Hyper I-algebras and polygroups

Mohammad M. Zahedi, Lida Torkzadeh and Radjab A. Borzooei

Abstract

In this note first we give the notion of hyper I-algebra, which is a generalization of $B C I$-algebra and also it is a generalization of hyper K-algebra. Then we obtain some fundamental results about this notion. Finally we give some relationships between the notion of hyper I-algebra and the notions of hypergroup and polygroup. In particular we study these connections categorically. In other words by considering the categories of hyper I-algebrs, hypergroups and commutative polygroups, we give some full and faithful functors.

1. Introduction

The hyperalgebraic structure theory was introduced by F.Marty [8] in 1934. Imai and Iseki [7] in 1966 introduced the notion of a $B C K$-algebra. Recently [2], [9] Borzooei, Jun and Zahedi et.al. applied the hypersrtucture to $B C K$-algebras and introduced the concepts of hyper K-algebra which is a generalization of $B C K$-algebra. In [5] 1988 Dudek obtained some connections between $B C I$-algebras and (quasi)groups. Bonansinga and Corsini [1] in 1982 introduced the notion of quasi-canonical hypergroup, called polygroup by Comer [3]. Now in this note we consider all of the above referred papers and introduce the notion of hyper I-algebra and then we obtain some results as mentioned in the abstract.

2. Preliminaries

By a hyperstructure (H, \circ) we mean a nonempty set H with a hyperoperation ○, i.e. a function \circ from $H \times H$ to $\mathcal{P}(H) \backslash\{\emptyset\}$.

Definition 2.1. A hyperstructure (H, \circ) is called hypergroup if:
(i) $(x \circ y) \circ z=x \circ(y \circ z)$ for all $x, y, z \in H$,
(ii) $a \circ H=H \circ a=H \quad$ for all $a \in H$,
(i.e. for all $a, b \in H$ there exist $c, d \in H$ such that $b \in c \circ a$ and $b \in a \circ d$).

Definition 2.2. A hyperstructure (H, \circ) is called quasi-canonical hypergroup or polygroup if it satisfies the following conditions:
(i) $(x \circ y) \circ z=x \circ(y \circ z)$ for all $x, y, z \in H$ (associative law),
(ii) there exists $e \in H$ such that $e \circ x=\{x\}=x \circ e$ for all $x \in H$ (identity element),
(iii) for all $x \in H$ there exists a unique element $x^{\prime} \in H$ such that $e \in\left(x \circ x^{\prime}\right) \bigcap\left(x^{\prime} \circ x\right)$, we denote x^{\prime} by x^{-1} (inverse element),
(iv) for all $x, y, z \in H$ we have: $z \in x \circ y \Longrightarrow x \in z \circ y^{-1} \Longrightarrow y \in x^{-1} \circ z$ (reversibility property).
If (H, \circ) is a polygroup and $x \circ y=y \circ x$ holds for all $x, y \in H$, then we say that H is a commutative polygroup.

If $A \subseteq H$, then by A^{-1} we mean the set $\left\{a^{-1}: a \in A\right\}$.
Lemma 2.3. Let (H, \circ) be a polygroup. Then for all $x, y \in H$, we have:
(i) $\left(x^{-1}\right)^{-1}=x$,
(ii) $e=e^{-1}$,
(iii) e is unique,
(iv) $(x \circ y)^{-1}=y^{-1} \circ x^{-1}$.

Proof. See [4].
Lemma 2.4. Let (H, \circ) be a polygroup. Then $(A \circ B) \circ C=A \circ(B \circ C)$ for all nonempty subsets A, B and C of H.

3. Hyper I-algebra

Definition 3.1. A hyperstructure (H, \circ) is called a hyper I-algebra if it contains a constant 0 and satisfies the following axioms:
(HK1) $(x \circ z) \circ(y \circ z)<x \circ y$,
(HK2) $(x \circ y) \circ z=(x \circ z) \circ y$,
(HK3) $x<x$,
(HK4) $x<y, y<x \Longrightarrow x=y$,
(HI5) $x<0 \Longrightarrow x=0$,
for all $x, y, z \in H$, where $x<y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H, A<B$ is defined by $\exists a \in A, \exists b \in B$ such that $a<b$.

A simple example of a hyper I-algebra is a $B C I$-algebra $(H, *, 0)$ with the hyperopration \circ defined by $x \circ y=\{x * y\}$. Also it is not difficult to see that a hyper I-algebra is a generalization of hyper K-algebras considered in [2] and [9]. The following example shows that there are hyper I-algebras which are not a hyper K-algebras.
Example 3.2. Let $H=\{0,1,2\}$. Then the following tables show the hyper I-algebra structures on H.

\circ	0	1	2
0	$\{0\}$	$\{0\}$	$\{2\}$
1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$

\circ	0	1	2
0	$\{0\}$	$\{0,1\}$	$\{2\}$
1	$\{1\}$	$\{0\}$	$\{2\}$
2	$\{2\}$	$\{0\}$	$\{0,1,2\}$

Note that none of the above hyper I-algebras is not a hyper K-algebra, because $0 \nless 2$.

Theorem 3.3. Let $(H, \circ, 0)$ be a hyper I-algebra. Then for all $x, y, z \in H$ and for all non-empty subsets A, B and C of H the following hold:
(i) $x \circ y<z \Longleftrightarrow x \circ z<y$, (vi) $A<A$,
(ii) $(x \circ z) \circ(x \circ y)<y \circ z, \quad($ vii $) \quad(A \circ C) \circ(A \circ B)<B \circ C$,
(iii) $x \circ(x \circ y)<y, \quad(v i i i) \quad(A \circ C) \circ(B \circ C)<A \circ B$,
(iv) $(A \circ B) \circ C=(A \circ C) \circ B, \quad(i x) \quad A \circ B<C \Leftrightarrow A \circ C<B$.
(v) $A \subseteq B \Longrightarrow A<B$,

Proof. The proof is similar to the proof of Proposition 2.5 of [2].
Example 3.4. Let $H=\{0,1,2\}$. Then the following table shows a hyper I-algebra structure on H such that $x \circ y \nless x$, because $1 \circ 2=2 \nless 1$.

\circ	0	1	2
0	$\{0\}$	$\{0\}$	$\{2\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$
2	$\{2\}$	$\{2\}$	$\{0\}$

Lemma 3.5. Let H be a hyper I-algebra. Then for all x in H we have:
(i) $x \circ 0<x$,
(ii) $x \in x \circ 0$.

Proof. (i) We have $0 \in 0 \circ 0 \subseteq(x \circ x) \circ 0=(x \circ 0) \circ x$. So there exists $t \in x \circ 0$ such that $0 \in t \circ x$. Thus $t<x$, and hence $x \circ 0<x$.
(ii) By (i) $x \circ 0<x$. So there exists $t \in x \circ 0$ such that $t<x$. Since $t \in x \circ 0$, then $x \circ 0<t$ and hence $x \circ t<0$, by Theorem 3.3(i). Thus there exists $h \in x \circ t$ such that $h<0$, so by (HI5) we have $h=0$. Therefore $0 \in x \circ t$ and hence $x<t$. Since $t<x$, then by (HK4) we get that $t=x$. Therefore $x \in x \circ 0$.

Definition 3.6. Let $(H, \circ, 0)$ be a hyper I-algebra. We define

$$
H^{+}=\{x \in H \mid 0 \in 0 \circ x\} .
$$

Note that $H^{+} \neq \emptyset$ because $0 \in 0 \circ 0$.
Proposition 3.7. Let $(H, \circ, 0)$ be a hyper I-algebra. Then $\left(H^{+}, \circ, 0\right)$ is a hyper K-algebra if and only if $x \circ y \subseteq H^{+}$, for all x, y in H^{+}.

Proof. Straightforward.
Example 3.8. (i) Let $H=\{0,1,2\}$. Then the following tables show two different hyper I-algebra structures on H :

\circ	0	1	2
0	$\{0\}$	$\{0\}$	$\{2\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$

\circ	0	1	2
0	$\{0\}$	$\{0\}$	$\{2\}$
1	$\{1\}$	$\{0,1\}$	$\{0,2\}$
2	$\{2\}$	$\{2\}$	$\{0,1,2\}$

We can seen that $H^{+}=\{0,1\}$ and it is a hyper K-algebra.
(ii) The following table shows a hyper I-algebra structure on $H=\{0,1,2\}$, where $H^{+}=\{0,1\}$ and it is not a hyper K-algebra, since $1 \in H^{+}$but $1 \circ 1 \nsubseteq H^{+}$.

\circ	0	1	2
0	$\{0\}$	$\{0\}$	$\{2\}$
1	$\{1\}$	$\{0,2\}$	$\{0,2\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$

Theorem 3.9. Let (H, \circ, e) be a commutative polygroup. Then (H, \diamond, e) is a hyper I-algebra, where the hyperopration \diamond is defined by $x \diamond y=x \circ y^{-1}$. Furthermore we have:
(i) $H^{+}=\{e\}$,
(ii) $e \diamond(e \diamond x)=x$ for all x in H.

Proof. (HK1) Let $A=(x \diamond y) \diamond(z \diamond y)$. Then by considering Lemma 2.3 we have $A=(x \diamond y) \diamond(z \diamond y)=\bigcup_{\substack{a \in x \diamond y \\ b \in z \diamond y}} a \diamond b=\bigcup_{\substack{a x \circ y-1 \\ b \in z o y^{-1}}} a \circ b^{-1}=\bigcup_{\substack{a \in x, y-1 \\ b^{-1} \in y \circ z^{-1}}} a \circ b^{-1}$.
Thus, by Lemma 2.4, we get that

$$
A=\left(x \circ y^{-1}\right) \circ\left(y \circ z^{-1}\right)=x \circ\left(y^{-1} \circ\left(y \circ z^{-1}\right)\right)=x \circ\left(\left(y^{-1} \circ y\right) \circ z^{-1}\right) .
$$

By Lemma 2.3 we have

$$
A \diamond(x \diamond z)=\bigcup_{\substack{a \in A \\ b \in x \diamond z}} a \diamond b=\bigcup_{\substack{a \in A \\ b \in x \circ z^{-1}}} a \circ b^{-1}=A \circ\left(z \circ x^{-1}\right) .
$$

Since $e \in y^{-1} \circ y$, hence $e \circ z^{-1} \subseteq\left(y^{-1} \circ y\right) \circ z^{-1}$, so

$$
x \circ\left(e \circ z^{-1}\right) \subseteq x \circ\left(\left(y^{-1} \circ y\right) \circ z^{-1}\right)=A
$$

Thus we get that
$\left(x \circ z^{-1}\right) \circ\left(z \circ x^{-1}\right)=\left(x \circ\left(e \circ z^{-1}\right)\right) \circ\left(z \circ x^{-1}\right) \subseteq A \circ\left(z \circ x^{-1}\right)=A \diamond(x \diamond z)$.
Now, by Definition 2.2 and Lemma 2.4 we have

$$
\begin{aligned}
& x \circ\left(\left(z^{-1} \circ z\right) \circ x^{-1}\right) \\
&=x \circ\left(z^{-1} \circ\left(z \circ x^{-1}\right)\right)=\left(x \circ z^{-1}\right) \circ\left(z \circ x^{-1}\right) \subseteq A \diamond(x \diamond z) .
\end{aligned}
$$

Since $e \in z^{-1} \circ z$ and $e \in x \circ x^{-1}$, then we have $e \in A \diamond(x \diamond z)$, so $A<x \diamond z$. Therefore $(x \diamond y) \diamond(z \diamond y)<x \diamond z$.
(HK2) By Definition 2.2 and hypothesis we get that $(x \diamond y) \diamond z=\left(x \circ y^{-1}\right) \diamond z=$ $\left(x \circ y^{-1}\right) \circ z^{-1}=x \circ\left(y^{-1} \circ z^{-1}\right)=x \circ\left(z^{-1} \circ y^{-1}\right)=\left(x \circ z^{-1}\right) \circ y^{-1}=(x \diamond z) \diamond y$. Therefore (HK2) holds.
(HK3) Since $e \in x \circ x^{-1}=x \diamond x$ we conclude that $x<x$ and hence (HK3) holds.
(HK4) To show that (HK4) holds, we prove that $x<y$ implies that $x=y$. Let $x<y$. Then $e \in x \diamond y=x \circ y^{-1}$. By Definition 2.2 (vi) we have $y \in e^{-1} \circ x=e \circ x=\{x\}$, thus $y=x$.
(HI5) Let $x<e$. Then by the proof of (HK4) we get that $e=x$, and hence (HI5) holds.

Therefore (H, \diamond, e) is a hyper I-algebra.
The proofs of the statements (i) and (ii) are routine.

Category of commutative polygroups: $\mathcal{C P G}$

Consider the class of all polygroups. For any two polygroups (H_{1}, \circ_{1}, e_{1}) and ($H_{2}, \mathrm{o}_{2}, e_{2}$) we define a morphism $f: H_{1} \longrightarrow H_{2}$ as a strong homomorphism between H_{1} and H_{2} (i.e. $\left.f\left(x \circ_{1} y\right)=f(x) \circ_{2} f(y) \forall x, y \in H\right)$, which satisfies $f\left(e_{1}\right)=e_{2}$. Then it can easily checked that the class of all polygroups and the above morphisms construct a category which is denoted by $\mathcal{C P G}$.

Remark 3.10. It is well known that if $f \in \mathcal{C P} \mathcal{G}\left(H_{1}, H_{2}\right)$, then $f\left(x^{-1}\right)=$ $(f(x))^{-1}$ for all $x \in H_{1}$.

Category of hyper I-algebras: $\mathcal{I} \mathcal{A} \mathcal{L} G$

Consider the class of all hyper I-algebras. For any two I-algebras ($H_{1}, \circ_{1}, 0_{1}$) and ($H_{2}, \mathrm{o}_{2}, 0_{2}$) we define a morphism $f: H_{1} \longrightarrow H_{2}$ as a strong homomorphism between H_{1} and H_{2}, which satisfies the condition $f\left(0_{1}\right)=0_{2}$. Then it can easily checked that the class of all hyper I-algebras and the above morphisms construct a category which is denoted by $\mathcal{I A} \mathcal{L G}$.

Theorem 3.11. $F: \mathcal{C P G} \longrightarrow \mathcal{I A L G}$ is a faithful functor, where $F(H, \circ, e)=$ (H, \diamond, e) and $F(f)=f$ for all $H \in \mathcal{C P G}$ and $f \in \mathcal{C P G}\left(H_{1}, H_{2}\right)$.
Proof. Let (H, \circ, e) be a polygroup. Then by Theorem $3.9(H, \diamond, e)$ is a hyper I-algebra, hence $F(H)$ is an object in $\mathcal{I} \mathcal{A L G}$. Now let $f \in \mathcal{C P G}\left(H_{1}, H_{2}\right)$ we prove that $F f \in \mathcal{I} \mathcal{A} \mathcal{L}\left(F\left(H_{1}\right), F\left(H_{2}\right)\right)$. By Theorem 3.9 we have

$$
\begin{aligned}
F f\left(x \diamond_{1} y\right) & =f\left(x \diamond_{1} y\right)=f\left(x \circ_{1} y^{-1}\right)=f(x) \circ_{2} f\left(y^{-1}\right) \\
& =f(x) \circ_{2}(f(y))^{-1}=f(x) \diamond_{2} f(y)=(F f)(x) \diamond_{2}(F f)(y) .
\end{aligned}
$$

Now it is easy to see that F satisfies to the other conditions of a functor. Since F maps $\mathcal{C P} \mathcal{G}\left(H_{1}, H_{2}\right)$ injectively to $\mathcal{I} \mathcal{A} \mathcal{L}\left(F H_{1}, F H_{2}\right)$, hence F is faithful.

Problem: Is the functor F (defined in Theorem 3.11) full embedding ?
Definition 3.12. A hyperstructure (H, \circ) is called a semipolygroup if it satisfies the following axioms:
(i) $(x \circ y) \circ z=x \circ(y \circ z)$ for all $x, y, z \in H$,
(ii) there exists $e \in H$ such that $e \circ x=\{x\}=x \circ e$ for all $x \in H$,
(iii) for all $x \in H$ there exists a unique element $x^{\prime} \in H$ such that $e \in\left(x \circ x^{\prime}\right) \bigcap\left(x^{\prime} \circ x\right)$, we denote x^{\prime} by x^{-1}.

Example 3.13. Let $H=\{0,1,2\}$ and the hyperopration \circ on H is given by the following table:

\circ	0	1	2
0	$\{0\}$	$\{1\}$	$\{2\}$
1	$\{1\}$	$\{2\}$	$\{0,1\}$
2	$\{2\}$	$\{0,1\}$	$\{1,2\}$

Then H is a semipolygroup, but it is not a polygroup because the reversibility does not hold. Indeed, $1 \in 1 \circ 2=\{0,1\}$ but $1 \notin 1 \circ 2^{-1}=1 \circ 1=\{2\}$.

Lemma 3.14. Any group can be cosidered as a semipolygroup.
Lemma 3.15. Let $(H, \circ, 0)$ be a hyper I-algebra. If $H^{+} \neq\{0\}$, then $0 \circ(0 \circ x) \neq x$ for all nonzero elements $x \in H^{+}$.

Proof. Let $x \neq 0$ be in H^{+}. Then $0 \in(0 \circ x)$. Thus $0 \in(0 \circ 0) \subseteq 0 \circ(0 \circ x)$, hence $0 \in 0 \circ(0 \circ x)$. Since $x \neq 0$, so $0 \circ(0 \circ x) \neq x$.

Note that the following example shows that if $H^{+}=\{0\}$, then it may be that the equality $0 \circ(0 \circ x)=x$ holds or does not hold.

Example 3.16. (i) Let $H=\{0,1,2\}$. Then the following table shows a hyper I-algebra structure on H such that $H^{+}=\{0\}$, while $0 \circ(0 \circ 2)=$ $0 \circ 1=1 \neq 2$.

\circ	0	1	2
0	$\{0\}$	$\{1\}$	$\{1\}$
1	$\{1\}$	$\{0,1\}$	$\{0,1\}$
2	$\{2\}$	$\{1\}$	$\{0,1,2\}$

(ii) The following table shows a hyper I-algebra structure on $H=\{0,1,2\}$. Then $H^{+}=\{0\}$ and $0 \circ(0 \circ x)=x$ for all $x \in H$.

\circ	0	1	2
0	$\{0\}$	$\{2\}$	$\{1\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$
2	$\{2\}$	$\{1,2\}$	$\{0,1\}$

Theorem 3.17. Let $(H, \circ, 0)$ be a hyper I-algebra. If $H^{+}=\{0\}$ and $0 \circ(0 \circ x)=x$ for all $x \in H$, then $(H, \odot, 0)$ is a commutative semipolygroup, where the hyperopration \odot is defined by $x \odot y=x \circ(0 \circ y)$.
Proof. By Theorem 3.3(iv) we get that $x \odot y=x \circ(0 \circ y)=(0 \circ(0 \circ x)) \circ(0 \circ y)=$ $(0 \circ(0 \circ y)) \circ(0 \circ x)=y \circ(0 \circ x)=y \odot x$, namely (H, \odot) is commutative.

Now we show that (H, \odot) is associative. We have

$$
\begin{aligned}
(x \odot y) \odot z & =(x \circ(0 \circ y)) \circ(0 \circ z) & & \\
& =(x \circ(0 \circ z)) \circ(0 \circ y) & & \text { by Theorem } 3.3 \text { (iv) } \\
& =((0 \circ(0 \circ x)) \circ(0 \circ z)) \circ(0 \circ y) & & \text { by hypothesis } \\
& =((0 \circ(0 \circ z)) \circ(0 \circ x)) \circ(0 \circ y) & & \text { by Theorem } 3.3 \text { (iv) } \\
& =(z \circ(0 \circ y)) \circ(0 \circ x) & & \text { by Theorem } 3.3 \text { (iv) } \\
& =(z \odot y) \odot x & & \\
& =x \odot(z \odot y) & & \text { by commutativity } \\
& =x \odot(y \odot z) & & \text { by commutativity }
\end{aligned}
$$

Thus (H, \odot) is associative.
Now, we prove that $0 \circ x$ has only one element for all $x \in H$. On the contrary, let $x_{1}, x_{2} \in 0 \circ x$ and $x_{1} \neq x_{2}$. Then by hypothesis we have $0 \circ x_{1} \subseteq 0 \circ(0 \circ x)=x$, hence $0 \circ x_{1}=x$ and similarly $0 \circ x_{2}=x$. Thus $0 \circ\left(0 \circ x_{1}\right)=x_{1}$ and $0 \circ x_{1}=x$ imply that $0 \circ x=x_{1}$. Since $x_{2} \in 0 \circ x$, hence $x_{1}=x_{2}$ which is a contradiction.

Since $0 \circ x$ has only one element for all $x \in H$, hence $0 \in 0 \circ 0$, thus we conclude that $0 \circ 0=0$. By Theorem 3.3 (iv) and hypothesis we get that $x \circ 0=(0 \circ(0 \circ x)) \circ 0=(0 \circ 0) \circ(0 \circ x)=0 \circ(0 \circ x)=x$. Hence $x \circ 0=x$. Therefore $0 \odot x=x \odot 0=x \circ(0 \circ 0)=x \circ 0=x$. So (H, \odot) satisfies in condition (ii) of Definition 3.12.

Since $H^{+}=\{0\}$ hence $0 \notin 0 \circ x$ for all $x \neq 0$. Therefore for all $0 \neq x \in H$ there exists $0 \neq x^{\prime} \in H$ such that $0 \circ x=x^{\prime}$. By Theorem 3.3 (vi) we have $0 \in(0 \circ x) \circ(0 \circ x)=x^{\prime} \circ(0 \circ x)=x^{\prime} \odot x=x \odot x^{\prime}$. Thus the condition (iii) of Definition 3.12 holds. Therefore (H, \odot) is a commutative semipolygroup.

Theorem 3.18. Let $(H, \circ, 0)$ be a hyper I-algebra such that $H^{+}=\{0\}$. If $0 \circ(0 \circ x)=x$ and $x \circ x=0$ hold for all $x \in H$, then $(H, \odot, 0)$ is an abelian group.
Proof. By considering Theorem 3.17 it is sufficient to show that $x \circ y$ has only one element for all $x, y \in H$. On the contrary let $x_{1} \neq x_{2}$ and $x_{1}, x_{2} \in x \circ y$. Then by the proof of Theorem 3.17 we conclude that there are $x^{\prime}, y^{\prime} \in H$ such that $0 \circ x=x^{\prime}, 0 \circ y=y^{\prime}, 0 \circ x^{\prime}=x$ and $0 \circ y^{\prime}=y$. By (HK2) and $x \circ x=0$ we get that $y^{\prime}=0 \circ y=(x \circ x) \circ y=(x \circ y) \circ x$. Since $x_{1}, x_{2} \in x \circ y$, hence $x_{1} \circ x=y^{\prime}$ and $x_{2} \circ x=y^{\prime}$. Thus $y^{\prime} \circ x_{1}=$ $\left(x_{1} \circ x\right) \circ x_{1}=\left(x_{1} \circ x_{1}\right) \circ x=0 \circ x=x^{\prime}$ and also $y^{\prime} \circ x_{2}=x^{\prime}$. By (HK2) and hypothesis we get that $\left(y^{\prime} \circ x^{\prime}\right) \circ x_{1}=\left(y^{\prime} \circ x_{1}\right) \circ x^{\prime}=x^{\prime} \circ x^{\prime}=\{0\}$,
similarly $\left(y^{\prime} \circ x^{\prime}\right) \circ x_{2}=\{0\}$. Since $0 \in\left(y^{\prime} \circ x^{\prime}\right) \circ x_{1}$ so there exists $t \in y^{\prime} \circ x^{\prime}$ such that $0 \in t \circ x_{1}$. By (HK2) we have $\left(t \circ x_{1}\right) \circ t=(t \circ t) \circ x_{1}=0 \circ x_{1}$. Since $0 \in t \circ x_{1}$ hence $0 \circ t \subseteq 0 \circ x_{1}$. By the proof of Theorem $3.170 \circ x_{1}$ has only one element so we get that $0 \circ t=0 \circ x_{1}$. By hypothesis we have $t=0 \circ(0 \circ t)=0 \circ\left(0 \circ x_{1}\right)=x_{1}$. Therefore $x_{1} \in y^{\prime} \circ x^{\prime}$. Since $\left(y^{\prime} \circ x^{\prime}\right) \circ x_{2}=0$, then $x_{1} \circ x_{2}=0$ and similarly $x_{2} \circ x_{1}=0$. Thus (HK4) implies that $x_{1}=x_{2}$, which is a contradiction. So $x \circ y$ has only one element. Therefore Theorem 3.17 implies that $(H, \odot, 0)$ is an abelian group.

Since every group is a polygroup hence (H, \odot) in Theorem 3.18 is a commutative polygroup. The following example shows that in Theorem 3.18 the condition $x \circ x=0$ for all $x \in H$ is necessary.

Example 3.19. Let $H=\{0,1,2\}$ be a hyper I-algebra, in which the hyperopration \circ is given by the following table:

| \circ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\{0\}$ | $\{2\}$ | $\{1\}$ |
| 1 | $\{1\}$ | $\{0,1\}$ | $\{2\}$ |
| 2 | $\{2\}$ | $\{1,2\}$ | $\{0,1\}$ |

Then $H^{+}=\{0\}, 0 \circ(0 \circ x)=x$ for all $x \in H$ and $1 \circ 1 \neq 0$. But $(H, \odot, 0)$ is not a group since $1 \odot 2=\{0,1\}$.

Note that the above example also shows that if we omit the condition $x \circ x=0$, in Theorem 3.18, then (H, \odot) is not necessary to be a polygroup. Because the reversibility property does not hold. Indeed, in this example we have $1 \in 1 \odot 2=1 \circ(0 \circ 2)=1 \circ 1=\{0,1\}$, but $1 \notin 1 \odot 2^{-1}=$ $1 \circ\left(0 \circ 2^{-1}\right)=1 \circ(0 \circ 1)=1 \circ 2=2$.

Theorem 3.20. Let $(H, \circ, 0)$ be a hyper I-algebra. If $H^{+}=\{0\}$ and $0 \circ(0 \circ x)=x$ for all $x \in H$, then $(H, \odot, 0)$ is a commutative hypergroup.
Proof. The proof of Theorem 3.17 shows that $(H, \odot, 0)$ is commutative and associative. Let $a, b \in H$ be arbitrary. By the proof of Theorem 3.17 there exists $a^{\prime} \in H$ such that $0 \in a^{\prime} \odot a$ and $b \odot 0=b$. Thus $b \in b \odot 0 \subseteq b \odot\left(a^{\prime} \odot a\right)=\left(b \odot a^{\prime}\right) \odot a$. So there exists $t \in b \odot a^{\prime}$ such that $b \in t \odot a=a \odot t$, namely $a \odot H=H \odot a=H$.

Hence $(H, \odot, 0)$ is a commutative hypergroup.
Notation: Let $\mathcal{I}^{+} \mathcal{A L G}$ be a subcategory of $\mathcal{I} \mathcal{A} \mathcal{L G}$ in which for every object H we have $H^{+}=\{0\}$ and $0 \circ(0 \circ x)=0$ for all $x \in H$. Similarly, let $\mathcal{C H G}$ be the category of commutative hypergroups with strong morphisms.

Theorem 3.21. $G: \mathcal{I}^{+} \mathcal{A L G} \longrightarrow \mathcal{C H G}$ is a faithful functor, where $G(H, \circ, 0)$ $=(H, \odot, 0)$ for $H \in \mathcal{I}^{+} \mathcal{A} \mathcal{L G}$ and $G(f)=f$ for $f \in \mathcal{I}^{+} \mathcal{A} \mathcal{L} \mathcal{G}\left(H_{1}, H_{2}\right)$.
Proof. Let $(H, \circ, 0)$ be an object in $\mathcal{I}^{+} \mathcal{A L G}$. Then by Theorem 3.20 we have $G(H)=(H, \odot, 0)$ is an object in $\mathcal{C H} \mathcal{G}$.

Let $f \in \mathcal{I}^{+} \mathcal{A} \mathcal{L} \mathcal{G}\left(H_{1}, H_{2}\right)$. We prove that $G f=f \in \mathcal{C H} \mathcal{G}\left(G\left(H_{1}\right), G\left(H_{2}\right)\right)$. By Theorem 3.20 we have

$$
\begin{aligned}
G f\left(x \odot_{1} y\right) & =f\left(x \odot_{1} y\right)=f\left(x \circ_{1}\left(0_{1} \circ_{1} y\right)\right)=f(x) \circ_{2}\left(f\left(0_{1}\right) \circ_{2} f(y)\right) \\
& =f(x) \circ_{2}\left(0_{2} \circ_{2} f(y)\right)=f(x) \odot_{2} f(y)=(G f)(x) \odot_{2}(G f)(y)
\end{aligned}
$$

So it is easy to see that G satisfies to the other condition of a functor. Since G maps $\mathcal{I}^{+} \mathcal{A} \mathcal{L} \mathcal{G}\left(H_{1}, H_{2}\right)$ injectively to $\mathcal{C H} \mathcal{H}\left(G H_{1}, G H_{2}\right)$, hence G is faithful.

Remark 3.22. Let $F: \mathcal{C P G} \longrightarrow \mathcal{I} \mathcal{A L G}$ and $G: \mathcal{I}^{+} \mathcal{A} \mathcal{L} \mathcal{G} \longrightarrow \mathcal{C H}$ Ge the functors which are defined in Theorem 3.11 and 3.21 respectively. By Theorem 3.9, we have $H^{+}=\{0\}$ and $0 \diamond(0 \diamond x)=x$ for all $H \in F(\mathcal{C P G})$ and $x \in H$. Hence $F(\mathcal{C P G}) \subseteq \mathcal{I}^{+} \mathcal{A L G}$. Since $x \odot y=x \diamond(0 \diamond y)=x \diamond\left(0 \circ y^{-1}\right)=$ $x \diamond\left(y^{-1}\right)=x \circ\left(y^{-1}\right)^{-1}=x \circ y$. We get that $G F(H)=G(F H)=G(H)=$ H for all $H \in \mathcal{C P G}$ and $(G F)(f)=G(F f)=G(f)=f$ for all $f \in \mathcal{C P} \mathcal{G}\left(H_{1}, H_{2}\right)$. Therefore $G F=I$.

Let $\mathcal{C S P G}$ be the category of commutative semipolygroups. Then $f \in \mathcal{C S P G}\left(\left(H_{1}, \circ_{1}, 0_{1}\right),\left(H_{2}, \circ_{2}, 0_{2}\right)\right)$ if and only if $f\left(x \circ_{1} y\right)=f(x) \circ_{2} f(y)$ and $f\left(e_{1}\right)=e_{2}$.

Proposition 3.23. $K: \mathcal{I}^{+} \mathcal{A} \mathcal{L G} \longrightarrow \mathcal{C S P G}$ is a full embedding functor, where $K(H, \circ, 0)=(H, \odot, 0)$ for all $H \in \mathcal{I}^{+} \mathcal{A} \mathcal{L G}$ and $K(f)=f$ for all $f \in \mathcal{I}^{+} \mathcal{A} \mathcal{L} \mathcal{G}\left(H_{1}, H_{2}\right)$.
Proof. The proof of Theorem 3.21 shows that K is a faithful functor. Now we show that it is full, i.e. $K\left(\mathcal{I}^{+} \mathcal{A} \mathcal{L G}\left(H_{1}, H_{2}\right)\right)=\mathcal{C S P G}\left(K H_{1}, K H_{2}\right)$. By the proof of Theorem 3.17, for all $y \in H$ there exists a unique $y^{\prime}=y^{-1} \in H$ such that $0_{1} \circ_{1} y=y^{-1}$ and $0_{1} \circ_{1} y^{-1}=y$. Hence for all $f \in \mathcal{C S P G}\left(H_{1}, H_{2}\right)$ we get that

$$
f\left(x \circ_{1} y\right)=f\left(x \circ_{1}\left(0_{1} \circ_{1} y^{-1}\right)\right)=f\left(x \odot_{1} y^{-1}\right)=f(x) \odot_{2} f\left(y^{-1}\right)
$$

Since $0_{2} \in f\left(0_{1}\right) \subseteq f\left(y \odot_{1} y^{-1}\right)=f(y) \odot f\left(y^{-1}\right)$, hence by Definition 3.12 (iii) we get that $f\left(y^{-1}\right)=(f(y))^{-1}$. Thus we have

$$
f\left(x \circ_{1} y\right)=f(x) \odot_{2}(f(y))^{-1}=f(x) \circ_{2}\left(0_{2} \circ_{2}(f(y))^{-1}\right)=f(x) \circ_{2} f(y)
$$

Hence K is full functor. Since K maps $\mathcal{I}^{+} \mathcal{A} \mathcal{L} \mathcal{G}\left(H_{1}, H_{2}\right)$ injectively to $\mathcal{C S P G}\left(K H_{1}, K H_{2}\right)$, then K is faithful. Since K is full and faithful and one-to-one on objects so is full embedding. Thus $K\left(\mathcal{I}^{+} \mathcal{A L G}\right)$ is a full subcategory of $\mathcal{C S P G}$.

References

[1] P. Bonansinga, P. Corsini: Su gli omomorfismi di semi-ipergruppi, e di ipergruppi, Bol. U.M.I. 6 1-B, (1982), $717-727 .$.
[2] R. A. Borzooei, A. Hasankhani, M. M. Zahedi and Y. B. Jun: On hyper K-algebras, Math. Japon. 52 (2000), 113 - 121.
[3] S. Comer: Polygroups derived from cogroup: J. Algebra 89 (1984), 397-405.
[4] P. Corsini: Prolegomena of hypergroup theory, Aviani Editore, Italy 1993.
[5] W. A. Dudek: On group-like BCI-algebras, Demonstratio Math. 23 (1988), $369-376$.
[6] A. Hassankhani: F-hyperalgebraic structures, Ph.D. Thesis, Shahid Bahonar University of Kerman, Iran 1997.
[7] Y. Imai and K. Iséki: On axiom systems of propositional calcul, XIV, Proc. Japan Academy 42 (1966), $19-22$.
[8] F. Marty: Sur une generalization de la notion de groups, 8th Congress Math. Scandinaves, Stockholm 1934, 45-49.
[9] M. M. Zahedi, R. A. Borzooei, Y. B. Jun and A. Hasankhani: Some results on hyper K-algebra, Scientiae Math. 3 (2000), $53-59$.

```
Deptartment of Mathematics
                                    Received July 28, 2002
Shahid Bahonar University of Kerman
Kerman
Iran
e-mail: zahedi_mm@mail.uk.ac.ir (M.M. Zahedi)
        ltorkzadeh@yahoo.com (L. Torkzadeh)
```

