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Hyper I—-algebras and polygroups

Mohammad M. Zahedi, Lida Torkzadeh and Radjab A. Borzooei

Abstract

In this note first we give the notion of hyper I-algebra, which is a generalization of
BCI-algebra and also it is a generalization of hyper K-algebra. Then we obtain some
fundamental results about this notion. Finally we give some relationships between the
notion of hyper I-algebra and the notions of hypergroup and polygroup. In particular
we study these connections categorically. In other words by considering the categories of
hyper I-algebrs, hypergroups and commutative polygroups, we give some full and faithful

functors.

1. Introduction

The hyperalgebraic structure theory was introduced by F.Marty [8] in 1934.
Imai and Iseki |7] in 1966 introduced the notion of a BC'K-algebra. Re-
cently [2], [9] Borzooei, Jun and Zahedi et.al. applied the hypersrtucture to
BC K-algebras and introduced the concepts of hyper K-algebra which is a
generalization of BCK-algebra. In [5] 1988 Dudek obtained some connec-
tions between BC'I-algebras and (quasi)groups. Bonansinga and Corsini [1]
in 1982 introduced the notion of quasi-canonical hypergroup, called poly-
group by Comer [3]. Now in this note we consider all of the above referred
papers and introduce the notion of hyper I-algebra and then we obtain some
results as mentioned in the abstract.

2. Preliminaries

By a hyperstructure (H, o) we mean a nonempty set H with a hyperoperation
o, i.e. afunction o from H x H to P(H) \ {0}.
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Definition 2.1. A hyperstructure (H, o) is called hypergroup if:
(1) (xoy)oz=wxo(yoz) forall z,y,z€ H,
(i) acoH=Hoa=H foralla€cH,
(i.e. for all a,b € H there exist ¢,d € H such that b€ coa and b € aod).

Definition 2.2. A hyperstructure (H,o) is called quasi-canonical hyper-
group or polygroup if it satisfies the following conditions:
(1) (xoy)oz=wxo(yoz) forallz,y z€ H (associative law),
(7i) there exists e € H such that eox ={x} =xoe forallx € H
(identity element),
(i9i) for all x € H there exists a unique element ' € H such that
e€ (vox)(a' ox), we denote 2’ by x~!
(inverse element),
(iv) forall x,y,z € H we have: z € xoy = 2 € zoy ! =y ca oz
(reversibility property).

If (H,0) is a polygroup and z oy = yox holds for all z,y € H, then we
say that H is a commutative polygroup.
If AC H, then by A™! we mean the set {a7!:a € A}.

Lemma 2.3. Let (H,o) be a polygroup. Then for all x,y € H, we have:

(i) @) =gz,
(ii) e=et,
(ii1) e is unique,

(iv) (zoy)t—ytoat,

Proof. See [4]. O
Lemma 2.4. Let (H,o) be a polygroup. Then (AoB)oC = Ao (BoC()
for all nonempty subsets A, B and C of H. O

3. Hyper [-algebra

Definition 3.1. A hyperstructure (H,o) is called a hyper I-algebra if it
contains a constant 0 and satisfies the following axioms:

(HK1) (zoz)o(yoz)<zoy,

(HK2) (zoy)oz=(xoz)oy,

(HK3) z <z,

(HK4) z <y, y<xz =z =1y,

(HI5) < 0= 2=0,
for all z,y,z € H, where x < y is defined by 0 € x oy and for every
A,BC H, A< Bisdefined by da € A, 3b € B such that a < b.
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A simple example of a hyper [-algebra is a BCI-algebra (H,*,0) with
the hyperopration o defined by zoy = {z*y}. Also it is not difficult to see
that a hyper I-algebra is a generalization of hyper K-algebras considered
in [2] and [9]. The following example shows that there are hyper I-algebras
which are not a hyper K-algebras.

Example 3.2. Let H = {0,1,2}. Then the following tables show the hyper
I-algebra structures on H.

ol 0 1 2 ol 0 1 2
0110} {0} {2} 0| {0} {01} {2}
Li{1y {0y {2} Ly {0y {2}
21{2} {2} {02} 20 {2} {0} {012}

Note that none of the above hyper [-algebras is not a hyper K-algebra,
because 0 £ 2. I

Theorem 3.3. Let (H,0,0) be a hyper I-algebra. Then for all z,y,z € H
and for oll non-empty subsets A, B and C of H the following hold:

(i) zoy<z<=uzxoz<y, (vi) A<A,

(1) (zoz)o(roy)<yoz, (vit) (AoC)o(AoB)< BoC,
(t9it1) zo(zoy) <y, (viii) (AoC)o(Bo(C) < AoB,
(tv) (AoB)oC=(Ao()oB, (izr) AoB<C& Ao(C < B.

(v) ACB = A<B,
Proof. The proof is similar to the proof of Proposition 2.5 of [2]. O

Example 3.4. Let H = {0, 1,2}. Then the following table shows a hyper
I-algebra structure on H such that x oy £ x, because 102 =2 £ 1.

o| 0 1 2

0f{oy {0} {2}
L {1} {0,1} {2}
21{2p {2} {0}

Lemma 3.5. Let H be a hyper I-algebra. Then for all x in H we have:
(i) zo0<x,
(11) z€xo.

Proof. (i) We have 0 € 000 C (xoxz)o0 = (ro00)ox. So there exists
t € x o0 such that 0 € tox. Thus ¢t < x, and hence x 00 < z.
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(73) By (i) 200 < z. So there exists ¢t € x 0 0 such that ¢ < z. Since
t € x00, then 200 < t and hence x ot < 0, by Theorem 3.3(i). Thus there
exists h € x ot such that h < 0, so by (HI5) we have h = 0. Therefore
0 € xot and hence x < t. Since t < z, then by (HK4) we get that t = .
Therefore x € x 0 0. O

Definition 3.6. Let (H,0,0) be a hyper [-algebra. We define
HY"={xcH|0c0ox}.
Note that H™ # () because 0 € 00 0.

Proposition 3.7. Let (H,0,0) be a hyper I-algebra. Then (H,0,0) is a
hyper K-algebra if and only if toy C HT, for all x,y in HT.

Proof. Straightforward. O

Example 3.8. (i) Let H = {0,1,2}. Then the following tables show two
different hyper I-algebra structures on H:

o| 0 1 2 o| 0 1 2
0|10} {0} {2} 0110} {0} {2}
L1y {01} {2} L1} {01} {0,2}
21{zt {2} {01} 2142} {2} {0,L,2}

We can seen that H+ = {0,1} and it is a hyper K-algebra.

(i) The following table shows a hyper I-algebra structure on H = {0, 1,2},
where HT = {0,1} and it is not a hyper K-algebra, since 1 € HT but
lol € HT.

o| 0 1 2
01{0} {0} {2}
{1} {0,2} {0,2}
21424 {2 {02}

Theorem 3.9. Let (H,o,¢) be a commutative polygroup. Then (H,o,e) is
a hyper I-algebra, where the hyperopration o is defined by x oy =zxoy '
Furthermore we have:

(i) H* ={e},

(ii) eo(eox)==a forallxz in H.
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Proof. (HK1) Let A = (:Boy) (zoy). Then by considering Lemma 2.3 we
have A = (zoy) o (z0v) U aob= U aob ! = U aob L.

aEzoy71 aEzoy71
bezoy*1 b*leyoz*1

acxoy
bezoy

Thus, by Lemma 2.4, we get that
A=(zoyo(yoz ) =zo(y to(yor ) =zo(ly
By Lemma 2.3 we have

Ao (zo2) Uaob— U aob™t=Ao(zoz™t).

a€A acA
bexoz bczoz—1

Loy, hence eoz7t C (y~Ltoy)oz7t so

Since e € y~
zo(eoz ) Cao((yoy)ozl)= Al
Thus we get that

(xoz Ho(zoz ™) = (zo(eoz™))o(zox™') C Ao(zoa™t) = Ao (z02).

Now, by Definition 2.2 and Lemma 2.4 we have

Toz)or)

=zo(z7lo(zoz™l))=(rozl)o(zoz™) C Ao (x02).

xo((z

Since e € 271 oz and e € x oz}, then we have e € Ao (z ¢ 2), s0
A <z oz Therefore (xoy)o(zoy) <z oz

(HK2) By Definition 2.2 and hypothesis we get that (zoy)oz = (voy 1)oz =
(woy ozt =axo(y~toz ™) =xo(z7loy™t) = (zoz 7)oyl = (z02)0y.
Therefore (HK2) holds.

(HK3) Since e € z o2~ = o 2 we conclude that < z and hence (HK3)
holds.

(HK4) To show that (H K4) holds, we prove that < y implies that z = y.
Let # < y. Then e € xoy = x oy~ !. By Definition 2.2 (vi) we have
y€elox=ecox={x}, thusy = x.

(HI5) Let < e. Then by the proof of (HK4) we get that e = x, and hence
(HI5) holds.

Therefore (H,o,e) is a hyper I-algebra.
The proofs of the statements (i) and (ii) are routine. O
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Category of commutative polygroups: CPG

Consider the class of all polygroups. For any two polygroups (Hi,o1,e1)
and (Hs,09,€2) we define a morphism f : H; — Hj, as a strong homo-
morphism between H; and Hy (i.e. f(zoyy) = f(z)os f(y) Va,y € H),
which satisfies f(e1) = es. Then it can easily checked that the class of all
polygroups and the above morphisms construct a category which is denoted
by CPG.

Remark 3.10. It is well known that if f € CPG(Hy, Hs), then f(z™!) =
(f(z))~! for all x € Hy.

Category of hyper [-algebras: ZALG

Consider the class of all hyper I-algebras. For any two I-algebras (Hy,01,01)
and (Hag,09,02) we define a morphism f : H; — Hs as a strong homo-
morphism between H; and Ha, which satisfies the condition f(01) = 0s.
Then it can easily checked that the class of all hyper I-algebras and the
above morphisms construct a category which is denoted by Z.ALG.

Theorem 3.11. F : CPG— ZALG is a faithful functor, where F(H,o,e) =
(H,o,e) and F(f)=f forall He CPG and f € CPG(Hi,H>).

Proof. Let (H,o,e) be a polygroup. Then by Theorem 3.9 (H,o,e) is a hy-
per I-algebra, hence F(H) is an object in ZALG. Now let f € CPG(H1, Hs)
we prove that F'f € ZALG(F(Hy), F(H2)). By Theorem 3.9 we have

Ff(zory) = f(zory) = flzory™") = f(a) o2 fly™")
= f(@) o2 (f(y) ™" = f(=x) 02 f(y) = (Ff)(x) o2 (Ff)(y).

Now it is easy to see that F' satisfies to the other conditions of a functor.
Since F' maps CPG(Hi, Hs) injectively to ZALG(FHy, FHj), hence F is
faithful. O

Problem: Is the functor F (defined in Theorem 3.11) full embedding ?

Definition 3.12. A hyperstructure (H,o) is called a semipolygroup if it
satisfies the following axioms:
(i) (roy)oz=xzo(yoz) forall z,y,z€ H,
(79) there exists e € H such that eox = {z} =xoce forallx € H,
(73i) for all z € H there exists a unique element 2’ € H such that

e € (zoz')N(a' ox), we denote 2’ by z71.
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Example 3.13. Let H = {0,1,2} and the hyperopration o on H is given
by the following table:

ol 0 1 2

O] {0p {1} {2}
Uiy {2p {01}
2| {2} {0,1} {1,2}

Then H is a semipolygroup, but it is not a polygroup because the reversibil-
ity does not hold. Indeed, 1 € 102 = {0,1} but 1 ¢ 10271 =101 = {2}. O

Lemma 3.14. Any group can be cosidered as a semipolygroup. O

Lemma 3.15. Let (H,o,0) be a hyper I-algebra. If HT # {0}, then
0o (0ox)+#x for all nonzero elements v € H™.

Proof. Let © # 0bein HT. Then 0 € (0oz). Thus 0 € (000) C 00 (0ox),
hence 0 € 0o (0o x). Since x # 0,80 0o (0ox) # x. O

Note that the following example shows that if H* = {0}, then it may
be that the equality 0o (0o x) = x holds or does not hold.

Example 3.16. (i) Let H = {0,1,2}. Then the following table shows a
hyper I-algebra structure on H such that H™ = {0}, while 0o (002) =
Dol=1#2.

o| 0 1 2
Of{0} {1} {1}
Li{1p {01} {01}
21{zy {1} {012}

(73) The following table shows a hyper I-algebra structure on H = {0, 1,2}.
Then HT = {0} and 0o (0oz) =z forall z € H.

o ‘ 0 1 2

o {o} {2} {1}
{1} {o,1} {2}
21 {2} {1,2} {o,1}

Theorem 3.17. Let (H,o0,0) be a hyper I-algebra. If H'T = {0} and
0o(Ooz) =z forall x € H, then (H,®,0) is a commutative semipolygroup,
where the hyperopration © is defined by x @y =z0(00oy).

Proof. By Theorem 3.3(iv) we get that Oy = xo(0oy) = (0o(0ox))o(0oy) =
(0o (0oy))o(0oxz)=yo(0ox)=y®x, namely (H,®) is commutative.
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Now we show that (H,®) is associative. We have

(zOy) ©z =(xo(0oy))o(002)

=(xo(00z))o(0oy) by Theorem 3.3 (iv)

=((0o(0oxz))o(0oz))o(0oy) by hypothesis

=((0o(0o0z))o(0ox))o(0oy) by Theorem 3.3 (iv)
(zo(0oy))o(0ox) by Theorem 3.3 (iv)

=(z0y) 0w

=z0(z0vy) by commutativity

=20 (y©=2) by commutativity

Thus (H,®) is associative.

Now, we prove that 0o x has only one element for all z € H. On
the contrary, let x1,z2 € 0o x and x1 # x2. Then by hypothesis we have
Ooxy C0o0(0ox) =, hence 0ox; =z and similarly 0o x9 = x. Thus
0Oo(0oxzy) =21 and Ooxy; = x imply that 0oz = x1. Since z9 € 0oz,
hence x1 = x2 which is a contradiction.

Since 0oz has only one element for all x € H, hence 0 € 000, thus we
conclude that 0 o 0 = 0. By Theorem 3.3 (iv) and hypothesis we get that
z00=(0o(0ox))o0=(000)o(0ox)=00(0ox)=x. Hencexo( = z.
Therefore 0 @z =20 =20(000) =200 =2z. So (H,®) satisfies in
condition (i7) of Definition 3.12.

Since HT = {0} hence 0 ¢ 0oz for all z # 0. Therefore for all
0# x € H there exists 0 # 2’ € H such that 0oz = 2’. By Theorem 3.3
(vi) we have 0 € (Oox)o(0oz)=12"0(0oz)=2"©x =2z Thus the
condition (#77) of Definition 3.12 holds. Therefore (H,®) is a commutative
semipolygroup. O

Theorem 3.18. Let (H,0,0) be a hyper I-algebra such that Ht = {0}.
If 0o(Oox)=2a and xox =0 hold for all x € H, then (H,®,0) is an
abelian group.

Proof. By considering Theorem 3.17 it is sufficient to show that z oy
has only one element for all z,y € H. On the contrary let z; # x3 and
x1,22 € x oy. Then by the proof of Theorem 3.17 we conclude that there
are ',y € H such that 0oz =2/, Ooy =19, 0oz’ =2 and 0oy =v.
By (HK2) and xox =0 we get that ¥y =0oy = (zoz)oy= (zoy)oux.
Since x1,79 € oy, hence 1oz =y and 29 0x = 3. Thus 3y ox; =
(ryox)ox; = (r1ox)ox =00z =2 and also y oz9 = . By (HK2)
and hypothesis we get that (y o2’)oz1 = (¥ ox1) o2/ = 2’ 02’ = {0},
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similarly (y' oa’)oxe = {0}. Since 0 € (y/ox’)ox; so there exists ¢ € y' oa’
such that 0 € tox;. By (HK2) we have (tozj)ot = (tot)ox; =00x;.
Since 0 € tox; hence 0ot C 0oxy. By the proof of Theorem 3.17 0oz
has only one element so we get that 0 ot = 0 o 7. By hypothesis we
have t = 00 (0ot) = 00 (0ox1) = x1. Therefore z1 € y' o 2’/. Since
(y oa')oxg = 0, then x1 0z = 0 and similarly x2 o z; = 0. Thus
(HK4) implies that z1 = 2, which is a contradiction. So z oy has only
one element. Therefore Theorem 3.17 implies that (H,®,0) is an abelian
group. [

Since every group is a polygroup hence (H,®) in Theorem 3.18 is a
commutative polygroup. The following example shows that in Theorem
3.18 the condition x ox =0 for all x € H is necessary.

Example 3.19. Let H = {0,1,2} be a hyper I-algebra, in which the
hyperopration o is given by the following table:

o| 0 1 2
offoy {2} {1}
L1}y {01y {2}
21{2} {12} {01}

Then HT = {0}, 0o (0ox) =z forallz € H and 101 # 0. But (H,®,0)
is not a group since 1 ® 2 = {0, 1}. O

Note that the above example also shows that if we omit the condition
xoxz =0, in Theorem 3.18, then (H,®) is not necessary to be a polygroup.
Because the reversibility property does not hold. Indeed, in this example
we have 1 € 102 =10(002) =101={0,1},but 1 ¢ 1027 =
lo(0o2 Y =10(00l)=102=2.

Theorem 3.20. Let (H,0,0) be a hyper I-algebra. If HY = {0} and
Oo(Oox)=u=x forallxz € H, then (H,®,0) is a commutative hypergroup.

Proof. The proof of Theorem 3.17 shows that (H,®,0) is commutative
and associative. Let a,b € H be arbitrary. By the proof of Theorem
3.17 there exists ' € H such that 0 € ¢ ®a and b ® 0 = b. Thus
bebO0CLO (d®a)=(b®da)®a. So there exists t € b©® a’ such that
betGa=a®t, namely a© H=H Ga=H.

Hence (H,®,0) is a commutative hypergroup. O

Notation: Let Z"ALG be a subcategory of ZALG in which for every
object H we have H™ = {0} and 0o (0ox) =0 for all z € H. Similarly, let
CHG be the category of commutative hypergroups with strong morphisms.
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Theorem 3.21. G : ZT ALG— CHG is a faithful functor, where G(H,o,0)
= (H,,0) for HeI"ALG and G(f) = f for f €I ALG(H1, Hs).

Proof. Let (H,o,0) be an object in Z"ALG. Then by Theorem 3.20 we
have G(H) = (H,©®,0) is an object in CHG.

Let f € ZTALG(Hy, Hs). We prove that Gf = f € CHG(G(H1),G(H>)).
By Theorem 3.20 we have

Gfxory) = f(x©1y) = f(xo1 (0101y)) = f(x) o2 (f(01) o2 f(y))
= f(x) 02 (0202 f(y)) = f(z) ©2 f(y) = (Gf)(x) ©2 (Gf)(y).

So it is easy to see that G satisfies to the other condition of a functor.
Since G maps ZTALG(Hy, Hy) injectively to CHG(GHy,GHz), hence G is
faithful. ]

Remark 3.22. Let F :CPG— ZALG and G :ITALG— CHG be the
functors which are defined in Theorem 3.11 and 3.21 respectively. By The-
orem 3.9, we have H™ = {0} and 0¢ (0ox) =z for all H € F(CPG) and
x € H. Hence F(CPG) C ItALG. Since 10Oy = x0(00y) = x0(0oy~!) =
zo(y V) =xo(y )P =x0y. Wegetthat GF(H)=G(FH)=G(H) =
H for all H € CPG and (GF)(f) = G(Ff) = G(f) = f for all
f € CPG(Hy, Hy). Therefore GF = 1.

Let CSPG be the category of commutative semipolygroups. Then
f € CSPG((H1,01,01), (H2,02,02)) if and only if f(zo1y) = f(z)o2 f(y)
and f(el) = €9.

Proposition 3.23. K : It ALG— CSPG is a full embedding functor,
where K(H,0,0) = (H,©,0) for all H € ITALG and K(f) = f for all
f S I+.A£g(H1, HQ).

Proof. The proof of Theorem 3.21 shows that K is a faithful functor. Now
we show that it is full, i.e. K(ZTALG(H1,Hs)) =CSPG(KH,,KHs). By
the proof of Theorem 3.17, for all y € H there exists a unique v/ = y~' € H
such that 0j0o1y = y~! and 0101y~ ! = y. Hence for all f € CSPG(Hy, Hs)
we get that

fl@ory) = flzor (O1o1y™ ")) = flzory™ ") = flz) 2 fly™ ).

Since 03 € f(01) C f(yo1y™Y) = f(y) ® f(y~ 1), hence by Definition 3.12
(iii) we get that f(y~') = (f(y))~'. Thus we have

flmory) = f(z) ©2 (f(y) ™' = f(@) 02 (0209 (f(y) ") = f() 02 f(y).
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Hence K is full functor. Since K maps ZTALG(Hy, Hs) injectively to
CSPG(KH,,KH,), then K is faithful. Since K is full and faithful and
one-to-one on objects so is full embedding. Thus K(ZTALG) is a full
subcategory of CSPG. O
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