uv. Otherwise, if uv has the form of a left-hand side
of some of (i) - (viii) de�ne u ∗ v to be the corresponding right-hand side
of the identity, except in the case of (iii) i.e. when u = wv, then we put
u ∗ v = v ∗ w. It can be shown, by induction on length of terms, that ∗ is
well de�ned. Note that, by the previous proposition if sts ∈ Fi then also
ts ∈ Fi.

Theorem 9. (Fi, ∗) is free in Vi with free base B.

Proof. First, we show that (Fi, ∗) satis�es (1). Let u, v ∈ Fi. If uv ∈ Fi

then u ∗ (u ∗ v) = u ∗ (uv)
(ii)
= v. Otherwise, we consider several cases.
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(i′) u = v : u ∗ (u ∗ v) = u ∗ (u ∗ u)
(i)
= u ∗ u

(i)
= u = v;

(ii′) v = ut : u ∗ (u ∗ v) = u ∗ (u ∗ ut)
(ii)
= u ∗ t = ut = v;

(iii′) u = tv and
0. vt ∈ Fi : u ∗ (u ∗ v) = tv ∗ (tv ∗ v)

(iii)
= tv ∗ (v ∗ t) = tv ∗ vt

(iv)
= v;

1. v = t is impossible case since we would have u = tv = tt /∈ Fi;
2. t = vp : u ∗ (u ∗ v) = tv ∗ (v ∗ t) = vpv ∗ (v ∗ vp)

(ii)
= pvp ∗ p

(vii)
= v;

3. v = pt : u ∗ (u ∗ v) = tv ∗ (v ∗ t) = tpt ∗ (pt ∗ t) = tpt ∗ (t ∗ p) =

tpt ∗ tp
(viii)
= pt = v;

4. v = qs, t = sq;
5. t = vpv;
6. v = pq, t = pqp;
7. v = tpt;
8. v = pqp, t = pq.
All the cases 4.-8. are impossible since they lead to u = sq · qs, u =

vpv · v, u = pqp · pq, u = t · tpt, u = pq · pqp, respectively, contradicting
u ∈ Fi.
(iv′) u = tp, v = pt : u ∗ (u ∗ v) = tp ∗ (tp ∗ pt)

(ii)
= tp ∗ p

(iv)
= p ∗ t = pt = v;

(v′) v = utu : u ∗ (u ∗ v) = u ∗ (u ∗ utu)
(v)
= u ∗ tu = utu = v;

(vi′) u = tp, v = tpt : u ∗ (u ∗ v) = tp ∗ (tp ∗ tpt)
(vi)
= tp ∗ t = tpt = v;

(vii′) u = vtv : u ∗ (u ∗ v) = vtv ∗ (vtv ∗ v)
(vii)
= vtv ∗ t = v;

(viii′) u = tpt, v = tp : u ∗ (u ∗ v) = tpt ∗ (tpt ∗ pt) = tpt ∗ pt = tp = v.
So we have shown that (Fi, ∗) satis�es (1) and continue for (2). If

u, v ∈ Fi and u ∗ v = uv ∈ Fi, then (u ∗ v) ∗ v = uv ∗ v = v ∗ u. Otherwise,
we have the cases:
(i′′) u = v : (u ∗ v) ∗ v = (u ∗ u) ∗ u = u ∗ u = v ∗ u;
(ii′′) v = ut, and in this case tut ∈ Fi i.e. no other case is possible and we
get (u ∗ v) ∗ v = (u ∗ ut) ∗ ut = t ∗ ut = tut = utu = ut ∗ u = v ∗ u;
(iii′′) u = tv : (u ∗ v) ∗ v = (tv ∗ v) ∗ v = (v ∗ t) ∗ v and there are several
possibilities:

0. vt ∈ Fi(vtv ∈ Fi) : (u ∗ v) ∗ v = vt ∗ v = vtv = v ∗ u;
1. v = t is impossible case;
2. t = vp : (u ∗ v) ∗ v = (v ∗ t) ∗ v = (v ∗ vp) ∗ v = p ∗ v = pv since

u = tv = vpv ∈ Fi, so pv ∈ Fi, and on the other hand v ∗ u = v ∗ vpv = pv;
3. v = pt : (u ∗ v) ∗ v = (v ∗ t) ∗ v = (pt ∗ t) ∗ pt = (t ∗ p) ∗ pt and

since u = tv = tpt ∈ Fi also tp ∈ Fi and (t ∗ p) ∗ pt = tp ∗ pt = p and
v ∗ u = pt ∗ tpt = p;

4. v = pq, t = qp;
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5. t = vpv;
6. v = pq, t = pqp;
7. v = tpt; 0
8. v = pqp, t = pq.
All the cases 4.-8. are impossible.

(iv′′) u = pt, v = tp : (u ∗ v) ∗ v = (pt ∗ tp) ∗ tp = t ∗ tp = p = tp ∗ pt = v ∗u;
(v′′) v = upu : (u∗v)∗v = (u∗upu)∗upu = pu∗upu = p = upu∗u = v ∗u;
(vi′′) u = pt, v = ptp : (u∗v)∗v = (pt∗ptp)∗ptp = p∗ptp = tp = ptp∗pt =
v ∗ u;
(vii′′) u = vpv : (u ∗ v) ∗ v = (vpv ∗ v) ∗ v = p ∗ v = pv = v ∗ vpv = v ∗ u;
(viii′′) u = ptp, v = pt : (u∗v)∗v = (ptp∗pt)∗pt = tp∗pt = p = pt∗ptp =
v ∗ u.

Thus we have shown that Fi ∈ Vi.
By induction on length of terms one can show that B is a base for Fi.

Namely, B ⊆ Fi and if uv ∈ Fi then uv = u ∗ v is generated by B if u and
v are.

Let (G, ◦) ∈ Vi and f : B → G. De�ne a mapping f̂ : Fi → G
inductively by f̂(b) = f(b), b ∈ B and f̂(uv) = f̂(u) ◦ f̂(v) for uv ∈ Fi \B.
We show that f̂ is a homomorphism and an extension of f . If u, v ∈ Fi

and uv ∈ Fi the statement is clear by de�nition of f̂ . Otherwise one of
the same eight cases might occur. We check here only the third case when
u = tv, because the others can be checked as earlier. Now, f̂(u ∗ v) =
f̂(tv ∗v) = f̂(v ∗ t) which by induction on length of u equals to f̂(v)◦ f̂(t) =
(f̂(t) ◦ f̂(v)) ◦ f̂(v) = f̂(tv) ◦ f̂(v) = f̂(u) ◦ f̂(v).

Note that |B| = 1 =⇒ |Fi| = 1 and |B| = 2 =⇒ |Fi| = 5. It is clear
that in each Vi-groupoid every two distinct elements generate a subgroupoid
with �ve elements. In fact, Vi is the class of cancellative groupoids with
property (2,5) ([11]). (A class K is said to have the property (k, n) if every
algebra in K generated by k distinct elements has exactly n elements.)

Let (G, ·) belongs to Vi and de�ne a groupoid by x ∗ y = yx, x, y ∈ G.
It is easy to verify that the quasigroup (G, ∗) is an orthogonal mate of G.

Let Fi be a free groupoid in Vi, such that its free base contains three
distinct elements a, b, c. Then the subgroupoid of Fi generated by the set
{di | i ∈ N}, where d0 = ab and d3i+1 = (d3i·c)a, d3i+2 = (d3i+1·b)c, d3i+3 =
(d3i+2·a)b, for i ∈ N, has an in�nite rank. Hence, we get the following result.

Proposition 11. Every free Vi-groupoid with rank greater than two has a
subgroupoid with an in�nite rank.
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So, unlike the free Vi-groupoids with rank one or two, the free Vi-
groupoids with rank greater than two are in�nite. Also, apart from the
groupoids of the previous varieties, there is no Vi-groupoid with n 6 20
elements, n 6= 1, 5. Here we present the table of a Vi-groupoid with 21
elements.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19
1 3 1 4 0 2 9 12 10 11 5 7 8 6 17 20 18 19 13 15 16 14
2 4 3 2 1 0 11 10 12 9 8 6 5 7 20 17 19 18 14 16 15 13
3 2 4 0 3 1 12 9 11 10 6 8 7 5 18 19 17 20 15 13 14 16
4 1 0 3 2 4 10 11 9 12 7 5 6 8 19 18 20 17 16 14 13 15
5 7 13 15 16 14 5 8 0 6 17 18 19 20 1 4 2 3 9 10 11 12
6 8 15 13 14 16 7 6 5 0 19 20 17 18 2 3 1 4 11 12 9 10
7 6 16 14 13 15 8 0 7 5 20 19 18 17 3 2 4 1 12 11 10 9
8 5 14 16 15 13 0 7 6 8 18 17 20 19 8 1 3 2 10 9 12 11
9 11 17 18 19 20 13 14 15 16 9 12 0 10 5 6 7 8 1 2 3 4
10 12 19 20 17 18 14 13 16 15 11 10 9 0 6 5 8 7 3 4 1 2
11 10 20 19 18 17 15 16 13 14 12 0 11 9 7 8 5 6 4 3 2 1
12 9 18 17 20 19 16 15 14 13 0 11 10 12 8 7 6 5 2 1 4 3
13 15 9 10 11 12 17 20 18 19 1 2 3 4 13 16 0 14 5 7 8 6
14 16 11 12 9 10 18 19 17 20 3 4 1 2 15 14 13 0 7 5 6 8
15 14 12 11 10 9 19 18 20 17 4 3 2 1 16 0 15 13 8 6 5 7
16 13 10 9 12 11 20 17 19 18 2 1 4 3 0 15 14 16 6 8 7 5
17 19 5 7 8 6 1 4 2 3 13 15 16 14 9 12 10 11 17 20 0 18
18 20 6 8 7 5 4 1 3 2 16 14 13 15 11 10 12 9 19 18 17 0
19 18 7 5 6 8 2 3 1 4 14 16 15 13 12 9 11 10 20 0 19 17
20 17 8 6 5 7 3 2 4 1 15 13 14 16 10 11 9 12 0 19 18 20

The most interesting characteristic of the Vi variety is due to its (2,5)
property and re�ects the connection between Vi and the Steiner quintuple
systems.

Let (Q, ·) be an n-element quasigroup in Vi. Consider the set Q̂ =
{K | (K, ·) is a 5-element subquasigroup of (Q, ·)}. It follows by the (2,5)
property that for any two elements a, b ∈ Q there exists a unique K in Q̂
such that a, b ∈ K. Hence, Q̂ is a 2-(n,5,1) design, i.e. a Steiner quintuple
system.
Example 3. From the preceding 21-element quasigroup we have the fol-
lowing Steiner quintuple system:

{0, 1, 2, 3, 4},
{0, 5, 6, 7, 8}, {0, 9, 10, 11, 12}, {0, 13, 14, 15, 16}, {0, 17, 18, 19, 20},
{1, 5, 9, 13, 17}, {1, 6, 12, 15, 18}, {1, 7, 10, 16, 19}, {1, 8, 11, 14, 20},
{2, 5, 11, 15, 19}, {2, 6, 10, 13, 20}, {2, 7, 12, 14, 17}, {2, 8, 9, 16, 18},
{3, 5, 12, 16, 20}, {3, 6, 9, 14, 19}, {3, 7, 11, 13, 18}, {3, 8, 10, 15, 17},
{4, 5, 10, 14, 18}, {4, 6, 11, 16, 17}, {4, 7, 9, 15, 20}, {4, 8, 12, 13, 19}.
On the other hand, let S = {B1, B2, . . . , Bk} be a Steiner quintuple

system. Clearly, for each i ∈ {1, 2, . . . , k}, a Vi-quasigroup (Bi, ∗i) can be
constructed. Now, put Q =

⋃
Bi and ∗ = ∪∗i. For arbitrary a, b ∈ Q there
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is a unique i, such that a and b both belong to Bi. By the construction
of ∗, a ∗ (a ∗ b) = a ∗i (a ∗i b) = b, and similarly the other identity can be
checked, so (Q, ∗) is in Vi.

We have shown that every Vi-quasigroup induces a Steiner quintuple
system and vice versa. Note that the �rst procedure was deterministic,
unlike the second one. Namely, on each 5-element set six di�erent Vi-
quasigroups can be de�ned, which means that for one Steiner quintuple
system {B1, B2, . . . , Bk}, 6k di�erent Vi-quasigroups can be constructed, in
the way presented above. By the preceding discussion we have proved the
following result.
Theorem 10. Each n-element Vi-quasigroup give rise to an n-element
Steiner quintuple system, i.e. 2−(n, 5, 1) design, and each n-element Steiner
quintuple system give rise to 6n di�erent n-element Vi-quasigroups.

Let (Q, ·) and (Q′, ∗) be isomorphic Vi-quasigroups and S and S′ be
their corresponding Steiner quintuple systems. Let f : Q −→ Q′ be an
isomorphism. Since f preserves subquasigroups and for any subquasigroup
(K ′, ∗) of (Q′, ∗) there is a unique subquasigroup (K, ·) of (Q, ·) satisfying
f(K) = K ′, f is an isomorphism from S to S′.

For the opposite, let f be an isomorphism from a Steiner quintuple
system S = {B1, . . . , Bk} to a Steiner quintuple system S′ = {B′

1, . . . , B
′
k}

and Q =
⋃

Bi, Q′ =
⋃

B′
i. Let (Q, ·) be one of the quasigroups arising from

S. De�ne an operation ∗ in Q′ by

a ∗ b = c ⇐⇒ f−1(a) · f−1(b) = f−1(c.)

Then (Q′, ∗) is a quasigroup arising from S′ and f is an isomorphism from
(Q, ·) to (Q′, ∗).

Denote by FV i the class of all �nite Vi-quasigroups, and by S the class
of all Steiner quintuple systems. An equivalence on FV i can be de�ned by

(Q, ·) α (Q′, ∗) ⇐⇒ Q̂ = Q̂′,

where Q̂ is de�ned as before. The reasoning above leads us to the following
result.
Theorem 11. There is one to one correspondence between FV i/α and S.
Corollary 3. A necessary condition for existence of n-element Vi-quasigroup
is n = 20k + 1 or n = 20k + 5 for some nonnegative integer k.

Proof. Given an n-element Vi-quasigroup, we construct an n-element Steiner
quintuple with b blocks. Since there are x = n(n − 1)/2 di�erent pairs of
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elements and each block contains y = 5 · 4/2 = 10 such pairs, we have
b = x/y = n(n − 1)/20. On the other hand, n = 4m + 1 where m is the
number of occurrences of �xed element in the blocks.

We do not know whether for each n such that n = 20k+1 or n = 20k+5
there exists an n-element Vi-quasigroup.

Since a direct product of Vi-quasigroups is a Vi-quasigroup, we have
possibility to construct Steiner quintuple systems of enough large �nite
cardinality. It follows from the next property:
Corollary 4. The existence of n-element and m-element Steiner quintuple
systems implies existence of nm-element Steiner quintuple system.
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