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Hyper I−algebras and polygroups

Mohammad M. Zahedi, Lida Torkzadeh and Radjab A. Borzooei

Abstract

In this note �rst we give the notion of hyper I-algebra, which is a generalization of
BCI-algebra and also it is a generalization of hyper K-algebra. Then we obtain some
fundamental results about this notion. Finally we give some relationships between the
notion of hyper I-algebra and the notions of hypergroup and polygroup. In particular
we study these connections categorically. In other words by considering the categories of
hyper I-algebrs, hypergroups and commutative polygroups, we give some full and faithful
functors.

1. Introduction
The hyperalgebraic structure theory was introduced by F.Marty [8] in 1934.
Imai and Iseki [7] in 1966 introduced the notion of a BCK-algebra. Re-
cently [2], [9] Borzooei, Jun and Zahedi et.al. applied the hypersrtucture to
BCK-algebras and introduced the concepts of hyper K-algebra which is a
generalization of BCK-algebra. In [5] 1988 Dudek obtained some connec-
tions between BCI-algebras and (quasi)groups. Bonansinga and Corsini [1]
in 1982 introduced the notion of quasi-canonical hypergroup, called poly-
group by Comer [3]. Now in this note we consider all of the above referred
papers and introduce the notion of hyper I-algebra and then we obtain some
results as mentioned in the abstract.

2. Preliminaries
By a hyperstructure (H, ◦) we mean a nonempty set H with a hyperoperation
◦ , i.e. a function ◦ from H ×H to P(H) \ {∅}.
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De�nition 2.1. A hyperstructure (H, ◦) is called hypergroup if:
(i) (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H,

(ii) a ◦H = H ◦ a = H for all a ∈ H,
(i.e. for all a, b ∈ H there exist c, d ∈ H such that b ∈ c ◦ a and b ∈ a ◦ d).
De�nition 2.2. A hyperstructure (H, ◦) is called quasi-canonical hyper-
group or polygroup if it satis�es the following conditions:

(i) (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H (associative law),
(ii) there exists e ∈ H such that e ◦ x = {x} = x ◦ e for all x ∈ H

(identity element),
(iii) for all x ∈ H there exists a unique element x′ ∈ H such that

e ∈ (x ◦ x′)
⋂

(x′ ◦ x), we denote x′ by x−1

(inverse element),
(iv) for all x, y, z ∈ H we have: z ∈ x◦y =⇒ x ∈ z◦y−1 =⇒ y ∈ x−1◦z

(reversibility property).
If (H, ◦) is a polygroup and x ◦ y = y ◦ x holds for all x, y ∈ H, then we

say that H is a commutative polygroup.
If A ⊆ H, then by A−1 we mean the set {a−1 : a ∈ A}.

Lemma 2.3. Let (H, ◦) be a polygroup. Then for all x, y ∈ H, we have:
(i) (x−1)−1 = x,
(ii) e = e−1,

(iii) e is unique,
(iv) (x ◦ y)−1 = y−1 ◦ x−1.

Proof. See [4].
Lemma 2.4. Let (H, ◦) be a polygroup. Then (A ◦ B) ◦ C = A ◦ (B ◦ C)
for all nonempty subsets A, B and C of H.

3. Hyper I-algebra
De�nition 3.1. A hyperstructure (H, ◦) is called a hyper I-algebra if it
contains a constant 0 and satis�es the following axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x < x,
(HK4) x < y, y < x =⇒ x = y,
(HI5) x < 0 =⇒ x = 0,

for all x, y, z ∈ H, where x < y is de�ned by 0 ∈ x ◦ y and for every
A,B ⊆ H, A < B is de�ned by ∃a ∈ A, ∃b ∈ B such that a < b.
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A simple example of a hyper I-algebra is a BCI-algebra (H, ∗, 0) with
the hyperopration ◦ de�ned by x◦y = {x∗y}. Also it is not di�cult to see
that a hyper I-algebra is a generalization of hyper K-algebras considered
in [2] and [9]. The following example shows that there are hyper I-algebras
which are not a hyper K-algebras.
Example 3.2. Let H = {0, 1, 2}. Then the following tables show the hyper
I-algebra structures on H.

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0} {2}
2 {2} {2} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {2}
1 {1} {0} {2}
2 {2} {0} {0, 1, 2}

Note that none of the above hyper I-algebras is not a hyper K-algebra,
because 0 6< 2.

Theorem 3.3. Let (H, ◦, 0) be a hyper I-algebra. Then for all x, y, z ∈ H
and for all non-empty subsets A, B and C of H the following hold:

(i) x ◦ y < z ⇐⇒ x ◦ z < y, (vi) A < A,
(ii) (x ◦ z) ◦ (x ◦ y) < y ◦ z, (vii) (A ◦ C) ◦ (A ◦B) < B ◦ C,
(iii) x ◦ (x ◦ y) < y, (viii) (A ◦ C) ◦ (B ◦ C) < A ◦B,
(iv) (A ◦B) ◦ C = (A ◦ C) ◦B, (ix) A ◦B < C ⇔ A ◦ C < B.
(v) A ⊆ B =⇒ A < B,

Proof. The proof is similar to the proof of Proposition 2.5 of [2].

Example 3.4. Let H = {0, 1, 2}. Then the following table shows a hyper
I-algebra structure on H such that x ◦ y 6< x, because 1 ◦ 2 = 2 6< 1.

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0, 1} {2}
2 {2} {2} {0}

Lemma 3.5. Let H be a hyper I-algebra. Then for all x in H we have:
(i) x ◦ 0 < x,

(ii) x ∈ x ◦ 0.
Proof. (i) We have 0 ∈ 0 ◦ 0 ⊆ (x ◦ x) ◦ 0 = (x ◦ 0) ◦ x. So there exists
t ∈ x ◦ 0 such that 0 ∈ t ◦ x. Thus t < x, and hence x ◦ 0 < x.
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(ii) By (i) x ◦ 0 < x. So there exists t ∈ x ◦ 0 such that t < x. Since
t ∈ x ◦ 0, then x ◦ 0 < t and hence x ◦ t < 0, by Theorem 3.3(i). Thus there
exists h ∈ x ◦ t such that h < 0, so by (HI5) we have h = 0. Therefore
0 ∈ x ◦ t and hence x < t. Since t < x, then by (HK4) we get that t = x.
Therefore x ∈ x ◦ 0.

De�nition 3.6. Let (H, ◦, 0) be a hyper I-algebra. We de�ne

H+ = {x ∈ H | 0 ∈ 0 ◦ x}.

Note that H+ 6= ∅ because 0 ∈ 0 ◦ 0.

Proposition 3.7. Let (H, ◦, 0) be a hyper I-algebra. Then (H+, ◦, 0) is a
hyper K-algebra if and only if x ◦ y ⊆ H+, for all x,y in H+.

Proof. Straightforward.

Example 3.8. (i) Let H = {0, 1, 2}. Then the following tables show two
di�erent hyper I-algebra structures on H:

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0, 1} {2}
2 {2} {2} {0, 1}

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0, 1} {0, 2}
2 {2} {2} {0, 1, 2}

We can seen that H+ = {0, 1} and it is a hyper K-algebra.
(ii) The following table shows a hyper I-algebra structure on H = {0, 1, 2},
where H+ = {0, 1} and it is not a hyper K-algebra, since 1 ∈ H+ but
1 ◦ 1 6⊆ H+.

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0, 2} {0, 2}
2 {2} {2} {0, 2}

Theorem 3.9. Let (H, ◦, e) be a commutative polygroup. Then (H, ¦, e) is
a hyper I-algebra, where the hyperopration ¦ is de�ned by x ¦ y = x ◦ y−1.
Furthermore we have:

(i) H+ = {e},
(ii) e ¦ (e ¦ x) = x for all x in H.
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Proof. (HK1) Let A = (x ¦ y) ¦ (z ¦ y). Then by considering Lemma 2.3 we
have A = (x ¦ y) ¦ (z ¦ y) =

⋃
a∈x¦y
b∈z¦y

a ¦ b =
⋃

a∈x◦y−1

b∈z◦y−1

a ◦ b−1 =
⋃

a∈x◦y−1

b−1∈y◦z−1

a ◦ b−1.

Thus, by Lemma 2.4, we get that

A = (x ◦ y−1) ◦ (y ◦ z−1) = x ◦ (y−1 ◦ (y ◦ z−1)) = x ◦ ((y−1 ◦ y) ◦ z−1).

By Lemma 2.3 we have

A ¦ (x ¦ z) =
⋃

a∈A
b∈x¦z

a ¦ b =
⋃

a∈A

b∈x◦z−1

a ◦ b−1 = A ◦ (z ◦ x−1).

Since e ∈ y−1 ◦ y, hence e ◦ z−1 ⊆ (y−1 ◦ y) ◦ z−1, so

x ◦ (e ◦ z−1) ⊆ x ◦ ((y−1 ◦ y) ◦ z−1) = A.

Thus we get that

(x ◦ z−1) ◦ (z ◦x−1) = (x ◦ (e ◦ z−1)) ◦ (z ◦x−1) ⊆ A ◦ (z ◦x−1) = A ¦ (x ¦ z).

Now, by De�nition 2.2 and Lemma 2.4 we have
x ◦ ((z−1 ◦ z) ◦ x−1 )

= x ◦ (z−1 ◦ (z ◦ x−1)) = (x ◦ z−1) ◦ (z ◦ x−1) ⊆ A ¦ (x ¦ z).

Since e ∈ z−1 ◦ z and e ∈ x ◦ x−1, then we have e ∈ A ¦ (x ¦ z), so
A < x ¦ z. Therefore (x ¦ y) ¦ (z ¦ y) < x ¦ z.
(HK2) By De�nition 2.2 and hypothesis we get that (x¦y)¦z = (x◦y−1)¦z =
(x◦y−1)◦z−1 = x◦(y−1◦z−1) = x◦(z−1◦y−1) = (x◦z−1)◦y−1 = (x¦z)¦y.
Therefore (HK2) holds.
(HK3) Since e ∈ x ◦ x−1 = x ¦ x we conclude that x < x and hence (HK3)
holds.
(HK4) To show that (HK4) holds, we prove that x < y implies that x = y.
Let x < y. Then e ∈ x ¦ y = x ◦ y−1. By De�nition 2.2 (vi) we have
y ∈ e−1 ◦ x = e ◦ x = {x}, thus y = x.
(HI5) Let x < e. Then by the proof of (HK4) we get that e = x, and hence
(HI5) holds.

Therefore (H, ¦, e) is a hyper I-algebra.
The proofs of the statements (i) and (ii) are routine.
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Category of commutative polygroups: CPG
Consider the class of all polygroups. For any two polygroups (H1, ◦1, e1)
and (H2, ◦2, e2) we de�ne a morphism f : H1 −→ H2 as a strong homo-
morphism between H1 and H2 (i.e. f(x ◦1 y) = f(x) ◦2 f(y) ∀x, y ∈ H),
which satis�es f(e1) = e2. Then it can easily checked that the class of all
polygroups and the above morphisms construct a category which is denoted
by CPG.
Remark 3.10. It is well known that if f ∈ CPG(H1, H2), then f(x−1) =
(f(x))−1 for all x ∈ H1.

Category of hyper I-algebras: IALG
Consider the class of all hyper I-algebras. For any two I-algebras (H1, ◦1, 01)
and (H2, ◦2, 02) we de�ne a morphism f : H1 −→ H2 as a strong homo-
morphism between H1 and H2, which satis�es the condition f(01) = 02.
Then it can easily checked that the class of all hyper I-algebras and the
above morphisms construct a category which is denoted by IALG.

Theorem 3.11. F : CPG−→ IALG is a faithful functor, where F (H, ◦, e) =
(H, ¦, e) and F (f) = f for all H ∈ CPG and f ∈ CPG(H1,H2).
Proof. Let (H, ◦, e) be a polygroup. Then by Theorem 3.9 (H, ¦, e) is a hy-
per I-algebra, hence F (H) is an object in IALG. Now let f ∈ CPG(H1,H2)
we prove that Ff ∈ IALG(F (H1), F (H2)). By Theorem 3.9 we have

Ff(x ¦1 y) = f(x ¦1 y) = f(x ◦1 y−1) = f(x) ◦2 f(y−1)

= f(x) ◦2 (f(y))−1 = f(x) ¦2 f(y) = (Ff)(x) ¦2 (Ff)(y).

Now it is easy to see that F satis�es to the other conditions of a functor.
Since F maps CPG(H1,H2) injectively to IALG(FH1, FH2), hence F is
faithful.

Problem: Is the functor F (de�ned in Theorem 3.11 ) full embedding ?

De�nition 3.12. A hyperstructure (H, ◦) is called a semipolygroup if it
satis�es the following axioms:

(i) (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H,
(ii) there exists e ∈ H such that e ◦ x = {x} = x ◦ e for all x ∈ H,

(iii) for all x ∈ H there exists a unique element x′ ∈ H such that
e ∈ (x ◦ x′)

⋂
(x′ ◦ x), we denote x′ by x−1.
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Example 3.13. Let H = {0, 1, 2} and the hyperopration ◦ on H is given
by the following table:

◦ 0 1 2

0 {0} {1} {2}
1 {1} {2} {0, 1}
2 {2} {0, 1} {1, 2}

Then H is a semipolygroup, but it is not a polygroup because the reversibil-
ity does not hold. Indeed, 1 ∈ 1◦2 = {0, 1} but 1 6∈ 1◦2−1 = 1◦1 = {2}.

Lemma 3.14. Any group can be cosidered as a semipolygroup.

Lemma 3.15. Let (H, ◦, 0) be a hyper I-algebra. If H+ 6= {0}, then
0 ◦ (0 ◦ x) 6= x for all nonzero elements x ∈ H+.
Proof. Let x 6= 0 be in H+. Then 0 ∈ (0 ◦ x). Thus 0 ∈ (0 ◦ 0) ⊆ 0 ◦ (0 ◦ x),
hence 0 ∈ 0 ◦ (0 ◦ x). Since x 6= 0, so 0 ◦ (0 ◦ x) 6= x.

Note that the following example shows that if H+ = {0}, then it may
be that the equality 0 ◦ (0 ◦ x) = x holds or does not hold.

Example 3.16. (i) Let H = {0, 1, 2}. Then the following table shows a
hyper I-algebra structure on H such that H+ = {0}, while 0 ◦ (0 ◦ 2) =
0 ◦ 1 = 1 6= 2.

◦ 0 1 2

0 {0} {1} {1}
1 {1} {0, 1} {0, 1}
2 {2} {1} {0, 1, 2}

(ii) The following table shows a hyper I-algebra structure on H = {0, 1, 2}.
Then H+ = {0} and 0 ◦ (0 ◦ x) = x for all x ∈ H.

◦ 0 1 2

0 {0} {2} {1}
1 {1} {0, 1} {2}
2 {2} {1, 2} {0, 1}

Theorem 3.17. Let (H, ◦, 0) be a hyper I-algebra. If H+ = {0} and
0◦(0◦x) = x for all x ∈ H, then (H,¯, 0) is a commutative semipolygroup,
where the hyperopration ¯ is de�ned by x¯ y = x ◦ (0 ◦ y).
Proof. By Theorem 3.3(iv) we get that x¯y = x◦(0◦y) = (0◦(0◦x))◦(0◦y) =
(0 ◦ (0 ◦ y)) ◦ (0 ◦ x) = y ◦ (0 ◦ x) = y ¯ x, namely (H,¯) is commutative.
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Now we show that (H,¯) is associative. We have

(x¯ y)¯ z = (x ◦ (0 ◦ y)) ◦ (0 ◦ z)
= (x ◦ (0 ◦ z)) ◦ (0 ◦ y) by Theorem 3.3 (iv)
= ((0 ◦ (0 ◦ x)) ◦ (0 ◦ z)) ◦ (0 ◦ y) by hypothesis
= ((0 ◦ (0 ◦ z)) ◦ (0 ◦ x)) ◦ (0 ◦ y) by Theorem 3.3 (iv)
= (z ◦ (0 ◦ y)) ◦ (0 ◦ x) by Theorem 3.3 (iv)
= (z ¯ y)¯ x

= x¯ (z ¯ y) by commutativity
= x¯ (y ¯ z) by commutativity

Thus (H,¯) is associative.
Now, we prove that 0 ◦ x has only one element for all x ∈ H. On

the contrary, let x1, x2 ∈ 0 ◦ x and x1 6= x2. Then by hypothesis we have
0 ◦ x1 ⊆ 0 ◦ (0 ◦ x) = x, hence 0 ◦ x1 = x and similarly 0 ◦ x2 = x. Thus
0 ◦ (0 ◦ x1) = x1 and 0 ◦ x1 = x imply that 0 ◦ x = x1. Since x2 ∈ 0 ◦ x,
hence x1 = x2 which is a contradiction.

Since 0 ◦ x has only one element for all x ∈ H, hence 0 ∈ 0 ◦ 0, thus we
conclude that 0 ◦ 0 = 0. By Theorem 3.3 (iv) and hypothesis we get that
x ◦ 0 = (0 ◦ (0 ◦ x)) ◦ 0 = (0 ◦ 0) ◦ (0 ◦ x) = 0 ◦ (0 ◦ x) = x. Hence x ◦ 0 = x.
Therefore 0 ¯ x = x ¯ 0 = x ◦ (0 ◦ 0) = x ◦ 0 = x. So (H,¯) satis�es in
condition (ii) of De�nition 3.12.

Since H+ = {0} hence 0 6∈ 0 ◦ x for all x 6= 0. Therefore for all
0 6= x ∈ H there exists 0 6= x′ ∈ H such that 0 ◦ x = x′. By Theorem 3.3
(vi) we have 0 ∈ (0 ◦ x) ◦ (0 ◦ x) = x′ ◦ (0 ◦ x) = x′ ¯ x = x¯ x′. Thus the
condition (iii) of De�nition 3.12 holds. Therefore (H,¯) is a commutative
semipolygroup.

Theorem 3.18. Let (H, ◦, 0) be a hyper I-algebra such that H+ = {0}.
If 0 ◦ (0 ◦ x) = x and x ◦ x = 0 hold for all x ∈ H, then (H,¯, 0) is an
abelian group.
Proof. By considering Theorem 3.17 it is su�cient to show that x ◦ y
has only one element for all x, y ∈ H. On the contrary let x1 6= x2 and
x1, x2 ∈ x ◦ y. Then by the proof of Theorem 3.17 we conclude that there
are x′, y′ ∈ H such that 0 ◦ x = x′, 0 ◦ y = y′, 0 ◦ x′ = x and 0 ◦ y′ = y.
By (HK2) and x ◦ x = 0 we get that y′ = 0 ◦ y = (x ◦ x) ◦ y = (x ◦ y) ◦ x.
Since x1, x2 ∈ x ◦ y, hence x1 ◦ x = y′ and x2 ◦ x = y′. Thus y′ ◦ x1 =
(x1 ◦ x) ◦ x1 = (x1 ◦ x1) ◦ x = 0 ◦ x = x′ and also y

′ ◦ x2 = x
′ . By (HK2)

and hypothesis we get that (y′ ◦ x′) ◦ x1 = (y′ ◦ x1) ◦ x′ = x′ ◦ x′ = {0},
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similarly (y′◦x′)◦x2 = {0}. Since 0 ∈ (y′◦x′)◦x1 so there exists t ∈ y′◦x′

such that 0 ∈ t ◦ x1. By (HK2) we have (t ◦ x1) ◦ t = (t ◦ t) ◦ x1 = 0 ◦ x1.
Since 0 ∈ t ◦ x1 hence 0 ◦ t ⊆ 0 ◦ x1. By the proof of Theorem 3.17 0 ◦ x1

has only one element so we get that 0 ◦ t = 0 ◦ x1. By hypothesis we
have t = 0 ◦ (0 ◦ t) = 0 ◦ (0 ◦ x1) = x1. Therefore x1 ∈ y′ ◦ x′. Since
(y′ ◦ x′) ◦ x2 = 0, then x1 ◦ x2 = 0 and similarly x2 ◦ x1 = 0. Thus
(HK4) implies that x1 = x2, which is a contradiction. So x ◦ y has only
one element. Therefore Theorem 3.17 implies that (H,¯, 0) is an abelian
group.

Since every group is a polygroup hence (H,¯) in Theorem 3.18 is a
commutative polygroup. The following example shows that in Theorem
3.18 the condition x ◦ x = 0 for all x ∈ H is necessary.

Example 3.19. Let H = {0, 1, 2} be a hyper I-algebra, in which the
hyperopration ◦ is given by the following table:

◦ 0 1 2

0 {0} {2} {1}
1 {1} {0, 1} {2}
2 {2} {1, 2} {0, 1}

Then H+ = {0}, 0◦ (0◦x) = x for all x ∈ H and 1◦1 6= 0. But (H,¯, 0)
is not a group since 1¯ 2 = {0, 1}.

Note that the above example also shows that if we omit the condition
x ◦x = 0, in Theorem 3.18, then (H,¯) is not necessary to be a polygroup.
Because the reversibility property does not hold. Indeed, in this example
we have 1 ∈ 1 ¯ 2 = 1 ◦ (0 ◦ 2) = 1 ◦ 1 = {0, 1}, but 1 6∈ 1 ¯ 2−1 =
1 ◦ (0 ◦ 2−1) = 1 ◦ (0 ◦ 1) = 1 ◦ 2 = 2.

Theorem 3.20. Let (H, ◦, 0) be a hyper I-algebra. If H+ = {0} and
0 ◦ (0 ◦ x) = x for all x ∈ H, then (H,¯, 0) is a commutative hypergroup.
Proof. The proof of Theorem 3.17 shows that (H,¯, 0) is commutative
and associative. Let a, b ∈ H be arbitrary. By the proof of Theorem
3.17 there exists a′ ∈ H such that 0 ∈ a′ ¯ a and b ¯ 0 = b. Thus
b ∈ b¯ 0 ⊆ b¯ (a′ ¯ a) = (b¯ a′)¯ a. So there exists t ∈ b¯ a′ such that
b ∈ t¯ a = a¯ t, namely a¯H = H ¯ a = H.

Hence (H,¯, 0) is a commutative hypergroup.
Notation: Let I+ALG be a subcategory of IALG in which for every
object H we have H+ = {0} and 0◦(0◦x) = 0 for all x ∈ H. Similarly, let
CHG be the category of commutative hypergroups with strong morphisms.
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Theorem 3.21. G : I+ALG−→ CHG is a faithful functor, where G(H, ◦, 0)
= (H,¯, 0) for H ∈ I+ALG and G(f) = f for f ∈ I+ALG(H1,H2).
Proof. Let (H, ◦, 0) be an object in I+ALG. Then by Theorem 3.20 we
have G(H) = (H,¯, 0) is an object in CHG.

Let f ∈ I+ALG(H1, H2). We prove that Gf = f ∈ CHG(G(H1), G(H2)).
By Theorem 3.20 we have
Gf(x¯1 y) = f(x¯1 y) = f(x ◦1 (01 ◦1 y)) = f(x) ◦2 (f(01) ◦2 f(y))

= f(x) ◦2 (02 ◦2 f(y)) = f(x)¯2 f(y) = (Gf)(x)¯2 (Gf)(y).

So it is easy to see that G satis�es to the other condition of a functor.
Since G maps I+ALG(H1,H2) injectively to CHG(GH1, GH2), hence G is
faithful.

Remark 3.22. Let F : CPG−→ IALG and G : I+ALG−→ CHG be the
functors which are de�ned in Theorem 3.11 and 3.21 respectively. By The-
orem 3.9, we have H+ = {0} and 0 ¦ (0 ¦ x) = x for all H ∈ F (CPG) and
x ∈ H. Hence F (CPG) ⊆ I+ALG. Since x¯y = x¦(0¦y) = x¦(0◦y−1) =
x ¦ (y−1) = x ◦ (y−1)−1 = x ◦ y. We get that GF (H) = G(FH) = G(H) =
H for all H ∈ CPG and (GF )(f) = G(Ff) = G(f) = f for all
f ∈ CPG(H1,H2). Therefore GF = I.

Let CSPG be the category of commutative semipolygroups. Then
f ∈ CSPG((H1, ◦1, 01), (H2, ◦2, 02)) if and only if f(x ◦1 y) = f(x) ◦2 f(y)
and f(e1) = e2.

Proposition 3.23. K : I+ALG−→ CSPG is a full embedding functor,
where K(H, ◦, 0) = (H,¯, 0) for all H ∈ I+ALG and K(f) = f for all
f ∈ I+ALG(H1,H2).
Proof. The proof of Theorem 3.21 shows that K is a faithful functor. Now
we show that it is full, i.e. K(I+ALG(H1,H2)) = CSPG(KH1,KH2). By
the proof of Theorem 3.17, for all y ∈ H there exists a unique y′ = y−1 ∈ H
such that 01◦1y = y−1 and 01◦1y−1 = y. Hence for all f ∈ CSPG(H1,H2)
we get that

f(x ◦1 y) = f(x ◦1 (01 ◦1 y−1)) = f(x¯1 y−1) = f(x)¯2 f(y−1).

Since 02 ∈ f(01) ⊆ f(y ¯1 y−1) = f(y)¯ f(y−1), hence by De�nition 3.12
(iii) we get that f(y−1) = (f(y))−1. Thus we have

f(x ◦1 y) = f(x)¯2 (f(y))−1 = f(x) ◦2 (02 ◦2 (f(y))−1) = f(x) ◦2 f(y).
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Hence K is full functor. Since K maps I+ALG(H1,H2) injectively to
CSPG(KH1,KH2), then K is faithful. Since K is full and faithful and
one-to-one on objects so is full embedding. Thus K(I+ALG) is a full
subcategory of CSPG.
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