On successively orthogonal systems of operations

Galina B. Belyavskaya

Seminar-2014 devoted V.D. Belousov

Systems of k-ary operations generalizing orthogonal sets are considered.

These systems have the following property: every k successive k-ary operations, $k \ge 2$, of the system are orthogonal.

We call these systems successively orthogonal, establish some properties, give examples and methods of construction of these systems.

A k-ary operation A (briefly, a k-operation) on a set Q is a mapping $A : Q^k \to Q$ defined by $A(x_1^k) \to x_{k+1}$, and in this case write $A(x_1^k) = x_{k+1}$.

A k-groupoid (Q, A) is a set Q with one k-ary operation A, defined on Q.

The k-operation $E_i: E_i(x_1^k) = x_i, 1 \le i \le k$, on Q is called the *i*-th identity operation (or the *i*-th selector) of arity k.

An *i*-invertible k-operation A, defined on Q, is a k-operation with the following property: the equation $A(a_1^{i-1}, x, a_{i+1}^k) = a_{k+1}$ has a unique solution for each fixed k-tuple $(a_1^{i-1}, a_{i+1}^k, a_{k+1})$ of Q^k .

All 2-invertible binary operations, given on a set Q, form the group $(\Lambda_2; \cdot)$ under the multiplication $(A \cdot B)(x, y) = A(x, B(x, y))$.

A k-ary quasigroup (or simply a k-quasigroup) is a k-groupoid (Q, A) such that the k-operation A is *i*-invertible for each i = 1, 2, ..., k.

Definition 1 [1]. A k-tuple $\langle A_1, A_2, ..., A_k \rangle = \langle A_1^k \rangle$ of k-operations, given on a set Q, is called orthogonal if the system $\{A_i(x_1^k) = a_i\}_{i=1}^k$ has a unique solution for all $a_1^k \in Q^k$.

A k-tuple $\langle A_1^k \rangle$ of k-operations is orthogonal if and only if the mapping $\theta = (A_1^k) : Q^k \to Q^k, (x_1^k) \to (A_1(x_1^k), A_2(x_1^k), ..., A_k(x_1^k)) = (A_1^k)(x_1^k)$ is a permutation on Q^k [1].

Definition 2 [1]. A set $\{A_1, A_2, ..., A_t\}$, $t \ge k$, of k-operations is called orthogonal if every k-tuple of these k-operations is orthogonal.

Definition 3 [1]. A set $\Sigma = \{A_1^t\}, t \ge 1$, of k-ary operations, given on a set Q, is called strongly orthogonal if the set $\overline{\Sigma} = \{A_1^t, E_1^k\}$ is orthogonal.

Definition 4. A system $\Sigma = \{A_1^t\}, t \ge k$, of k-ary operations, given on a set Q, $|Q| \ge 3$, is called successively orthogonal system (briefly, a SOS) if any successive k operations are orthogonal.

Every orthogonal set of k-operations is a successively orthogonal system.

Let (Q, A) be a quasigroup, $A^i(x, y) = A(x, A^{i-1}(x, y)), i = 2, ...$

Theorem 1. If $A, A_1, A_2, ..., A_t$ are binary quasigroups of the order $s_0, s_1, ..., s_t$ respectively, in the group $(\Lambda_2; \cdot)$ of all 2-invertible binary operations, given on a set Q, then the sequence

$$F, E, A, A^{2}, \dots, A^{s_{0}-1}, F, E, A_{1}, A_{1}^{2}, \dots, A_{1}^{s_{1}-1},$$

$$F, E, A_{2}, A_{2}^{2}, \dots, A_{2}^{s_{2}-1}, \dots, F, E, A_{t}, A_{t}^{2}, \dots, A_{t}^{s_{t}-1}$$

is a SOS.

Proposition 1. Let $\Sigma_1 = \{A_1, A_2, ..., A_{s_1}\}, \Sigma_2 = \{B_1, B_2, ..., B_{s_2}\}$ be strongly orthogonal sets of k-operations. Then the system

$$\Sigma_3 = \{E_1, E_2, \dots, E_k, A_1, A_2, \dots, A_{s_1}, E_1, E_2, \dots, E_k, B_1, B_2, \dots, B_{s_2}\}$$

is a SOS.

Theorem 2. Let A be an 1-invertible k-operation on a set Q, $\theta = (E_2, E_3, ..., E_k, A) = (E_2^k, A)$, and s_0 be the order of the permutation θ in the group S_{Q^k} , then the system of k-operations

$$\begin{split} E_1, E_2, ..., E_k, A, A\theta, A\theta^2, ..., A\theta^{k-1}, A\theta^k, ..., A\theta^{s_0-k-1}, \\ E_1, E_2, ..., E_k, A, A\theta, A\theta^2, ..., A\theta^{k-1}, A\theta^k, ..., A\theta^{s_0-k-1}, ... \end{split}$$

is successively orthogonal.

Corollary 1. In the theorem 2 the k-operation $A\theta^{s_0-k-1}$ is k-invertible.

In [2] for a function $f: Q^k \to Q$ it was defined a complete k-recursive code $K(n/f^{(0)}, f^{(1)}, ..., f^{(n-k-1)})$ with the check functions: $f^{(0)} = f, f^{(1)}, ..., f^{(n-k-1)}$. The function $f^{(i)}$ is called *the i-th recursive derivative* of a function f and is defined recursively as follows:

$$\begin{split} &f^{(0)}(x_1^k) = f(x_1^k), \ f^{(1)}(x_1^k) = f(x_2^k, f^{(0)}(x_1^k)), ..., \\ &f^{(i)}(x_1^k) = f(x_{i+1}^k, f^{(0)}(x_1^k), ..., f^{i-1}(x_1^k)) \ \text{for} \ i < k, \ \text{and} \\ &f^{(i)}(x_1^k) = f(f^{(i-k)}(x_1^k), f^{(i-k+1)}(x_1^k), ..., f^{(i-1)}(x_1^k)) \ \text{for} \ i \geq k. \end{split}$$

V. Izbash and P. Syrbu in [3, Proposition 2] proved that if a k-operation f is a k-quasigroup, then $f^{(i)} = f\theta^i, i = 1, 2, ...,$ where

$$\theta: Q^k \to Q^k, \theta(x_1^k) = (x_2, x_3, ..., x_k, f(x_1^k))$$

for all $(x_1^k) \in Q^k$.

A k-quasigroup operation f ($k \ge 2$) is called *recursively* r-differentiable if all its k-recursive derivatives $f^{(0)}, f^{(1)}, ..., f^{(r)}$ are k-quasigroups [2].

A k-quasigroup we call strongly recursively r-differentiable if it is recursively r-differentiable and $r = s_0 - k - 1$, where s_0 is the order of the permutation $\theta = (E_2^k, A)$. In this case $A^{(r+1)} = E_1$. For the binary case this notion was introduced in [4]. From Theorem 2 we obtain the following corollary for any 1-invertible k-function f.

Corollary 2. If f is an 1-invertible k-function, then $f^{(i)} = f\theta^{(i)}, i = 1, 2, ..., where \theta = (E_2^k, f)$. The sequence of the recursive derivatives has the form $E_1, E_2, ..., E_k, f, f\theta, f\theta^2, ..., f\theta^{k-1}, f\theta^k, ..., f\theta^{s_0-k-1}, E_1, E_2, ..., E_k, f, f\theta, f\theta^2, ..., f\theta^{k-1}, f\theta^k, ..., f\theta^{s_0-k-1}, ..., where <math>s_0$ is the order of the permutation θ . If f is an r-differentiable k-quasigroup, then $r \leq s_0 - k - 1$. If a k-quasigroup is strongly recursively r-differentiable, then $r = s_0 - k - 1$. For an 1-differentiable k-quasigroup $s_0 \geq k + 2$.

Theorem 3. Let a permutation (E_2^k, A) have the order s_0 , then a successively orthogonal system of Theorem 2 contains s_0 different k-operations.

If $s_0 = k + 1$, then the k-operation A is a quasigroup k-operation.

For any 1-invertible k-operation $s_0 \ge k+1$.

Theorem 4. Let $A, A_1, ..., A_t$ be 1-invertible k-operations and the permutations $\theta = (E_2^k, A), \ \theta_1 = (E_2^k, A_1), ..., \ \theta_t = (E_2^k, A_t)$ have the order $s_0, s_1, ..., s_t$ respectively, then the system

$$\begin{split} E_1, E_2, ..., E_k, A, A\theta, A\theta^2, ..., A\theta^{k-1}, A\theta^k, ..., A\theta^{s_0-k-1}, \\ E_1, E_2, ..., E_k, A_1, A_1\theta_1, A_1\theta_1^2, ..., A_1\theta_1^{k-1}, A_1\theta_1^k, ..., A_1\theta_1^{s_1-k-1}, ..., \\ E_1, E_2, ..., E_k, A_t, A_t\theta_t, A_t\theta_t^2, ..., A_t\theta_t^{k-1}, A_t\theta_t^k, ..., A_t\theta_t^{s_t-k-1} \end{split}$$

is a SOS.

Proposition 2. Any orthogonal set of k-operations can be continued to a SOS.

References:

1. Bektenov A.S., Yacubov T. Systems of orthogonal *n*-ary operations (In Russian)// Izv. AN Moldavskoi SSR, Ser. fiz.-teh. i mat. nauk, no. 3, 1974, 7–14.

2. Couselo E., Gonsales S., Markov V., Nechaev A. Recursive MDS-codes and recursively differentiable quasigroups (in Russian) // Discret. Mat., vol. 10, no.2, 1998, 3-29.

3. Izbash V., Syrbu P. Recursively differentiable quasigroups and complete recursive codes // Commentationes Mathematicae Universitatis Carolinae, Praga, 2004, 45,2, 257-263.

4. Belyavskaya G.B. Recursively *r*-differentiable quasigroups within *S*-systems and MDS-codes // Quasigroups and Related Systems, 20 (2012), 157-168.