Groupoids which satisfy certain associative laws

Dumitru I. Pushkashu

Institute of Mathematics and Computer Science

Şedinta speciale a seminarului știintific consacrata Prof. Valentin Belousov, Februarie 22, 2013

Contents

2 Results

- Cyclic associative law
- Tarski associative law

Introduction Results

Definitions

Definitions Introduction

- 4 同 6 4 日 6 4 日 6

æ

Definitions

Definition

A binary groupoid (Q, A) is understood to be a non-empty set Q together with a binary operation A.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Definition

A binary groupoid (Q, A) is understood to be a non-empty set Q together with a binary operation A.

Let (Q, \cdot) be a groupoid. The associative law stats that

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z \tag{1}$$

(人間) (人) (人) (人) (人) (人)

holds for arbitrary elements $x, y, z \in Q$. By interchanging the order of the neighboring "factors" in some of the "multiplications" figuring in (1) it is possible to get 16 equations [7].

Here we shall study groupoids with two modifications of associative law, namely cyclic associative law (identity):

$$x \cdot (y \cdot z) = (z \cdot x) \cdot y \tag{2}$$

and Tarki (in Hosszu terminology) (in fact, Tarskii) associative law:

$$x \cdot (z \cdot y) = (x \cdot y) \cdot z \tag{3}$$

同 ト イ ヨ ト イ ヨ ト

Definitions

Definitions Introduction

Definition

A groupoid (Q, \cdot) is called a left cancelation groupoid, if the following implication fulfilled: $a \cdot x = a \cdot y \Rightarrow x = y$ for all $a, x, y \in Q$, i.e. translation L_a is an injective map for any $a \in Q$.

Definition

A groupoid (Q, \cdot) is called right cancelation, if the following implication fulfilled: $x \cdot a = y \cdot a \Rightarrow x = y$ for all $a, x, y \in G$, i.e. translation R_a is an injective map for any $a \in Q$.

Definition

A groupoid (Q, \cdot) is called a cancelation groupoid, if it is a left and a right cancelation groupoid.

Definitions

Definitions Introduction

Definition

A groupoid (Q, \cdot) is said to be a left (right) division groupoid if the mapping L_x (R_x) is surjective for every $x \in Q$.

伺 ト く ヨ ト く ヨ ト

Definitions

Definitions Introduction

Definition

A groupoid (Q, \cdot) is said to be a left (right) division groupoid if the mapping L_x (R_x) is surjective for every $x \in Q$.

Definition

A groupoid (Q, \cdot) is said to be a division groupoid if it is simultaneously a left and right division groupoid.

同 ト イ ヨ ト イ ヨ ト

Definitions

Definitions Introduction

Definition

A groupoid (Q, \cdot) is said to be a left (right) division groupoid if the mapping L_x (R_x) is surjective for every $x \in Q$.

Definition

A groupoid (Q, \cdot) is said to be a division groupoid if it is simultaneously a left and right division groupoid.

Definition

An element f of a groupoid (Q, \cdot) is called a *left identity element*, if $f \cdot x = x$ for all $x \in Q$. An element e of a groupoid (Q, \cdot) is called a *right identity element*, if $x \cdot e = x$ for all $x \in Q$. An element e of a groupoid (Q, \cdot) is called a *identity element*, if $x \cdot e = x = e \cdot x$ for all $x \in Q$.

Definitions

Definition

A groupoid (Q, \circ) is called a *right quasigroup* (a *left quasigroup*) if, for all $a, b \in Q$, there exists a unique solution $x \in Q$ to the equation $x \circ a = b$ ($a \circ x = b$), i.e. in this case any right (left) translation of the groupoid (Q, \circ) is a bijective map of the set Q.

伺 ト イ ヨ ト イ ヨ ト

Definition

A groupoid (Q, \circ) is called a *right quasigroup* (a *left quasigroup*) if, for all $a, b \in Q$, there exists a unique solution $x \in Q$ to the equation $x \circ a = b$ ($a \circ x = b$), i.e. in this case any right (left) translation of the groupoid (Q, \circ) is a bijective map of the set Q.

Definition

A left and right quasigroup is called a *quasigroup*.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definitions

Definition

A groupoid (Q, \circ) is called a *right quasigroup* (a *left quasigroup*) if, for all $a, b \in Q$, there exists a unique solution $x \in Q$ to the equation $x \circ a = b$ ($a \circ x = b$), i.e. in this case any right (left) translation of the groupoid (Q, \circ) is a bijective map of the set Q.

Definition

A left and right quasigroup is called a quasigroup.

Definition

A quasigroup with identity element is called a loop.

イロト イポト イヨト イヨト

Introduction Results References Definitions

In this paper an algebra (or algebraic structure) is a set A together with a collection of operations on A. T. Evans [6] defined a binary quasigroup as an algebra $(Q, \cdot, /, \setminus)$ with three binary operations. He has defined the following identities:

$$x \cdot (x \setminus y) = y \tag{4}$$

$$(y/x) \cdot x = y \tag{5}$$

$$x \setminus (x \cdot y) = y \tag{6}$$

$$(y \cdot x)/x = y \tag{7}$$

伺 ト イ ヨ ト イ ヨ ト

Definitions

Theorem

[11, 12]

- A groupoid (Q, ·) is a left division groupoid if and only if there exists a left cancelation groupoid (Q, \) such that in algebra (Q, ·, \) identity (4) is fulfilled.
- A groupoid (Q, ·) is a right division groupoid if and only if there exists a right cancelation groupoid (Q, /) such that in algebra (Q, ·, /) identity (5) is fulfilled.

Definitions

Theorem

[11, 12]

- A groupoid (Q, ·) is a left cancelation groupoid if and only if there exists a left division groupoid (Q, \) such that in algebra (Q, ·, \) identity (6) is fulfilled.
- A groupoid (Q, ·) is a right cancelation groupoid if and only if there exists a right division groupoid (Q, /) such that in algebra (Q, ·, /) identity (7) is fulfilled.

Cyclic associative law Tarski associative law

Results Cyclic associative law

Lemma

If a right division groupoid $(Q, \cdot, /)$ satisfies the cyclic associative law (2), then then it satisfies associative identity (1).

(4 同) (4 日) (4 日)

Cyclic associative law Tarski associative law

Results Cyclic associative law

Lemma

If a right division groupoid $(Q, \cdot, /)$ satisfies the cyclic associative law (2), then then it satisfies associative identity (1).

Lemma

If a right division groupoid $(Q, \cdot, /)$ satisfies the cyclic associative law (2), then it is commutative.

Cyclic associative law Tarski associative law

Results Cyclic associative law

Lemma

If a right division groupoid $(Q, \cdot, /)$ satisfies the cyclic associative law (2), then then it satisfies associative identity (1).

Lemma

If a right division groupoid $(Q, \cdot, /)$ satisfies the cyclic associative law (2), then it is commutative.

Theorem

If a right division right cancelation groupoid $(Q, \cdot, /)$ satisfies the cyclic associative law (2), then it is a commutative group relative to the operation \cdot .

Cyclic associative law Tarski associative law

Lemma

If a left division groupoid (Q, \cdot, \setminus) satisfies the cyclic associative law (2), then it satisfies and ordinary associative law $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ (1).

Cyclic associative law Tarski associative law

Lemma

If a left division groupoid (Q, \cdot, \setminus) satisfies the cyclic associative law (2), then it satisfies and ordinary associative law $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ (1).

Theorem

If a left division left cancelation groupoid (Q, \cdot, \setminus) satisfies the cyclic associative law (2), then it is a commutative group relative to the operation \cdot .

・ロト ・同ト ・ヨト ・ヨト

Cyclic associative law Tarski associative law

Results Tarski associative law

Lemma

If a left division groupoid (Q, \cdot, \setminus) satisfies the Tarski associative law (3), then it is a commutative groupoid.

Results Tarski associative law

Lemma

If a left division groupoid (Q, \cdot, \setminus) satisfies the Tarski associative law (3), then it is a commutative groupoid.

Lemma

If a left division groupoid (Q, \cdot, \setminus) satisfies the Tarski associative law (3), then it satisfies associative law (1).

Results Tarski associative law

Lemma

If a left division groupoid (Q, \cdot, \setminus) satisfies the Tarski associative law (3), then it is a commutative groupoid.

Lemma

If a left division groupoid (Q, \cdot, \setminus) satisfies the Tarski associative law (3), then it satisfies associative law (1).

Theorem

If a left division left cancelation groupoid (Q, \cdot, \setminus) satisfies the Tarski associative law (3), then it is a commutative group relative to the operation \cdot .

Cyclic associative law Tarski associative law

Theorem

If a left division right cancelation groupoid $(Q, \cdot, \backslash, /)$ satisfies the Tarski associative law (3), then it is a commutative group relative to the operation \cdot .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cyclic associative law Tarski associative law

Theorem

If a left division right cancelation groupoid $(Q, \cdot, \backslash, /)$ satisfies the Tarski associative law (3), then it is a commutative group relative to the operation \cdot .

Lemma

If a right division right cancelation groupoid $(Q, \cdot, /)$ satisfies Tarski law (3), then it is associative (1).

< 日 > < 同 > < 三 > < 三 >

As follows from the following example, if a right division groupoid $(Q, \cdot, /)$ satisfies the Tarski associative law (3), then it is not a commutative groupoid and it does not contain two-sided identity element.

Example			
	$\cdot \mid 0 \mid 1$	/ 0 1	
	0 0 0	0 0 0	
	1 1 1	1 1 1	

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cyclic associative law Tarski associative law

Theorem

If a right division left cancelation groupoid $(Q, \cdot, \backslash, /)$ satisfies the Tarski associative law (3), then it is a commutative group relative to the operation \cdot .

References

- **V.D. Belousov**: Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow, (1967). (in Russian).
- **V.D. Belousov**: Elements of Quasigroup Theory: a special course, Kishinev State University Printing House, Kishinev, (1981) (in Russian).
- **G. Birkhoff**: Lattice Theory, Nauka, Moscow, (1984) (in Russian).
- **H.O. Pflugfelder**: *Quasigroups and Loops: Introduction*, Heldermann Verlag, Berlin, (1990).
- **S. Burris and H.P. Sankappanavar**: A Course in Universal Algebra, Springer-Verlag, (1981).

A (1) < A (1) < A (1) < A (1) </p>

- **T. Evans**: On multiplicative systems defined by generators and relations, Math. Proc. Camb. Phil. Soc., (1951) **47** 637 649.
- M. Hosszu: Some functional equations related with the associative law, Publ. Math. Debrecen, (1954) 3 205 214.

- **J. Ježek and T. Kepka**: *Medial groupoids*, sešit 2 of Rozpravy Československe Academie VĚD, Academia, Praha., (1983) volume 93.
- J. Ježek, T. Kepka, and P. Nemec: *Distributive groupoids*, sešit 3 of Rozpravy Československe Academie VĚD, Academia, Praha, (1981) volume 91.
- **A.I. Mal'tsev**: *Algebraic Systems*, Nauka, Moscow, (1976) (in Russian).

- V.A. Shcherbacov: On definitions of groupoids closely connected with quasigroups, Bul. Acad. Stiinte Repub. Mold., Mat., (2007) no. 2 43 – 54.
- V.A. Shcherbacov, A.Kh. Tabarov, and D.I. Pushkashu: On congruences of groupoids closely connected with quasigroups, Fundam. Prikl. Mat., (2008) 14(1) 237 – 251.