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Abstract

We continue the study of successively orthogonal systems of k-
operations (SOS) which generalize orthogonal sets. These systems
have the following property: every k successive k-ary operations
of the system are orthogonal. We suggest new methods of construction
of such systems, in particular, method of continuation of an
orthogonal system of k-operations to a SOS.
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Introduction

It is known that k-ary operations, k ≥ 2, correspond to k-dimensional
hypercubes which are objects of combinatorial analysis. A binary
quasigroup is an algebraic equivalent of a Latin square and a k-
ary quasigroup respects to a permutation cube of the dimension
k.

The algebraic approach is useful for research of such combinatorial
objects. All of these objects and their corresponding orthogonal
sets (systems) have many applications in various areas including
affine and projective geometries, designs of experiments, error-
correcting and error-detecting coding theory and cryptology.
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Preliminaries

A k-ary operation A (briefly, a k-operation) on a set Q is a
mapping A : Qk → Q, defined by A(xk1) → xk+1, where (xk1) =

(x1, x2, ..., xk). In this case write A(xk1) = xk+1.

A k-groupoid (Q,A) is a set Q with one k-ary operation A, defined
on Q.

The k-operation Ei : Ei(x
k
1) = xi, 1 ≤ i ≤ k, on Q is called the

i-th identity operation (or the i-th selector) of arity k.

In the binary case, E1 = F , E2 = E.
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An i-invertible k-operation A, defined on Q, is a k-operation with
the following property: the equation A(ai−1

1 , x, aki+1) = ak+1 has

a unique solution for each fixed k-tuple (ai−1
1 , aki+1, ak+1) of Qk.

A k-ary quasigroup (or simply, a k-quasigroup) is a k-groupoid
(Q,A) such that the k-operation A is i-invertible for each i =

1,2, . . . , k.
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The following three definitions generalize the corresponding notions
for the binary case (V.D.Belousov for k = 2), were introduced
by Bektenov A.S., Yacubov T. (1974).

Definition 1. A k-tuple < A1, A2, ..., Ak >=< Ak1 > of k-operations,
given on a set Q, is called orthogonal if the system {Ai(xk1) =

ai}ki=1 has a unique solution for all ak1 ∈ Q
k.

Definition 2. A set {A1, A2, . . . , At}, t ≥ k, of k-operations
is called orthogonal if every k-tuple of these k-operations is
orthogonal.

Definition 3. A set Σ = {At1}, t ≥ 1, of k-ary operations, given
on a set Q, is called strongly orthogonal if the set Σ = {At1, E

k
1}

is orthogonal.
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There is a close connection between orthogonal k-tuples of k-
operations on Q and permutations on Qk by virtue of the following
result of A. S. Bektenov, T. Yacubov (V.D. Belousov for k = 2):

A k-tuple < Ak1 > of k-operations is orthogonal if and only if the
mapping θ = (Ak1) : Qk → Qk, (xk1)→ (A1(xk1), A2(xk1), ..., Ak(xk1)) =

(Ak1)(xk1) is a permutation on Qk.

Some properties of k-operations can be expressed by means of
orthogonality. For example, a k-operation A is i-invertible (1 ≤
i ≤ k) if and only if the k-tuple < Ei−1

1 , A,Eki+1 > is orthogonal (or

equivalently, the mapping θ = (Ei−1
1 , A,Eki+1) is a permutation).

A k-operation A is a k-quasigroup if and only if the k-tuple
< Ei−1

1 , A,Eki+1 > is orthogonal for any i ∈ 1, k.
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Methods of construction of SOS

The concept of successively orthogonal systems of k-operations
was introduced in the article [gbel] published in 2014.

Some examples of these quasigroups arose in the investigation of
row-complete latin squares and recursively differentiable quasigroups
connected with recursive MDS-codes.

Definition 4 [gbel]. An ordered system Σ = {At1} of k-ary
operations, k ≥ 2, t ≥ k, given on a set Q, is called a successively
orthogonal system (briefly, a SOS), if any successive k operations
are orthogonal.

It is evident that every (strongly) orthogonal set of k-operations
is a successively orthogonal system.
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In the article [gbel] it were given the following methods of the
construction of a SOS, using one or more 1-invertible k-operations.

Theorem 1 [gbel]. Let A 6= E1 be an 1-invertible k-operation
on a set Q, k ≥ 2, θ = (Ek2, A), s0 be the order of the permutation
θ in the group SQk, then s0 > k and the sequence of k-operations

E1, E2, ..., Ek, A,Aθ,Aθ
2, ..., Aθk−1, Aθk, ..., Aθs0−k−1

is a SOS.

Remark 1. Note that from the proof of this theorem it follows
that this fragment of the SOS is repeated, that is Aθs0−k =

E1, Aθ
s0−k+1, ..., Aθs0−1 = Ek. Aθs0 = A... .
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Theorem 2 [gbel]. Let A1, A2, ..., At be 1-invertible k-operations
and the permutations θ1 = (Ek2, A1), θ2 = (Ek2, A2), θ3 = (Ek2, A3),...,
θt = (Ek2, At) have the orders s1, ..., st respectively, then the system

E1, E2, ..., Ek, A1, A1θ1, A1θ
2
1, ..., A1θ

k−1
1 , A1θ

k
1, ..., A1θ

s1−k−1
1 ,

E1, E2, ..., Ek, A2, A2θ2, A2θ
2
2, ..., A2θ

k−1
2 , A2θ

k
2, ..., A2θ

s2−k−1
2 , ...,

E1, E2, ..., Ek, At, Atθt, Atθ
2
t , ..., Atθ

k−1
t , Atθ

k
t , ..., Atθ

st−k−1
t

is successively orthogonal.
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The following theorem of [gbel] points out the number of different
operations in the SOS of Theorem 1 [gbel] for a given 1-invertible
k-operation A.

Theorem 3 [gbel]. Let a permutation (Ek2, A) have the order s0,
then a successively orthogonal system of Theorem 2 contains s0

different k-operations, which are repeated. If s0 = k+1, then the
k-operation A is a k-quasigroup. For any 1-invertible k-operation
s0 ≥ k + 1.

Now we suggest a new more general recursive method of the
construction of a SOS, using any 1-invertible k-operations.
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Theorem 4. Let A1, A2, ..., At, t ≥ 1, be arbitrary 1-invertible
k-operations, k ≥ 2, given on a set Q, θ1 = (Ek2, A1), θ2 =

(Ek2, A2), ..., θt = (Ek2, At) be the corresponding permutations on
Qk. Then the system

E1, E2, ..., Ek, B1 = A1, B2 = A2θ1, B3 = A3(θ2θ1), ...,

Bt = At(θt−1...θ2θ1)

is a SOS.
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Corollary 1. The system of the theorem 4 has the form

E1, E2, ..., Ek, B1, B2, ..., Bt where B1 = A1,

Bs = As(E
k
s , B1, B2, ..., Bs−1), if 1 < s ≤ k,

Bs = As(Bs−k, Bs−k+1, ..., Bs−1), if k < s ≤ t.

Corollary 2. Let A1, A2, ..., At be arbitrary 1-invertible binary
operations, given on a set Q, θ1 = (E,A1), θ2 = (E,A2), ..., θt =

(E,At) be the corresponding permutations on Q2. Then we have
the following SOS:

F,E, B1 = A1, B2 = A2(E,B1), B3 = A3(B1, B2), ...,

Bt = At(Bt−2, Bt−1).
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Example 1. Let A1, A2, ..., A5 be the following binary quasigroups
over the field GF(7) (modulo 7).

A1(x, y) = x+ y, A2(x, y) = 2x+ y, A3(x, y) = 2x+ 2y,

A4(x, y) = x+ 3y, A5(x, y) = 3x+ y.

By Corollary 2:

B1(x, y) = x+y, B2(x, y) = A2(y,B1(x, y)) = 2y+x+y = x+3y,

B3(x, y) = A3(B1, B2)(x, y) = 2(x+ y) + 2(3y + x) = 4x+ y,

B4(x, y) = A4(B2, B3)(x, y) = 3y + x+ 3(4x+ y) = 6x+ 6y,

B5(x, y) = A5(B3, B4)(x, y) = 3(4x+ y) + 6x+ 6y = 4x+ 2y.
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We obtain the following SOS of the selectors and five quasigroups
(modulo 7):

F,E, B1(x, y) = A1(x, y) = x+ y, B2(x, y) = x+ 3y,

B3(x, y) = 4x+ y, B4(x, y) = 6x+ 6y, B5(x, y) = 4x+ 2y.

Note that this SOS is not an orthogonal set (for example, the
operations B1 and B4 are not orthogonal).



In this example all operations (besides of the selectors) are quasigroups.
In the proof of the following proposition we shall give a method
of the construction of a SOS containing only binary quasigroups.
This method is some modification of the method of Theorem 4
for binary quasigroups.

Proposition 1. For any prime p ≥ 5 and any t ≥ 3 there exists a
SOS of t binary quasigroups of order p.
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Remark 2. If in Theorem 4 A1 = A2 = ... = At = A, then
θ1 = θ2 = ... = θt = θ. Let s0 be the order of the permutation θ

in the group SQk. Then, as a corollary, we have the sequence of
Theorem 1 [gbel], moreover, we obtain the following SOS:

E1, E2, ..., Ek, B1, B2, B3, ..., Bt where B1 = A,

Bs = A(Eks , B1, B2, ..., Bs−1), if 1 < s ≤ k,

Bs = A(Bs−k, Bs−k+1, ..., Bs−1), if k < s ≤ t.

In this case the k-operations of this SOS are repeated beginning
with Bs0−k and contains exactly s0 different k-operations.
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It was be found that any orthogonal system of k-operations can
be continued to a SOS.

Theorem 5. Any orthogonal system of k-operations can be
continued to a SOS.

In the proof of this theorem a method of construction of a SOS
from an orthogonal system of k-operations is given.

Corollary 3. Every orthogonal k-tuple < C1, C2, ..., Ck > of k-
operations can be continued to a SOS.
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