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Definition

A binary groupoid (Q,A) is understood to be a non-empty set Q
together with a binary operation A.

Let (Q, ·) be a groupoid. The associative law stats that

x · (y · z) = (x · y) · z (1)

holds for arbitrary elements x , y , z ∈ Q. By interchanging the
order of the neighboring ”factors” in some of the ”multiplications”
figuring in (1) it is possible to get 16 equations [7].
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Here we shall study groupoids with two modifications of
associative law, namely cyclic associative law (identity):

x · (y · z) = (z · x) · y (2)

and Tarki (in Hosszu terminology) (in fact, Tarskii) associative law:

x · (z · y) = (x · y) · z (3)
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Definition

A groupoid (Q, ·) is called a left cancelation groupoid, if the
following implication fulfilled: a · x = a · y ⇒ x = y for all
a, x , y ∈ Q, i.e. translation La is an injective map for any a ∈ Q.

Definition

A groupoid (Q, ·) is called right cancelation, if the following
implication fulfilled: x · a = y · a⇒ x = y for all a, x , y ∈ G , i.e.
translation Ra is an injective map for any a ∈ Q.

Definition

A groupoid (Q, ·) is called a cancelation groupoid, if it is a left and
a right cancelation groupoid.
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A groupoid (Q, ·) is said to be a left (right) division groupoid if the
mapping Lx ( Rx ) is surjective for every x ∈ Q.

Definition

A groupoid (Q, ·) is said to be a division groupoid if it is
simultaneously a left and right division groupoid.

Definition

An element f of a groupoid (Q, ·) is called a left identity element,
if f · x = x for all x ∈ Q. An element e of a groupoid (Q, ·) is
called a right identity element, if x · e = x for all x ∈ Q. An
element e of a groupoid (Q, ·) is called a identity element, if
x · e = x = e · x for all x ∈ Q.
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A groupoid (Q, ◦) is called a right quasigroup (a left quasigroup)
if, for all a, b ∈ Q, there exists a unique solution x ∈ Q to the
equation x ◦ a = b (a ◦ x = b), i.e. in this case any right (left)
translation of the groupoid (Q, ◦) is a bijective map of the set Q.

Definition

A left and right quasigroup is called a quasigroup.

Definition

A quasigroup with identity element is called a loop.
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In this paper an algebra (or algebraic structure) is a set A together
with a collection of operations on A. T. Evans [6] defined a binary
quasigroup as an algebra (Q, ·, /, \) with three binary operations.
He has defined the following identities:

x · (x\y) = y (4)

(y/x) · x = y (5)

x\(x · y) = y (6)

(y · x)/x = y (7)
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Theorem

[11, 12]

1 A groupoid (Q, ·) is a left division groupoid if and only if there
exists a left cancelation groupoid (Q, \) such that in algebra
(Q, ·, \) identity (4) is fulfilled.

2 A groupoid (Q, ·) is a right division groupoid if and only if
there exists a right cancelation groupoid (Q, /) such that in
algebra (Q, ·, /) identity (5) is fulfilled.
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Theorem

[11, 12]

1 A groupoid (Q, ·) is a left cancelation groupoid if and only if
there exists a left division groupoid (Q, \) such that in algebra
(Q, ·, \) identity (6) is fulfilled.

2 A groupoid (Q, ·) is a right cancelation groupoid if and only if
there exists a right division groupoid (Q, /) such that in
algebra (Q, ·, /) identity (7) is fulfilled.
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Lemma

If a right division groupoid (Q, ·, /) satisfies the cyclic associative
law (2), then then it satisfies associative identity (1).

Lemma

If a right division groupoid (Q, ·, /) satisfies the cyclic associative
law (2), then it is commutative.

Theorem

If a right division right cancelation groupoid (Q, ·, /) satisfies the
cyclic associative law (2), then it is a commutative group relative
to the operation ·.
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As follows from the following example, if a right division groupoid
(Q, ·, /) satisfies the Tarski associative law (3), then it is not a
commutative groupoid and it does not contain two-sided identity
element.

Example

· 0 1

0 0 0
1 1 1

/ 0 1

0 0 0
1 1 1
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Theorem

If a right division left cancelation groupoid (Q, ·, \, /) satisfies the
Tarski associative law (3), then it is a commutative group relative
to the operation ·.
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