Hyper I-algebras and polygroups

Mohammad M. Zahedi, Lida Torkzadeh and Radjab A. Borzooei

Abstract

In this note first we give the notion of hyper I-algebra, which is a generalization of BCI-algebra and also it is a generalization of hyper K-algebra. Then we obtain some fundamental results about this notion. Finally we give some relationships between the notion of hyper I-algebra and the notions of hypergroup and polygroup. In particular we study these connections categorically. In other words by considering the categories of hyper I-algebra, hypergroups and commutative polygroups, we give some full and faithful functors.

1. Introduction

The hyperalgebraic structure theory was introduced by F.Marty [8] in 1934. Imai and Iseki [7] in 1966 introduced the notion of a BCK-algebra. Recently [2], [9] Borzooei, Jun and Zahedi et.al. applied the hyperstructure to BCK-algebras and introduced the concepts of hyper K-algebra which is a generalization of BCK-algebra. In [5] 1988 Dudek obtained some connections between BCI-algebras and (quasi)groups. Bonansinga and Corsini [1] in 1982 introduced the notion of quasi-canonical hypergroup, called polygroup by Comer [3]. Now in this note we consider all of the above referred papers and introduce the notion of hyper I-algebra and then we obtain some results as mentioned in the abstract.

2. Preliminaries

By a hyperstructure (H, \circ) we mean a nonempty set H with a hyperoperation \circ , i.e. a function \circ from $H \times H$ to $\mathcal{P}(H) \setminus \{\emptyset\}$.

²⁰⁰⁰ Mathematics Subject Classification: 06F35, 03G25, 20N20 Keywords: hyper *I*-algebra, hypergroup, polygroup

Definition 2.1. A hyperstructure (H, \circ) is called hypergroup if:

(i) $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in H$,

(*ii*) $a \circ H = H \circ a = H$ for all $a \in H$,

(i.e. for all $a, b \in H$ there exist $c, d \in H$ such that $b \in c \circ a$ and $b \in a \circ d$).

Definition 2.2. A hyperstructure (H, \circ) is called *quasi-canonical hypergroup* or *polygroup* if it satisfies the following conditions:

- (i) $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in H$ (associative law),
- (*ii*) there exists $e \in H$ such that $e \circ x = \{x\} = x \circ e$ for all $x \in H$ (*identity element*),
- (iii) for all $x \in H$ there exists a unique element $x' \in H$ such that $e \in (x \circ x') \bigcap (x' \circ x)$, we denote x' by x^{-1} (inverse element),
- (iv) for all $x, y, z \in H$ we have: $z \in x \circ y \Longrightarrow x \in z \circ y^{-1} \Longrightarrow y \in x^{-1} \circ z$ (reversibility property).

If (H, \circ) is a polygroup and $x \circ y = y \circ x$ holds for all $x, y \in H$, then we say that H is a *commutative polygroup*.

If $A \subseteq H$, then by A^{-1} we mean the set $\{a^{-1} : a \in A\}$.

Lemma 2.3. Let (H, \circ) be a polygroup. Then for all $x, y \in H$, we have:

(i) $(x^{-1})^{-1} = x$,

(*ii*)
$$e = e^{-1}$$
,

(iii) e is unique,

$$(iv) (x \circ y)^{-1} = y^{-1} \circ x^{-1}$$

Proof. See [4].

Lemma 2.4. Let (H, \circ) be a polygroup. Then $(A \circ B) \circ C = A \circ (B \circ C)$ for all nonempty subsets A, B and C of H.

3. Hyper *I*-algebra

Definition 3.1. A hyperstructure (H, \circ) is called a *hyper I-algebra* if it contains a constant 0 and satisfies the following axioms:

- (HK1) $(x \circ z) \circ (y \circ z) < x \circ y$,
- (HK2) $(x \circ y) \circ z = (x \circ z) \circ y$,
- (HK3) x < x,
- (HK4) $x < y, y < x \Longrightarrow x = y,$
- (HI5) $x < 0 \Longrightarrow x = 0$,

for all $x, y, z \in H$, where x < y is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, A < B is defined by $\exists a \in A, \exists b \in B$ such that a < b.

A simple example of a hyper *I*-algebra is a *BCI*-algebra (H, *, 0) with the hyperopration \circ defined by $x \circ y = \{x * y\}$. Also it is not difficult to see that a hyper *I*-algebra is a generalization of hyper *K*-algebras considered in [2] and [9]. The following example shows that there are hyper *I*-algebras which are not a hyper *K*-algebras.

Example 3.2. Let $H = \{0, 1, 2\}$. Then the following tables show the hyper *I*-algebra structures on *H*.

0	0	1	2	0	0	1	2
0	{0}	{0}	$\{2\}$	0	{0}	$\{0, 1\}$	$\{2\}$
1	<i>{</i> 1 <i>}</i>	$\{0\}$	$\{2\}$	1	$\{1\}$	{0}	$\{2\}$
2	$\{2\}$	$\{2\}$	$\{0, 2\}$	2	$\{2\}$	{0}	$\{0, 1, 2\}$

Note that none of the above hyper *I*-algebras is not a hyper *K*-algebra, because $0 \neq 2$.

Theorem 3.3. Let $(H, \circ, 0)$ be a hyper I-algebra. Then for all $x, y, z \in H$ and for all non-empty subsets A, B and C of H the following hold:

 $\begin{array}{lll} (i) & x \circ y < z \Longleftrightarrow x \circ z < y, & (vi) & A < A, \\ (ii) & (x \circ z) \circ (x \circ y) < y \circ z, & (vii) & (A \circ C) \circ (A \circ B) < B \circ C, \\ (iii) & x \circ (x \circ y) < y, & (viii) & (A \circ C) \circ (B \circ C) < A \circ B, \\ (iv) & (A \circ B) \circ C = (A \circ C) \circ B, & (ix) & A \circ B < C \Leftrightarrow A \circ C < B. \\ (v) & A \subseteq B \Longrightarrow A < B, \end{array}$

Proof. The proof is similar to the proof of Proposition 2.5 of [2]. \Box

Example 3.4. Let $H = \{0, 1, 2\}$. Then the following table shows a hyper *I*-algebra structure on *H* such that $x \circ y \not< x$, because $1 \circ 2 = 2 \not< 1$.

0	0	1	2
0	{0}	{0}	$\{2\}$
1	{1}	$\{0, 1\}$	$\{2\}$
2	$\{2\}$	$\{2\}$	$\{0\}$

Lemma 3.5. Let H be a hyper I-algebra. Then for all x in H we have:

- (i) $x \circ 0 < x$,
- (*ii*) $x \in x \circ 0$.

Proof. (i) We have $0 \in 0 \circ 0 \subseteq (x \circ x) \circ 0 = (x \circ 0) \circ x$. So there exists $t \in x \circ 0$ such that $0 \in t \circ x$. Thus t < x, and hence $x \circ 0 < x$.

(*ii*) By (i) $x \circ 0 < x$. So there exists $t \in x \circ 0$ such that t < x. Since $t \in x \circ 0$, then $x \circ 0 < t$ and hence $x \circ t < 0$, by Theorem 3.3(i). Thus there exists $h \in x \circ t$ such that h < 0, so by (HI5) we have h = 0. Therefore $0 \in x \circ t$ and hence x < t. Since t < x, then by (HK4) we get that t = x. Therefore $x \in x \circ 0$.

Definition 3.6. Let $(H, \circ, 0)$ be a hyper *I*-algebra. We define

$$H^{+} = \{ x \in H \mid 0 \in 0 \circ x \}.$$

Note that $H^+ \neq \emptyset$ because $0 \in 0 \circ 0$.

Proposition 3.7. Let $(H, \circ, 0)$ be a hyper *I*-algebra. Then $(H^+, \circ, 0)$ is a hyper *K*-algebra if and only if $x \circ y \subseteq H^+$, for all x, y in H^+ .

Proof. Straightforward.

Example 3.8. (i) Let $H = \{0, 1, 2\}$. Then the following tables show two different hyper *I*-algebra structures on H:

0	0	1	2	0	0	1	2
0	{0}	{0}	$\{2\}$	0	{0}	{0}	$\{2\}$
1	{1}	$\{0, 1\}$	$\{2\}$	1	{1}	$\{0, 1\}$	$\{0, 2\}$
2	$\{2\}$	$\{2\}$	$\{0, 1\}$	2	$\{2\}$	$\{2\}$	$\{0, 1, 2\}$

We can seen that $H^+ = \{0, 1\}$ and it is a hyper K-algebra.

(ii) The following table shows a hyper *I*-algebra structure on $H = \{0, 1, 2\}$, where $H^+ = \{0, 1\}$ and it is not a hyper *K*-algebra, since $1 \in H^+$ but $1 \circ 1 \not\subseteq H^+$.

0	0	1	2
0	{0}	{0}	$\{2\}$
1	{1}	$\{0, 2\}$	$\{0, 2\}$
2	{2}	$\{2\}$	$\{0, 2\}$

Theorem 3.9. Let (H, \circ, e) be a commutative polygroup. Then (H, \diamond, e) is a hyper I-algebra, where the hyperopration \diamond is defined by $x \diamond y = x \circ y^{-1}$. Furthermore we have:

- (i) $H^+ = \{e\},$
- (ii) $e \diamond (e \diamond x) = x$ for all x in H.

Proof. (*HK*1) Let $A = (x \diamond y) \diamond (z \diamond y)$. Then by considering Lemma 2.3 we have $A = (x \diamond y) \diamond (z \diamond y) = \bigcup_{\substack{a \in x \diamond y \\ b \in z \diamond y}} a \diamond b = \bigcup_{\substack{a \in x \diamond y^{-1} \\ b \in z \diamond y^{-1}}} a \diamond b^{-1} = \bigcup_{\substack{a \in x \diamond y^{-1} \\ b^{-1} \in y \diamond z^{-1}}} a \diamond b^{-1}$.

Thus, by Lemma 2.4, we get that

$$A = (x \circ y^{-1}) \circ (y \circ z^{-1}) = x \circ (y^{-1} \circ (y \circ z^{-1})) = x \circ ((y^{-1} \circ y) \circ z^{-1}).$$

By Lemma 2.3 we have

$$A \diamond (x \diamond z) = \bigcup_{\substack{a \in A \\ b \in x \diamond z}} a \diamond b = \bigcup_{\substack{a \in A \\ b \in x \diamond z^{-1}}} a \circ b^{-1} = A \circ (z \circ x^{-1}).$$

Since $e \in y^{-1} \circ y$, hence $e \circ z^{-1} \subseteq (y^{-1} \circ y) \circ z^{-1}$, so

$$x \circ (e \circ z^{-1}) \subseteq x \circ ((y^{-1} \circ y) \circ z^{-1}) = A.$$

Thus we get that

$$(x \circ z^{-1}) \circ (z \circ x^{-1}) = (x \circ (e \circ z^{-1})) \circ (z \circ x^{-1}) \subseteq A \circ (z \circ x^{-1}) = A \diamond (x \diamond z).$$

Now, by Definition 2.2 and Lemma 2.4 we have

$$x \circ ((z^{-1} \circ z) \circ x^{-1})$$

= $x \circ (z^{-1} \circ (z \circ x^{-1})) = (x \circ z^{-1}) \circ (z \circ x^{-1}) \subseteq A \diamond (x \diamond z).$

Since $e \in z^{-1} \circ z$ and $e \in x \circ x^{-1}$, then we have $e \in A \diamond (x \diamond z)$, so $A < x \diamond z$. Therefore $(x \diamond y) \diamond (z \diamond y) < x \diamond z$.

(HK2) By Definition 2.2 and hypothesis we get that $(x \diamond y) \diamond z = (x \circ y^{-1}) \diamond z = (x \circ y^{-1}) \circ z^{-1} = x \circ (y^{-1} \circ z^{-1}) = x \circ (z^{-1} \circ y^{-1}) = (x \circ z^{-1}) \circ y^{-1} = (x \diamond z) \diamond y$. Therefore (HK2) holds.

(HK3) Since $e \in x \circ x^{-1} = x \diamond x$ we conclude that x < x and hence (HK3) holds.

(HK4) To show that (HK4) holds, we prove that x < y implies that x = y. Let x < y. Then $e \in x \diamond y = x \circ y^{-1}$. By Definition 2.2 (vi) we have $y \in e^{-1} \circ x = e \circ x = \{x\}$, thus y = x.

(HI5) Let x < e. Then by the proof of (HK4) we get that e = x, and hence (HI5) holds.

Therefore (H, \diamond, e) is a hyper *I*-algebra.

The proofs of the statements (i) and (ii) are routine.

Category of commutative polygroups: CPG

Consider the class of all polygroups. For any two polygroups (H_1, \circ_1, e_1) and (H_2, \circ_2, e_2) we define a morphism $f: H_1 \longrightarrow H_2$ as a strong homomorphism between H_1 and H_2 (i.e. $f(x \circ_1 y) = f(x) \circ_2 f(y) \forall x, y \in H$), which satisfies $f(e_1) = e_2$. Then it can easily checked that the class of all polygroups and the above morphisms construct a category which is denoted by CPG.

Remark 3.10. It is well known that if $f \in CPG(H_1, H_2)$, then $f(x^{-1}) = (f(x))^{-1}$ for all $x \in H_1$.

Category of hyper *I*-algebras: \mathcal{IALG}

Consider the class of all hyper *I*-algebras. For any two *I*-algebras $(H_1, \circ_1, 0_1)$ and $(H_2, \circ_2, 0_2)$ we define a morphism $f: H_1 \longrightarrow H_2$ as a strong homomorphism between H_1 and H_2 , which satisfies the condition $f(0_1) = 0_2$. Then it can easily checked that the class of all hyper *I*-algebras and the above morphisms construct a category which is denoted by \mathcal{IALG} .

Theorem 3.11. $F : CPG \longrightarrow IALG$ is a faithful functor, where $F(H, \circ, e) = (H, \diamond, e)$ and F(f) = f for all $H \in CPG$ and $f \in CPG(H_1, H_2)$.

Proof. Let (H, \circ, e) be a polygroup. Then by Theorem 3.9 (H, \diamond, e) is a hyper *I*-algebra, hence F(H) is an object in \mathcal{IALG} . Now let $f \in \mathcal{CPG}(H_1, H_2)$ we prove that $Ff \in \mathcal{IALG}(F(H_1), F(H_2))$. By Theorem 3.9 we have

$$Ff(x \diamond_1 y) = f(x \diamond_1 y) = f(x \circ_1 y^{-1}) = f(x) \circ_2 f(y^{-1})$$

= $f(x) \circ_2 (f(y))^{-1} = f(x) \diamond_2 f(y) = (Ff)(x) \diamond_2 (Ff)(y).$

Now it is easy to see that F satisfies to the other conditions of a functor. Since F maps $CPG(H_1, H_2)$ injectively to $IALG(FH_1, FH_2)$, hence F is faithful.

Problem: Is the functor F (defined in Theorem 3.11) full embedding?

Definition 3.12. A hyperstructure (H, \circ) is called a *semipolygroup* if it satisfies the following axioms:

- (i) $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in H$,
- (ii) there exists $e \in H$ such that $e \circ x = \{x\} = x \circ e$ for all $x \in H$,
- (*iii*) for all $x \in H$ there exists a unique element $x' \in H$ such that $e \in (x \circ x') \cap (x' \circ x)$, we denote x' by x^{-1} .

Example 3.13. Let $H = \{0, 1, 2\}$ and the hyperopration \circ on H is given by the following table:

0	0	1	2
0	{0}	$\{1\}$	$\{2\}$
1	{1}	$\{2\}$	$\{0, 1\}$
2	{2}	$\{0, 1\}$	$\{1, 2\}$

Then *H* is a semipolygroup, but it is not a polygroup because the reversibility does not hold. Indeed, $1 \in 1 \circ 2 = \{0, 1\}$ but $1 \notin 1 \circ 2^{-1} = 1 \circ 1 = \{2\}$. \Box

Lemma 3.14. Any group can be cosidered as a semipolygroup.

Lemma 3.15. Let $(H, \circ, 0)$ be a hyper *I*-algebra. If $H^+ \neq \{0\}$, then $0 \circ (0 \circ x) \neq x$ for all nonzero elements $x \in H^+$.

Proof. Let $x \neq 0$ be in H^+ . Then $0 \in (0 \circ x)$. Thus $0 \in (0 \circ 0) \subseteq 0 \circ (0 \circ x)$, hence $0 \in 0 \circ (0 \circ x)$. Since $x \neq 0$, so $0 \circ (0 \circ x) \neq x$.

Note that the following example shows that if $H^+ = \{0\}$, then it may be that the equality $0 \circ (0 \circ x) = x$ holds or does not hold.

Example 3.16. (i) Let $H = \{0, 1, 2\}$. Then the following table shows a hyper *I*-algebra structure on *H* such that $H^+ = \{0\}$, while $0 \circ (0 \circ 2) = 0 \circ 1 = 1 \neq 2$.

0	0	1	2
0	{0}	{1}	$\{1\}$
1	{1}	$\{0, 1\}$	$\{0, 1\}$
2	$\{2\}$	$\{1\}$	$\{0, 1, 2\}$

(*ii*) The following table shows a hyper *I*-algebra structure on $H = \{0, 1, 2\}$. Then $H^+ = \{0\}$ and $0 \circ (0 \circ x) = x$ for all $x \in H$.

0	0	1	2
0	{0}	$\{2\}$	$\{1\}$
1	{1}	$\{0, 1\}$	$\{2\}$
2	${2}$	$\{1, 2\}$	$\{0, 1\}$

Theorem 3.17. Let $(H, \circ, 0)$ be a hyper *I*-algebra. If $H^+ = \{0\}$ and $0 \circ (0 \circ x) = x$ for all $x \in H$, then $(H, \odot, 0)$ is a commutative semipolygroup, where the hyperopration \odot is defined by $x \odot y = x \circ (0 \circ y)$.

Proof. By Theorem 3.3(iv) we get that $x \odot y = x \circ (0 \circ y) = (0 \circ (0 \circ x)) \circ (0 \circ y) = (0 \circ (0 \circ y)) \circ (0 \circ x) = y \circ (0 \circ x) = y \odot x$, namely (H, \odot) is commutative.

Now we show that (H, \odot) is associative. We have

$$\begin{aligned} (x \odot y) \odot z &= (x \circ (0 \circ y)) \circ (0 \circ z) \\ &= (x \circ (0 \circ z)) \circ (0 \circ y) & \text{by Theorem 3.3 (iv)} \\ &= ((0 \circ (0 \circ x)) \circ (0 \circ z)) \circ (0 \circ y) & \text{by hypothesis} \\ &= ((0 \circ (0 \circ z)) \circ (0 \circ x)) \circ (0 \circ y) & \text{by Theorem 3.3 (iv)} \\ &= (z \circ (0 \circ y)) \circ (0 \circ x) & \text{by Theorem 3.3 (iv)} \\ &= (z \odot y) \odot x \\ &= x \odot (z \odot y) & \text{by commutativity} \\ &= x \odot (y \odot z) & \text{by commutativity} \end{aligned}$$

Thus (H, \odot) is associative.

Now, we prove that $0 \circ x$ has only one element for all $x \in H$. On the contrary, let $x_1, x_2 \in 0 \circ x$ and $x_1 \neq x_2$. Then by hypothesis we have $0 \circ x_1 \subseteq 0 \circ (0 \circ x) = x$, hence $0 \circ x_1 = x$ and similarly $0 \circ x_2 = x$. Thus $0 \circ (0 \circ x_1) = x_1$ and $0 \circ x_1 = x$ imply that $0 \circ x = x_1$. Since $x_2 \in 0 \circ x$, hence $x_1 = x_2$ which is a contradiction.

Since $0 \circ x$ has only one element for all $x \in H$, hence $0 \in 0 \circ 0$, thus we conclude that $0 \circ 0 = 0$. By Theorem 3.3 (iv) and hypothesis we get that $x \circ 0 = (0 \circ (0 \circ x)) \circ 0 = (0 \circ 0) \circ (0 \circ x) = 0 \circ (0 \circ x) = x$. Hence $x \circ 0 = x$. Therefore $0 \odot x = x \odot 0 = x \circ (0 \circ 0) = x \circ 0 = x$. So (H, \odot) satisfies in condition (ii) of Definition 3.12.

Since $H^+ = \{0\}$ hence $0 \notin 0 \circ x$ for all $x \neq 0$. Therefore for all $0 \neq x \in H$ there exists $0 \neq x' \in H$ such that $0 \circ x = x'$. By Theorem 3.3 (vi) we have $0 \in (0 \circ x) \circ (0 \circ x) = x' \circ (0 \circ x) = x' \odot x = x \odot x'$. Thus the condition (*iii*) of Definition 3.12 holds. Therefore (H, \odot) is a commutative semipolygroup.

Theorem 3.18. Let $(H, \circ, 0)$ be a hyper *I*-algebra such that $H^+ = \{0\}$. If $0 \circ (0 \circ x) = x$ and $x \circ x = 0$ hold for all $x \in H$, then $(H, \odot, 0)$ is an abelian group.

Proof. By considering Theorem 3.17 it is sufficient to show that $x \circ y$ has only one element for all $x, y \in H$. On the contrary let $x_1 \neq x_2$ and $x_1, x_2 \in x \circ y$. Then by the proof of Theorem 3.17 we conclude that there are $x', y' \in H$ such that $0 \circ x = x', 0 \circ y = y', 0 \circ x' = x$ and $0 \circ y' = y$. By (HK2) and $x \circ x = 0$ we get that $y' = 0 \circ y = (x \circ x) \circ y = (x \circ y) \circ x$. Since $x_1, x_2 \in x \circ y$, hence $x_1 \circ x = y'$ and $x_2 \circ x = y'$. Thus $y' \circ x_1 = (x_1 \circ x_1) \circ x = 0 \circ x = x'$ and also $y' \circ x_2 = x'$. By (HK2) and hypothesis we get that $(y' \circ x') \circ x_1 = (y' \circ x_1) \circ x' = x' \circ x' = \{0\}$,

similarly $(y' \circ x') \circ x_2 = \{0\}$. Since $0 \in (y' \circ x') \circ x_1$ so there exists $t \in y' \circ x'$ such that $0 \in t \circ x_1$. By (HK2) we have $(t \circ x_1) \circ t = (t \circ t) \circ x_1 = 0 \circ x_1$. Since $0 \in t \circ x_1$ hence $0 \circ t \subseteq 0 \circ x_1$. By the proof of Theorem 3.17 $0 \circ x_1$ has only one element so we get that $0 \circ t = 0 \circ x_1$. By hypothesis we have $t = 0 \circ (0 \circ t) = 0 \circ (0 \circ x_1) = x_1$. Therefore $x_1 \in y' \circ x'$. Since $(y' \circ x') \circ x_2 = 0$, then $x_1 \circ x_2 = 0$ and similarly $x_2 \circ x_1 = 0$. Thus (HK4) implies that $x_1 = x_2$, which is a contradiction. So $x \circ y$ has only one element. Therefore Theorem 3.17 implies that $(H, \odot, 0)$ is an abelian group.

Since every group is a polygroup hence (H, \odot) in Theorem 3.18 is a commutative polygroup. The following example shows that in Theorem 3.18 the condition $x \circ x = 0$ for all $x \in H$ is necessary.

Example 3.19. Let $H = \{0, 1, 2\}$ be a hyper *I*-algebra, in which the hyperopration \circ is given by the following table:

0	0	1	2
0	{0}	$\{2\}$	{1}
1	{1}	$\{0, 1\}$	$\{2\}$
2	{2}	$\{1, 2\}$	$\{0, 1\}$

Then $H^+ = \{0\}$, $0 \circ (0 \circ x) = x$ for all $x \in H$ and $1 \circ 1 \neq 0$. But $(H, \odot, 0)$ is not a group since $1 \odot 2 = \{0, 1\}$.

Note that the above example also shows that if we omit the condition $x \circ x = 0$, in Theorem 3.18, then (H, \odot) is not necessary to be a polygroup. Because the reversibility property does not hold. Indeed, in this example we have $1 \in 1 \odot 2 = 1 \circ (0 \circ 2) = 1 \circ 1 = \{0, 1\}$, but $1 \notin 1 \odot 2^{-1} = 1 \circ (0 \circ 2^{-1}) = 1 \circ (0 \circ 1) = 1 \circ 2 = 2$.

Theorem 3.20. Let $(H, \circ, 0)$ be a hyper *I*-algebra. If $H^+ = \{0\}$ and $0 \circ (0 \circ x) = x$ for all $x \in H$, then $(H, \odot, 0)$ is a commutative hypergroup.

Proof. The proof of Theorem 3.17 shows that $(H, \odot, 0)$ is commutative and associative. Let $a, b \in H$ be arbitrary. By the proof of Theorem 3.17 there exists $a' \in H$ such that $0 \in a' \odot a$ and $b \odot 0 = b$. Thus $b \in b \odot 0 \subseteq b \odot (a' \odot a) = (b \odot a') \odot a$. So there exists $t \in b \odot a'$ such that $b \in t \odot a = a \odot t$, namely $a \odot H = H \odot a = H$.

Hence $(H, \odot, 0)$ is a commutative hypergroup.

Notation: Let $\mathcal{I}^+ \mathcal{ALG}$ be a subcategory of \mathcal{IALG} in which for every object H we have $H^+ = \{0\}$ and $0 \circ (0 \circ x) = 0$ for all $x \in H$. Similarly, let \mathcal{CHG} be the category of commutative hypergroups with strong morphisms.

Theorem 3.21. $G : \mathcal{I}^+ \mathcal{ALG} \longrightarrow \mathcal{CHG}$ is a faithful functor, where $G(H, \circ, 0) = (H, \odot, 0)$ for $H \in \mathcal{I}^+ \mathcal{ALG}$ and G(f) = f for $f \in \mathcal{I}^+ \mathcal{ALG}(H_1, H_2)$.

Proof. Let $(H, \circ, 0)$ be an object in $\mathcal{I}^+ \mathcal{ALG}$. Then by Theorem 3.20 we have $G(H) = (H, \odot, 0)$ is an object in \mathcal{CHG} .

Let $f \in \mathcal{I}^+ \mathcal{ALG}(H_1, H_2)$. We prove that $Gf = f \in \mathcal{CHG}(G(H_1), G(H_2))$. By Theorem 3.20 we have

$$Gf(x \odot_1 y) = f(x \odot_1 y) = f(x \circ_1 (0_1 \circ_1 y)) = f(x) \circ_2 (f(0_1) \circ_2 f(y))$$
$$= f(x) \circ_2 (0_2 \circ_2 f(y)) = f(x) \odot_2 f(y) = (Gf)(x) \odot_2 (Gf)(y).$$

So it is easy to see that G satisfies to the other condition of a functor. Since G maps $\mathcal{I}^+ \mathcal{ALG}(H_1, H_2)$ injectively to $\mathcal{CHG}(GH_1, GH_2)$, hence G is faithful.

Remark 3.22. Let $F : C\mathcal{PG} \longrightarrow \mathcal{IALG}$ and $G : \mathcal{I}^+ \mathcal{ALG} \longrightarrow C\mathcal{HG}$ be the functors which are defined in Theorem 3.11 and 3.21 respectively. By Theorem 3.9, we have $H^+ = \{0\}$ and $0 \diamond (0 \diamond x) = x$ for all $H \in F(C\mathcal{PG})$ and $x \in H$. Hence $F(C\mathcal{PG}) \subseteq \mathcal{I}^+ \mathcal{ALG}$. Since $x \odot y = x \diamond (0 \diamond y) = x \diamond (0 \circ y^{-1}) = x \diamond (y^{-1}) = x \circ (y^{-1})^{-1} = x \circ y$. We get that GF(H) = G(FH) = G(H) = H for all $H \in C\mathcal{PG}$ and (GF)(f) = G(Ff) = G(f) = f for all $f \in C\mathcal{PG}(H_1, H_2)$. Therefore GF = I.

Let CSPG be the category of commutative semipolygroups. Then $f \in CSPG((H_1, \circ_1, 0_1), (H_2, \circ_2, 0_2))$ if and only if $f(x \circ_1 y) = f(x) \circ_2 f(y)$ and $f(e_1) = e_2$.

Proposition 3.23. $K : \mathcal{I}^+ \mathcal{ALG} \longrightarrow \mathcal{CSPG}$ is a full embedding functor, where $K(H, \circ, 0) = (H, \odot, 0)$ for all $H \in \mathcal{I}^+ \mathcal{ALG}$ and K(f) = f for all $f \in \mathcal{I}^+ \mathcal{ALG}(H_1, H_2)$.

Proof. The proof of Theorem 3.21 shows that K is a faithful functor. Now we show that it is full, i.e. $K(\mathcal{I}^+ \mathcal{ALG}(H_1, H_2)) = \mathcal{CSPG}(KH_1, KH_2)$. By the proof of Theorem 3.17, for all $y \in H$ there exists a unique $y' = y^{-1} \in H$ such that $0_1 \circ_1 y = y^{-1}$ and $0_1 \circ_1 y^{-1} = y$. Hence for all $f \in \mathcal{CSPG}(H_1, H_2)$ we get that

$$f(x \circ_1 y) = f(x \circ_1 (0_1 \circ_1 y^{-1})) = f(x \odot_1 y^{-1}) = f(x) \odot_2 f(y^{-1}).$$

Since $0_2 \in f(0_1) \subseteq f(y \odot_1 y^{-1}) = f(y) \odot f(y^{-1})$, hence by Definition 3.12 (*iii*) we get that $f(y^{-1}) = (f(y))^{-1}$. Thus we have

$$f(x \circ_1 y) = f(x) \odot_2 (f(y))^{-1} = f(x) \circ_2 (0_2 \circ_2 (f(y))^{-1}) = f(x) \circ_2 f(y).$$

Hence K is full functor. Since K maps $\mathcal{I}^+ \mathcal{ALG}(H_1, H_2)$ injectively to $\mathcal{CSPG}(KH_1, KH_2)$, then K is faithful. Since K is full and faithful and one-to-one on objects so is full embedding. Thus $K(\mathcal{I}^+ \mathcal{ALG})$ is a full subcategory of \mathcal{CSPG} .

References

- P. Bonansinga, P. Corsini: Su gli omomorfismi di semi-ipergruppi, e di ipergruppi, Bol. U.M.I. 6 1-B, (1982), 717 - 727..
- [2] R. A. Borzooei, A. Hasankhani, M. M. Zahedi and Y. B. Jun: On hyper K-algebras, Math. Japon. 52 (2000), 113-121.
- [3] S. Comer: Polygroups derived from cogroup: J. Algebra 89 (1984), 397-405.
- [4] P. Corsini: Prolegomena of hypergroup theory, Aviani Editore, Italy 1993.
- [5] W. A. Dudek: On group-like BCI-algebras, Demonstratio Math. 23 (1988), 369-376.
- [6] A. Hassankhani: F-hyperalgebraic structures, Ph.D. Thesis, Shahid Bahonar University of Kerman, Iran 1997.
- [7] Y. Imai and K. Iséki: On axiom systems of propositional calcul, XIV, Proc. Japan Academy 42 (1966), 19 – 22.
- [8] F. Marty: Sur une generalization de la notion de groups, 8th Congress Math. Scandinaves, Stockholm 1934, 45 – 49.
- [9] M. M. Zahedi, R. A. Borzooei, Y. B. Jun and A. Hasankhani: Some results on hyper K-algebra, Scientiae Math. 3 (2000), 53-59.

Deptartment of Mathematics Shahid Bahonar University of Kerman Kerman Iran e-mail: zahedi_mm@mail.uk.ac.ir (M.M. Zahedi) ltorkzadeh@yahoo.com (L. Torkzadeh) Received July 28, 2002