
Computer Science Journal of Moldova, vol.9, no.3(27), 2001

Non-commutative computer algebra and

molecular computing ∗

Svetlana Cojocaru Victor Ufnarovski

Abstract

Non-commutative calculations are considered from the molec-
ular computing point of view. The main idea is that one
can get more advantage in using molecular computing for non-
commutative computer algebra compared with a commutative
one. The restrictions, connected with the coefficient handling
in Gröbner basis calculations are investigated. Semigroup and
group cases are considered as more appropriate. SAGBI basis
constructions and possible implementations are discussed.

1 Introduction

Every woman knows that when a new fashion comes in power it is
time to reconsider her dresses and to plan what can be done to arrange
new ones or to adjust one of the available. The same is true for any
mathematical discipline. A new fashion that is coming in power is
molecular computing and we would like to consider Computer Algebra
from this new fashion point of view – what can be done and what
should be adjusted. So let us first analyze which possibilities suggest
the new trend.

Starting with the first successful experiment in 1994 the molecular
computing involves a lot of researchers into developing of theory and
practice of this domain. In [6] the three directions are mentioned:

c©2001 by S. Cojocaru, V. Ufnarovski
∗ The authors acknowledge the very helpful contribution of INTAS project

97-1259, NATO project PST.CLG.976912 and Royal Swedish Academy project
N1023505 for enhancing their cooperation, giving the best conditions for producing
the present result.

369



S. Cojocaru, V. Ufnarovski

• laboratory experiments,

• elaboration and developing the theoretical models,

• algorithms for solving of the concrete problems using the tech-
nique of molecular computing

One can find n large bibliography (maintained by P.Frisco) on
http://www.wi.LeidenUniv.nl/ pier/dna.html, which gives the possibil-
ity to be convinced that now we have a lot of quite developed theories
and methods to solve some hard (from the computational point of view)
problems. Among them the most popular are the algorithms for the
different graphs problems, SAT problem, the data encryption breaking
etc. In other words there are first of all computationally hard problems,
especially those where some kind of parallelism can give the advantage
or at least some hope to achieve results which would be impossible by
usual computations, e.g. to solve a known NP-problem in polynomial
time.

Discussing the class of problems for which molecular computing is
the preferable technique, D.Wood and R.Williams affirm, that one of
the suitable may be Computer Algebra. According to [10]

1. Computer Algebra is similar to DNA laboratory reactions: both
rearrange identical units.

2. DNA is an attractive medium for computation because of its po-
tential parallelism.

3. Both DNA reaction and computer algebra are performing the
transformation of exact, non-numeric input into exact, non-
numeric output.

There are not so many results in computer algebra where the tech-
nique of molecular computing was successfully applied. We can men-
tion, for example, symbolic determinants or permanents expansion
(R.Williams, D.Wood [10]), a surface based algorithm for the expansion
of symbolic determinants (Z.Frank Qiu, Mi Lu [5]), matrix multiplica-
tion (E.Oliver [9]). Probably this list can be continued, but in any

370



Non-commutative computer algebra . . .

case it is not very large and the main aim of this article us to suggest
some other possible directions for applications of molecular computing
in Computer Algebra and to consider some obstacles in those direc-
tions. The main conclusion of our article is that it is non-commutative
Computer Algebra that fits better to the ideology of molecular compu-
tation.

2 Gröbner basis computation

The kernel of any developed Computer Algebra package is the imple-
mentation of the Gröbner basis computation, which has a series of
useful applications, for example, it permits to solve (in some sense)
systems of the polynomial equations.

The notion of the Gröbner basis and the algorithm of its computa-
tion was proposed by Bruno Buchberger [1, 2, 3]. Is there a possibility
to apply the molecular calculations?

Let us first recall the definitions. If I is an ideal in the polynomial
algebra K[X] then factor-algebra A = K[X]/I has a linear basis (e.g.
a basis as a vector space) consisting sf monomials, e.g. words in the
alphabet X. To construct such a basis suppose that the set of all mono-
mials is well-ordered, the unit is the least monomial and the order is
preserved under multiplication, e.g. f > g ⇒ fh > gh. Then the linear
basis N of A consists of normal monomials – those which cannot be
rewritten (in A) as linear combinations of lower words.

Let F be the set of all monomials that are not normal by themselves,
but are minimal in this sense, i.e. have the property that every its
proper factor is a normal monomial. It is not difficult to see that the
set F is finite and N can be recovered from F as the set of all monomials
that are not divisible by any monomial from F.

Being not normal, every fi ∈ F can be rewritten in A as ui –
uniquely determined linear combination of normal words. The set G =
{fi − ui} is called a (reduced) Gröbner basis. In his original work
Buchberger have found how to construct G from the set of defining
relations of algebra A. Algorithm itself can be parallelized in a very
natural way, but computationally it is hard and this makes it attractive

371



S. Cojocaru, V. Ufnarovski

from the molecular calculations point of view.
The key moment in the Buchberger’s algorithm is so-called S-

polynomial of two polynomials p and q, which is constructed by con-
sidering the least common multiple of their highest terms. For exam-
ple, if they are represented by monomials xxyyzz and xyyyzt, then
S-polynomial is constructed with the help of xxyyyzzt. The first prob-
lem which we meet here from the molecular computations point of view
is that it is difficult to obtain such a monomial using the concatenation
as a basic operation.

But suppose now that an algebra A is non-commutative. We can
repeat the definition above replacing K[X] by free algebra K < X > .
The main difference is that now F and G should not be finite in gen-
eral case. On the other hand the corresponding analog of Buchberger’s
algorithm (so-called Mora’s algorithm, see [7]) uses the construction
that is similar to the S-polynomial, but uses words that are formed
by the concatenations only. More exactly, a composition of two (non-
commutative) polynomials p and q is a word abc, such that ab is a
leading monomial (word) for p and bc for g. So, it is a natural concate-
nation, which can be easily performed by the molecular computations.

The reduction, which is another important part of any computer
algebra calculations, is also much more natural in the non-commutative
case, where it can be realized by the series of substitutions of a given
word (sample-word) by another one. In the commutative case reduc-
tion is more complicated. For example if xz should be reduced by
yt, then the monomial xyzz is replaced by yyzt, which is much more
complicated construction from the DNA-operations point of view.

We already have mentioned the important difference between com-
mutative and non-commutative Computer Algebra: most problems in
commutative case are finite (because Gröbner basis is finite), so molecu-
lar computing applications are mainly interesting for huge, for example
NP-problems. It means that the only use of the molecular computing
approach is it massive character, its advantage to produce a lot of vari-
ants.

Non-commutative algebra is much more interesting in sense that
most problems are infinite and to solve them means usually to present

372



Non-commutative computer algebra . . .

an infinite solutions in the finite form (e.g. an automaton), or better
to say in some kind of program, which can produce this infinite solu-
tion. Because in the nature the DNA are exactly compact programs,
producing rather complicated solutions (life forms, for example) it is
DNA-language that promises a lot here.

An easy example is the calculation of the Gröbner basis in an alge-
bra with the single relation xx = xy, which produce an infinite Gröbner
basis

xx− xy,

xyx− xyy,

xyyx− xyyy, . . .

It is not so difficult to create a prediction algorithm which generates
this Gröbner basis, using DNA-calculations (or ordinary ones), but it
is not clear how to produce a corresponding proof that this really is a
Gröbner basis. Of course, in general this problem is unsolvable, but for
important cases such type of regularity often happens and, may be, it
is more naturally to have this proof in a DNA-form.

3 Binomial and group relations

Another problem, arising both in the commutative and non-commu-
tative Gröbner basis calculations is coefficient handling. Both for the
reduction and the calculations of S-polynomials we need linear combi-
nations of words, but for this we need arithmetic over ground field K,
which is far from being trivial from the molecular calculations point
of view. Of course, it if an interesting problem by itself even for fi-
nite fields (though small fields does not look difficult to implement).
We do not plan to discuss this area now and instead want to mention
that in the beginning the most natural way to escape this problem is
to restrict possible algebras by binomial relations only, e.g. to con-
sider only those algebras whose defining relations have the form f = g,
where both f and g are monomials. In other words we can restrict
our algebras by semigroup algebras only. Even here we still have an

373



S. Cojocaru, V. Ufnarovski

infinite Gröbner bases and prediction problems are still difficult. Some
approach here can be found in the article [8] and to implement the
corresponding approach from the molecular calculations point of view
looks as a perspective problem.

Let us consider another approach for Gröbner basis calculations,
which does not use Buchberger’s or Mora’s algorithm, but can use
some advantages that the molecular calculation has. Suppose for sim-
plicity that all binomial relations are homogeneous. Then we can create
Gröbner basis inductively – degree after degree. Suppose we know all
elements of Gröbner basis in the degree n. Then we know all normal
words in the degree n and can multiply them by one letter to get (a lot
of) words of length n + 1. Trying to reduce them by known elements
of Gröbner basis we get new relations if we obtain the same word as
a result of the reduction of two different words. If we consider all the
possibilities we will get all the elements of the Gröbner basis in the
degree n + 1. This sounds not so efficient. But suppose now, that we
know a bound for the number of normal words (for example, that we
know a Hilbert series – it is always the case in the generic algebras).
Then the situation changes dramatically – we do not need to check
all the possibilities – if we have got sufficiently many new relations we
know that they already form the Gröbner basis in the degree n + 1!
This is exactly what we can do in the molecular calculations: produce
a lot of combinations rather chaotically. In other words we can create
a set that with a high probability would be the desired Gröbner basis
(always in the generic case or if we achieved the known bound of the
Hilbert series).

This approach may be used even in the non-homogeneous case, but
here we never will be sure that the obtained set is a Gröbner basis
already. Of course one of the most important case of semigroup is a
group. Even the implementation of the quite elementary calculations
in a free group looks as non-trivial, but reasonable problem for the
molecular computing approach. Another interesting problem that looks
very promising and useful is the implementation of the Todd-Coxeter
algorithm (see [4]) of coset enumeration.

Here we would like to mention one more advantage of the non-

374



Non-commutative computer algebra . . .

commutative approach. For the non-commutative group with 2 gen-
erators we need 4 semigroup generators (two additional generators for
the inverse elements). We have these 4 letters in the DNA, so we do not
need additional encoding. Even for algebra case 4 generators are suffi-
ciently many. But what is more important that a free subgroup with a
larger number of generators (even infinitely many) is simply a subgroup
of our 2-generated group. The same is true for non-commutative alge-
bras, but it is not the case for the commutative algebra: the polynomial
ring with 3 generators cannot be realized as a subring of a 2-generated
polynomial algebra! From all points of view Computer Algebra in new
fashion should be non-commutative.

4 SAGBI-basis

Another important Computer Algebra problem is SAGBI-basis calcu-
lations. (SAGBI stands for Subalgebra Analog of Gröbner Basis to
Ideals). The idea is the following. A set G is a Gröbner basis for
ideal I, if an ideal, generated by its highest monomials consists of all
highest monomials from the ideal I. If we replace the word ideal by
subalgebra we get the definition: a set S is a SAGBI basis for a sub-
algebra A if the subalgebra, generated by highest monomials from S,
coincides with the set of highest monomials in A. One of the example
is S = xx− y, yy − x. But S = xyy − y, x, xy − y, yx is not SAGBI
basis for the subalgebra it generates, because (xyy− y) ∗x− (xy− y) ∗
(yx) = yyx − yx and yyx cannot be written as the product of words
xyy, x, xy, yx.

To complete the last S to SAGBI-basis we need to add the new cal-
culated element and consider new ambiguities, for example x∗ (yyx) =
xy ∗ yx. One nontrivial problem in SAGBI-basis calculations is to de-
termine all necessary ambiguities for a given set of words. Here the
massive parallelism, offered by the molecular computing technique, can
be very useful too.

375



S. Cojocaru, V. Ufnarovski

References

[1] B.Buchberger, On Finding a Vector Space Basis of the Residue
Class Ring Modulo a Zero Dimensional Polynomial Ideal (Ger-
man). PhD Thesis, Univ of Innsbruck, Austria, 1965

[2] B.Buchberger, A Theoretical Basis for the Reduction of Polynomi-
als to Canonical Forms. ACM SIGSAM Bull.,1970, 10/3: pp.19–
29, and 10/4: 19-24.

[3] B.Buchberger, A Criterion for Detecting Unnecessary Reductions
in the Construction of Groebner Bases. In: Proc. of the EU-
ROSAM 79 Symp. on Symbolic and Algebraic Computation, Mar-
seille, June 26-28, 1979, (Lect. Notes in Comp. Sci. 72, Springer):
pp.3–21.

[4] H.S.M. Coxeter, W.O.J. Moser, Generators and relations for dis-
crete groups, Third. Ed. Ergeb. Math 14, Springer Berlin 1972.

[5] Z.Frank Qiu, Mi Lu, A Surface-Based DNA Algorithm
for the Expansion of Symbolic Determinants. Available at
http://ee.tamu.edu/ zhiquan/dna/pub/symb.ps.

[6] C.Maley, DNA Computation:Theory, Practice and Prospects.
Evolutionary Computation, 6(3):pp.201–229, 1998. Available at
http://mitpress.mit.edu/journals/EVCO/sample-article.html .

[7] T.Mora, Gröbner bases for non-commutative polynomial rings.
In: J.Calmet (ed.), AAECC-3,1986, Lect. Notes Comp. Sc. 229:
pp.353–362.

[8] J.Mȧnsson, P.Nordbeck, Regular Gröbner basis. To appear in J. of
Symbolic Computations.

[9] J.Oliver, Computation With DNA – Matrix Multiplication. Amer-
ican Mathematical Society. Proceedings of the Second Annual
Meeting on DNA Based Computers, held at Princeton University,
June 10–12, 1996., DIMACS: Series in Discrete Mathematics and

376



Non-commutative computer algebra . . .

Theoretical Computer Science., ISSN 1052-1798, 1996. Available
at http://www.chem.brown.edu/brochure/people/jso/DNA.html.

[10] R.Williams, D.Wood, Exascale Computer Algebra Problem Inter-
connect with Molecular Reactions and Complexity Theory. DI-
MACS series in Discrete Mathematics and Theoretical Computer
Science. Vol.44, 1999, pp.267–275.

S. Cojocaru, V. Ufnarovski, Received November 20, 2001

Svetlana Cojocaru,
Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova,
str. Academiei, 5, Chişinău, MD 2028, Moldova.
E–mail: sveta@math.md

Victor Ufnarovski,
Lund University,
Department of Mathematics
Sölvegatan, 18,
Box 118, S-22100,
Lund, Sweden,
E–mail: ufn@maths.lth.se

377


