THE GOUPOÏDE $\mathbb{R}_{f}^{S}(\varepsilon \mathcal{L}), \mathcal{L} \in \mathbb{R}_{c}$

Dumitru Botnaru

State University of Tiraspol E-mail:dumitru.botnaru@gmail.com

Abstract. In the category $C_2 \mathcal{V}$, let \mathcal{L} be a reflective subcategory, and $\mathbb{R}^S_f(\varepsilon \mathcal{L})$ the class of reflective subcategories closed in relation to $(\varepsilon \mathcal{L})$ -subobjects and $(\varepsilon \mathcal{L})$ -factorobjects.

Theorem. Let $l : C_2 \mathcal{V} \to \mathcal{L}$ be the reflector functor exactly to the left, \mathcal{L} contains the S subcategory of the spaces with weak topology, and $\mathcal{R}, \mathcal{T} \in \mathbb{R}_f^S(\varepsilon \mathcal{L})$. Then $\lambda_{\mathcal{R}}(\mathcal{T}) \in \mathbb{R}_f^S(\varepsilon \mathcal{L})$.

Thus, in the class $\mathbb{R}^{S}_{f}(\varepsilon \mathcal{L})$ is defined a binary operation $\mathcal{R} \circ \mathcal{T} = \lambda_{\mathcal{R}}(\mathcal{T})$ with the following properties: $\mathcal{R} \circ \mathcal{C}_{2}\mathcal{V} = \mathcal{R}, \mathcal{C}_{2}\mathcal{V} \circ \mathcal{R} = \mathcal{C}_{2}\mathcal{V}$, and the operation \circ is neither commutative nor associative.