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ONE-SIDED T-QUASIGROUPS AND IRREDUCIBLE BALANCED
IDENTITIES
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Abstract

Left and right T-quasigroups are considered. It is proved that all primitive left (right)
T-quasigroups form the wvariety which can be characterized by two identities. Some
varieties of primitive left (right) T-quasigroups and T-quasigroups characterized by
irreducible batanced identities are picked out.

Introduction.

It is known that all primitive quasigroups isotopic {o groups form the
variety characterized by one identity [1].

The class of linear quasigroups plays the important role in this variety. As
V.D.Belousov has shown in [1] these quasigroups are closely connected with
irreducible balanced identities in quasigroups.

A quasigroup &) is called linear (over a group) if a group (+) its
automorphisms @, and an element c¢e() exists such that

Xy = (@x+c+\yy | (1)
for all x,yeQ.

The automorphisms ¢,y are called determining automorphisms for the
quasigroup @Qf-).

In {2} the concept of linear quasigroup was generalized as follows.

A quasigroup Q) is called a left (right) linear quasigroup if there exist
group. Q(+), its automorphism ¢ (y) and an one-to-one mapping B (o) of @ onto
@ such that

. xy=@x+By (xy=ax+yy)
for all x,yeQ.
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As it was shown in [2], left (right) linear quasigroups are closely connected
with the left (right) nucleus in quasigroups. They also arised in [1] in the
investigation of irreducible balanced identities in quasigroups. ‘

All primitive left linear quasigroups form the variety characterized by the
following identity:

[x(u\y)]z =[x(u\u)]- (u\yz).. (2)

Analogously, all primitive right linear quasigroups are characterized by the
identity

x[(y/u)z] = (xy Ju)-[(u/u)z] (3)
(Corollary 2 [2]).

All primitive linear quasigroups also form the variety which can be
characterized by the identities (2) and (3) (Corollary 3 [2]) or the unique
identity _
xy -uv=1xu-(a,y v) (4)
where ¢, is a mapping of @ in @ depending on u (Theorem 1 [3]). It is easy
to see that ¢, is an one-to-one mapping of @ onto Q:

ey =[u\(u/u)y u)/ (u\u).

The T-quasigroups, ie. the quasigroups linear over abelian groups, are the
special case of linear quasigroups. These quasigroups were introduced and
studied in detail in [4,5] The well known medial quasigroups are a special
case of T-quasigroups.

In [6] it was proved that the T-quasigroups play a role in the theory of
gquasigroups comparable to that of abelian groups among groups. Namely, a
quasigroup coincides with its centre iff it is a T-quasigroup (see Theorem 6 [6]).

In [6] the variety of all primitive T-quasigroups 1is characterized by two
identities: (4) and the identity

xy-uv=(fv y)ux, (5)
where
By ={(x{(x/xv))/ x]/(x\x). *

In this article we consider the one-sided T-quasigroups (left and right
T-quasigroups) and prove that all primitive left (right) T-quasigroups form the
variety, which can be characterized by two identities. We also pick out a
number of varieties of primitive left (right) T-quasigroups and
T-quasigroups characterized by irreducible balanced identities.



G.B.Belyavskaya, A HTabarov

1. Left (right) T-quasigroups and their characterization.

The following case of a left linear quasigroup @) arised in [1] due to
V.D.Belousov when he studied quasigroups with irreducible balanced identities:
xy = gx +fy,
where @(+) is an abelian group, ¢ is its automorphism, B is an one-to-one
mapping of @ onto . Using this we say that a quasigroup Q(-) is a left (right)
T-quasigroup, briefly, a LT-quasigroup (RT-quastgroup) if @Q(:) is a left

(right) linear quasigroup over an abelian group.

First, we recall that the primitive quasigroup @(.\,/) corresponds to each
quasigroup Q(:), where

Xy=zodx\z=yozl/y=x

We also note that according to Lemma 1 [2] a left linear quasigroup, which
is simultaneously a right linear quasigroup, is a linear quasigroup. From this
Lemma it immediately follows that if a LT-quasigroup is a RT-quasigroup,
then it is a T-quasigroup.

Theorem 1. All primitive LT-quasigroup form the variety characterized by the following
two identities
[x(e\p) )z = [xG\w)]- (u\ yz), (6)
(x/w)(u\y)=(y/u)(u\x). (7)
All primitive  RT-quasigroups are characterized by the identity (7) and the following
identity
x[(y/w)z]= (xy /w)[(u/)z]. (8)

Proof. According to Corollary 2 [2] the identity (6) means that @Q(-) is left
linear over a group @(-+). But (7) implies that Q(+) is an abelian group. Really,
write (7) as follows

R;l.x.L;]yzRu—Iy_Lglx’ 9)
where R, L, are the translations of @(-) with respect to an element w ()
Ryx=xu, L,x=ux
Fixing in (9) the element u, we obtain that
Xoy = yox,
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where o) is a loop principally isotopic ta Qf:). Hénce, the loop Qo) is
commutative. By the Albert's theorem (see, for exarﬁple, Theorem 1.4 [7]) the
loop Q(o) is an abelian group. Thus, @(-)isa  LT-guasigroup.

Conversely, if Q(-) is a LT-quasigroup, then it is left linear over an abelian
group @Q(+) and by Corollary 2 [2] Q) satisfies the identity (6). Next, since
the group @Q(+) is abelian, then by the Albert's theorem each loop, isotopic to
Q(+), is commutative. Hence, the equality (9) is satisfied for all x,y,u €, ie. the
identity (7) halds. This completes the proof for the LT-quasigroups.

The proof. for the RT-quasigroups is similar if we take into account that the
identity (8) characterizes the wvariety of all right linear quasigroups (see
Corollary 2 [2]). '

In the introduction it was noted that the wvariety of all primitive
T-quasigroups is characterized by two identities (4) and (5). From Theorem 1
an another characterization of T-quasigroups follows.

Corollary 1. The variety of all primitive T-quasigroups can be characterized by three
identities (6),(7) and (8).

Indeed, it follows from above that if a  LT-quasigroup (-} is also a
RT-quasigroup, then @) is a T-quasigroup. The converse follows from

Theorem 1.

2, LT-quasigroups, RT-quasigroups, T-quasigroups and
balanced identities.

Now we recall that an identity
Wy = W,y

defined on a quasigroup -} is called balanced if each variable &, which occurs on
one side w) of the identity, occurs on the another side w, too and if no
variable oceurs in w; or 3w, more than once. This definition is due to A.Sade
(see [8]). All balanced identities can be separated on two kinds. An identity
wy=w, is kind 1 if the elementsin w; and w, are equally ordered and is kind
2 otherwise.

An identity w;=w, is called reductble [1] if either
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(i) each of w; and w, contains a "free element" & so that w; is of the
form wx or xv; and w, likewise is the form wmwx or xvy (where wu; or v
represents a subword of the word w; fori=12), or

(ii) w; has the product xy of two free elements x and y as a subword and
w, has one of the produet xy or yx as a subword, or the dual of this
statement. |

An identity which is not reducible is called irreducible.

V.D.Belousov has proved the following remarkable theorem (Theorem 3 [1]):
a quasigroup which satisfies an irreducible balanced identity is isotopic 1o a
group.

Let

(1, %9, %) = (. ((21x2)%3).. )%,

ey oxe 1= % (% (L (o2 (1% D))
and min means that m is a divisor of n. By |¢| we denote the order of the
automorphism ¢ and let Sy denotes the set of all one-to-one mappings of @

ocnto Q.

A mapping | yeSp is called a quasiautomorphism of a quasigroup Q(-) if
there exist one-to-one mappings o, €S, such that

Y(xy) = ax-By.
According to Lemma 2.5 [7] if y is & quasiautomorphism of a group Q(+), then
7%= Reyyx = Ly X,
where y,,7, are automorphisms of Q(+);
Rx=x+s, Lx=s5+x.
V.D.Belousov in [1,p.79] has proved the following important for us statement,

which can be formulated as follows

Theorem 2 [1). Let Qf) be a LT-quasigroup:
xy = ox + By,

¢ is an automorphism of the group O(t) of the order m, © is a permutation of the set M =
{0.1,....n}, where mn, satisfying the conditions:

(1) 80 =0,

(2) Bn=n,

(3} Bi=i(modm)
Jor each i € M. Then the following irreducible balanced identity of kind 2

(oY1 Yn-1Vn) = (DooYe1 - Yoen-1)Yen) (10)

is satisfied in ().
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-Coﬁversebl, if the identity (10) holdsin a quasigroup (J(}) for a nonidentity permutation ©
of Mithen Q() is a LT-quasigroup:
Xy = @x+By,
-;}Ftke automorphism © has a finite order m which is a divisor of (Qi—-i). for each

;—~ 0.1,...n and the permutation O satisfies the conditions (1), (2), and (3).

~ For our aims the next special case of Theorem 2 [1] is useful

Theorem 3 . Let O(;) be a LT-quasigroup:

- xy = ox + By,
‘Je l m,. m§n Then Q) satisfies the following irreducible balanced identity of kind 2:
(VoY1 Yn-1¥n) = )y Yu-130)- (11)

| Cormrsebz, if a quasigroup Q) satisfies the identity (11), then Q(-_)‘ is a

' LT-quasigroup:
'_ - | xy = @x +py,

and the order m of the automorphism is a divisor of .

For the proof it is enough to observe that the identity (11)is (10)if ©=(0n),
where: (0n) - is a transposition (a cycle of the lenght two). Evidently, ©=(0n),
| satlsﬁes each of conditions (1), (2), (3).

Remark that the case m = n corresponds to the 1dent1ty (11) of a "minimal
-1enght“ |

+The, analogue of Theorem 2 [1] is true for RT-quasigroups if we take the
identity | |

Dyndn-1--- 1Yox]1=[YenYo(u-1y- - YorVeoX]
instead of (10), but we shall formulate and prove the analog of Theorem 3
.phéggigg-_-a little the outline of the proof of the corresponding statement from

The’urem 4. Let Q) be a RI-quasigroup:

: Xy =ax+\y,
| I k, k|i. Then the following irreducible balanced identity of kind 2:
iy - yyvoex] =Wy nxl (12)

is satisfied in Q).
Conversely, if the identity (12) is satisfied in a quasigroup () for some 121, then
Q¢ isa RI-quasigroup.
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Xy = ox+\y,
and the order & of the automorphism y is a divisor of 1.

Proof. Let Q(-) be a RT-quasigroup:
Xy = 0X + Yy,
\w|=k, k|l. Then
(e ¥l = 31 - 00X)). ) =
= o) + oy + WP+ Aoy +y e =
= QY+ Yoy + \uzay,_z +o Yy HYX =
= Yoy X)) ) =ayi-r yixl
Conversely, let the identity (12) be satisfied in a quasigroup

some /21 By Theorem 3 from [1] Q(:) isisotopic toa group Q(t+):

xy = Ax +8y
where 1,6 €55. That is why from (12) we have
Dyt Yyox]= yilyimr »ivex] =
=My +8y i1 yex]= Mo +8[yiy - yiixd
Fix x andall y,,j#0./, in this equality:
Ay +81yg = Wyg +81y;

Q) for

(13)

for some 8§ €Sy. But by Lemma 11 from [1] a group @Q(+) is abelian if the

equality
ox +fy = yy +0x
is satisfied in Q(+) for some a,B,v,0€S).

Next show that 8 from (13) is a quasiautomorphism of the abelian group

Q(+). The identity (12) means that

Y11 - (ex))-. ) = Yoo n (px))-. ).
Let /=3, then (14) can be written as follows

Ay +0(Ayry +0[yia.. iyox])) =

= Mo +8(Ayp +0 iz yix]).
Put in this equality

X=Ay =3 =y =0,
where 0 is the identity element of Q(+), then
Ay +811-y = 8(Ay1 +021)
for the corresponding §;,8; €S5p5. Hence, 6 is a quasiautomorphism
Let now [ = 2, then (14) implies
Ayy +8(An +8(yex)) = Ayp +8(Ay +8(y;x)).
Put here Ay, =x=0, then
14

(14)

of Q(+).
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Ayy +83y; =8(Ay; +0,4¥3)
for 83,84 €5g. At last, let 1=1, then from (14) we have

My +8(ypx) = Ay +0(3x),
or

?\;yl +d'x = 6()1113'),
if we put Ay, =0.
Thus, in all cases we obtain that & is a quasiautomorphism of
According to Lemma 2.5 [7]
' dx = 5+ yx,
where \/ is an automorphism of Q(+), s €(Q. Hence,
xy = Ax +0y = ax + Wy,
where
o = Ax +s.
Using (15) in (14) we have
oy + ey +ylayy +oy oy + ylayy oyt =
=g + yayy_g + wzay,_z +. ..+w{’1ayl + w’ay, + \p“"]x

whence

wyy 9 oy = o + v ey,

v (oo — ayy) = oy ~ayy.

Therefore, y'x=x for every xeQ, so the order Jy| of the automorphism

a divisor of 1 This completes the proof.
Theorems 3 and 4 imply

Corollary 2. Let Q) be a T-quasigroup:
Xy = Qx+e+yy,

Q).

(15)

Y is

lol=m, W=k, min, kL. Then the identities (11),(12) are satisfied in Q(). Conversely, if the

identifies (11) and (12) hold for certain ni=21 in quasigroup  Q(.), then Q) is
GHASTErON].

Xy = Qx+c+yy,
el | oand | L

Prooi. Since every T-quasigroup is a LT-quasigroup and

a 1-

a

fi-guesigroup, the first statement follows at once from Theorems 3 and 4.

Lanersely, according to Theorem 4 if (12) is satisfied in a quasigroup Q(-) for

Lm0, then @(+) 1s a RT-quasigroup:

15
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Xy = Ax+8y = ax +yy,
(see (15)). and |y| is a divisor of I Next, using the equalities (11) and (13), we can

prove that A is a quasiautomorphism of Q(+):
Ax = @Qx +1,
where teQ, ¢cAutQ(+) and |p||n. The proof is similar to that of the case

for in Theorem 4. Thus,
Xy =Ax+0p=Qx+t+s+yYy=Qx+c+yy,
where ¢ = tts, |p||n, |v|!l. This completes the proof.

3. Some subvarieties of the varieties of
LT- (RT-) quasigroups and T-quasigroups.

The above proved results present the posibility to pick out some varieties of
primitive  LT-quasigroups, RT-quasigroups and T-quasigroups, which are
characterized by irreducible balanced identities of kind 2 and depend on the
orders of their determining automorphisms.

We begin with the following Lemma which means that the order of a
determining automorphism ¢ (y) of a LT-quasigroup (RT-quasigroup) @)
is its invariant and does not depend on a group over which @(:) is left (right)

linear.

Lemma 1.
(i) Let Q) bea LT-quasigroup and

xy = ox+PBy = propy,
where © (-(E) is an automorphism of the abelian group Q(+) (Q(o)), B,E €Sp. Then
ox =R, ERa“lx forcertain aeQ (Rx=x+a) ie |(p|=|5|.
(i1) Let Q() be a RT-quasigroup and
B Xy = QX + Yy = axoyy,
where edutQ(+), ¥ edutQ(o). Then vy =R, YRy for some acQ, ie. |y|=|yl.

Proof. Let
xy = e+ fy = grofy,
peAutQ(+), © eAutQ(o).

16
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In this case the group (o) is principally isotopic to the group @(+). By Albert’s
Theorem (J(o) is isomorphic to @(+). Moreover, there exists such an element
ae() that
R, (xoy)=Rx+R,y, Rx=x+a

(see the proof of Albert’'s Theorem in {7], p.17). Hence, using the equality

R, x=x -a,
we have

xy = grofy = R;'(R,0x + R,By) =
=R, 0R; (x+a)+By = R, oR; 'x +By

( ﬁl y=R, 60+[§y, 0 is the identity element of @(+)), since

0= R, 0R;
is an automorphism of @(+). Thus,

xy =gr+By=qux+fy
whence by x=0 have
B=B,0=01,l0=lo)=/o]
The second part of Lemma 1 is proved analogously.

Corollary 3. If O() isa T-quasigroup and
Xy = QX+ e+ Yy = Qrocoyy,
then
g =R, R,
w=R,wR;,
ie.  lol=lol lvl=jw!

The proof follows immediately from Lemma 2.

Now let m,n be natural numbers. Denote by in,, (W) the class of all
LT-quasigroups (RET-quasigroups) with determining automorphisms whose orders
are devisors of m {of n). In other words, a LT-quasigroup (a RT-quasigroup) Q(-)
lies in Sﬂf,, (R it xy=ox+Py (xy =ox+yy) for certain abelian group &(+), its
automorphism ¢ (y) such that 0" =g (y" =¢),ie. |p||m (w||n). Here & is the
identity mapping of @.

By W,, we denote the class of all T-quasigroups with a pair (@,y) of the

determining automorphisms such that

17
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o7 =y" =¢.
Hence, a T-quasigroup @Qf:) belongs to R, , iff
Xy =ox+c+yy,
lpl | m and |y||n

for some abelian group Q(%).
From Lemma 1 it follows at once that

R AR =R (AL, AR, =97, )

(mn)
where (m,n) is the greatest common divisor of m,n. In particular, if p,g are
prime numbers, then

RARE=R] (R, R =R)).

Next we prove
Lemma 2, ®,, = ‘.R,’,, R

Proof. It is clear, that
R, C Re, AR
Let €(-) occurs in Ean and ). Then there exists abelian groups @(+) and
(o), their automorphisms ¢ and ‘q}-, such that
m —n
¢ =y =€

and

xy = gx+fy = axoyy (16)
for some a,B &Sy In this case there exists such an element ae(Q that

R,(xoy)=R,x+R,y
(see the proof of Lemma 1). Hence, from (16) by x=0 we have

By = alayy = R ! (R,00+ R, wy) =
= —a+a+a0+R YR (a+y)=c+yy,

wheie
| c=al+ RGGO,
since w 4w is an automorphism of Q(+). Thus,
lwi=lwl,
XY =0x +C+ Y,

and g,

o J3

a5 reguired.
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ey B poy . e
Now denote by MR, RN, Rmn  the classes of corresponding primitive

LT-quasigroups, RT-quasigroups and T-quasigroups.

Theorem 5.
(i) E_ﬁi,,_ is a variety of primitive LI-quasigroups characterized by the identity
(Y1 Y ) = (V1 V2. Y10 ) (17)
(ii) R, is a variety of primitive RT- ~quasigroups  characterized by the identity
[YnYua--21Yox) = WoYea - Yivax] (18)
(iil) Ry is a variety of primitive T-quasigroups  characterized by the identities
(17) and (18).

Proof.
(i) Let Q(-)eR! :
. xy=gx+By, |of | m,
then Q(-) satisfies (17) by the first part of Theorem 2. Conversely, if Q)
satisfies (17), then it is a LT-quasigroup by the second part of Theorem 2 and

| C xp=oxaby. ol lm,
ie. Q)ew! .

(ii) follows similarly from Theorem 3.

(iii) is a consequence of Lemma 2, (i) and (ii).

Next we consider some special cases of the above varieties.
The variety ﬁf (1}  includes all quasigroups such that
xy=x+By (w=ax+y), afeSy
over all abelian groups @Q(+) (@ iS a nonfixed set). These wvarieties are
characterized by the identities
Yo =XYoo (N YeX = Yo yix),
respectively.
The variety _‘5{-"5 (ﬁ;) includes all quasigroups from 51“{ (gﬁ) and
quasigroups of the form
Xy =ex+fy,  [of=2
(o =oor+yy,  |yl=2)
If Q)=Rs (Q(-Je®s), then Q) satisfies the identity
X¥o-y)ya = (2 1) Yo,
G W Yex) = yo (- yax)),
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and onnEisely
L..¢ .,2 be simple numbers. Then iRi, (‘I{;) contains all quasigroups from

?ﬁ{_ (5?;) and all LT-quasigroups (RT-quasigroups) with the determining
automorphisms of the order p (of the order g). If @ )eRpg, then it has one of
the next forms: '
y=ex+ctyy,  lol=p, |vi=g
xy=¢x+cty,  lol=p,
xy=x+c+yy, lvl=gq,
Xy =Xx+c+y.

Finally we note that the variety of all abelian groups is contained in every

. =l = =
variety from 0, ER:, Ron for any m,n.
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