Extremal gaps in BP_3 -designs *

Lucia Gionfriddo

Abstract

In this paper we examine Voloshin's colorings of mixed hypergraphs derived from P_3 -designs and construct families of P_3 designs having the chromatic spectrum with the leftmost hole and rightmost hole.

1 Introduction

A mixed hypergraph is a triple $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$, where X is the vertex set $(X \neq \emptyset)$ and each of \mathcal{C} , \mathcal{D} is a list of subsets of X, called the \mathcal{C} -edges and the \mathcal{D} -edges of \mathcal{H} , respectively. A proper k-coloring of a mixed hypergraph \mathcal{H} is a function $f: X \mapsto \{1, 2, ..., k\}$ so that each \mathcal{C} -edge contains at least two vertices $x, y, x \neq y$, such that f(x) = f(y), and each \mathcal{D} -edge contains at least two vertices $x, y, x \neq y$, such that $f(x) \neq f(y)$. A strict k-coloring of \mathcal{H} is a proper k-coloring using all k colors. When a hypergraph admits a strict k-coloring it is said to be k-colorable.

The minimum (maximum) number of colors in a strict coloring of a mixed hypergraph \mathcal{H} is called the lower (upper) chromatic number of \mathcal{H} and is denoted by $\chi(\mathcal{H})$ ($\bar{\chi}(\mathcal{H})$).

For each k, $1 \leq k \leq n$, let r_k be the number of partitions of the vertex set into k nonempty parts (color classes) such that the coloring constraint is satisfied on each C-edge and on each D-edge. We call these partitions feasible. Thus r_k is the number of different strict k-colorings of H if we disregard permutations of colors. The vector

$$R(\mathcal{H}) = (r_1, \dots, r_n) = (0, \dots, 0, r_{\chi}, \dots, r_{\bar{\chi}}, 0, \dots, 0)$$

^{©2001} by L.Gionfriddo

^{*} Supported by cofin MURST "Strutture geometriche, combinatorie e loro applicazioni".

is the *chromatic spectrum* of \mathcal{H} . The set of values k, such that \mathcal{H} has a strict k-coloring, is the feasible set of \mathcal{H} denoted by $S(\mathcal{H})$; this is the set of indices i such that $r_i > 0$. Observe that it $r_i = 0$ for every $i < \chi$, $i > \bar{\chi}$, and when $\chi = \bar{\chi}$ the mixed hypergraph can be colored only with k colors.

It may happen however, that $r_i = 0$ for some $\chi < i < \bar{\chi}$; in this case the chromatic spectrum and feasible set have gaps (are broken).

The *length of the gap* is the number of consecutive zeros in it. The gap of length one is called *hole*. Chromatic spectrum may have many holes. In this case there are *leftmost* and *rightmost* holes.

The concepts of mixed hypergraphs, lower (upper) chromatic number, chromatic spectrum and gaps were introduced in [6, 9, 10]. Interesting problems arise when the considered hypergraphs verify the condition to be Steiner systems or Designs [2, 7].

In [4] we constructed families of P_3 -designs having broken chromatic spectrum containing many gaps. In this paper we construct families of P_3 -designs having the chromatic spectrum with the leftmost hole and rightmost hole.

2 P_3 -designs and BP_3 -designs

It is well known that:

- i) A necessary and sufficient condition for the existence of a $P(n, k, \lambda)$ -design is: $\lambda n(n-1) \equiv 0, \mod 2(k-1), n \geq 2k$.
- ii) There exists a $P_3(n)$ -design if and only if $n(n-1) \equiv 0 \mod 4$, $n \geq 3$.

It is possible to construct P_3 -designs as follows.

- A) If (X, B) is a $P_3(n)$ -design of order n, for $n \equiv 0 \mod 4$, and F is an 1-factor defined on $X = \{x_1, x_2, ..., x_n\}$, then consider:
 - i) $X' = X \cup \{\infty\}$, where $\infty \notin X$;
 - ii) $B' = B \cup C$,

where C is the collection of all the P_3 -paths having the vertex ∞ as *centre* and all the pairs of F as *terminal* points. We can prove immediately that (X', B') is a $P_3(n+1)$ -design.

- B) Let (X,B) be a $P_3(n)$ -design of order n and let (Y,C) be a $P_3(4)$ -design, being $Y=\{y_1,y_2,y_3,y_4\}$. If $F_1,F_2,...,F_{n-1}$ are 1-factors (non necessarily distinct or disjoint) defined on $X=\{x_1,x_2,...,x_n\}$, consider:
 - i) $X' = X \cup Y$;
 - ii) $B' = B \cup C \cup D_1 \cup D_2 \cup D_3 \cup D_4$,

where, for i = 1, 2, 3, 4, D_i is the collection of all the P_3 -paths having the vertex $y_i \in Y$ as centre and all the pairs of the 1-factor F_i as terminal points. It is easy to prove that (X', B') is a $P_3(n+4)$ -design.

- C) If (X, B) is a $P_3(n)$ -design of order n, (Y, C) is a $P_3(4)$ -design defined on $Y = \{y_1, y_2, y_3, y_4\}$, and F_1, F_2, F_3 are 1-factors (non necessarily distinct or disjoint) defined on Y, consider:
 - i) $X' = X \cup Y$;

ii)
$$B' = B \cup C \cup D_1 \cup D_2 \cup D_3 \cup D_4$$
,

where, for i=1,2,3,4, D_i is the collection of all the P_3 -paths having the vertex $x_i \in X$ as centre and all the pairs of the 1-factor F_i as terminal points. It is immediate to prove that (X',B') is a $P_3(n+4)$ -design.

A path of a P_3 -design having centre y and terminal vertices x, z, is indicated by $\langle x, y, z \rangle$. Further, we consider hypergraphs $\mathcal{H} = (X, E)$ associated with P_3 -designs $\Sigma = (X, B)$: they have vertex set X and an edge $\{x, y, z\} \in E$ if and only if the path $\langle x, y, z \rangle \in B$. In what follows we will consider P_3 -designs with particular Voloshin-colorings. In fact, in the case $\mathcal{C} = \mathcal{D}$, 3-uniform mixed-hypergraphs have a singular property: in every edge there are two vertices with the same color and two vertices with distinct colors.

We will consider always P_3 -designs having the property that $C = \mathcal{D}$ and we will call them BP_3 -designs (designs with bicolored blocks), in analogy to BSTS considered in [2, 7].

3 BP_3 -designs with minimum or maximum possible gap

The following Theorem was proved in [4].

Theorem 1 If $\Sigma = (X, B)$ is a BP_3 -design of order n, then:

$$2 \le \chi \le \bar{\chi} \le \lceil n/2 \rceil$$

and the bounds are the best possible.

From Theorem 1 it follows:

Corollary 1 In the chromatic spectrum of a $BP_3(n)$ -design, the left-most hole is possible at 3 and $n \ge 8$, the rightmost hole is possible at $i = \lceil n/2 \rceil - 1$ and $n \ge 8$.

Proof.

In a BP_3 -design always $r_1=0$. Therefore, if $r_2\neq 0$, the first possibility for a gap in the chromatic spectrum is for $r_3=0,\ r_4\neq 0$, with a gap at i=3. Further, $r_4\neq 0$ implies $n\geq 8$. Since $r_i=0$, for every $i=\lceil n/2\rceil+1,\ldots,n$, the last possibility for a gap is for $r_{\lceil n/2\rceil}\neq 0$, $r_{\lceil n/2\rceil-1}=0$, $r_{\lceil n/2\rceil-2}\neq 0$, with a gap at $i=\lceil n/2\rceil-1$. From $r_{\lceil n/2\rceil-2}\neq 0$, $\lceil n/2\rceil-2\geq 2$, it follows, also, $n\geq 8$.

Theorem 2 For every admissible $n, n \geq 8$, there exists $BP_3(n)$ -design having the only hole and it is at 3.

Proof.

To prove the statement, it suffices to construct a family of $BP_3(n)$ -designs, for every $n \equiv 0$, 1 mod 4, $n \geq 8$, having only hole and it is at 3.

If n = 4, n = 5, no gap is possible.

If n=8, the following BP_3 -design $\Sigma_8=(X,B)$ is 2-colorable, 4-colorable, but it is not 3-colorable. The chromatic spectrum is $R=(0,r_2,0,r_4,0,0,0,0)$, for $r_2\neq 0$, $r_4\neq 0$:

Observe that Σ_8 contains two $sub-BP_3$ -designs of order 4 defined on $Y'=\{x_0,x_1,x_2,x_3\}$ and $Y''=\{x_4,x_5,x_6,x_7\}$, both 2-colorable. A coloring f of Σ_8 , assigning the same color to x_0, x_1 , uses 4 colors necessarily: $f(x_0)=f(x_1)=\alpha_0$ implies $f(x_2)=f(x_3)=\alpha_1$, from which $\{f(x_4),f(x_5),f(x_6),f(x_7)\}=\{\alpha_2,\alpha_3\}$, with $\{\alpha_0,\alpha_1\}\cap\{\alpha_2,\alpha_3\}=\emptyset$. A coloring f of Σ_8 , assigning different colors to x_0,x_1 , uses 2 colors necessarily: $f(x_0)=\alpha_0, f(x_1)=\alpha_1$

implies $\{f(x_2), f(x_3)\} = \{\alpha_0, \alpha_1\}$, with $f(x_2) \neq f(x_3)$, from which $\{f(x_4), f(x_5), f(x_6), f(x_7)\} = \{\alpha_0, \alpha_1\}$. The chromatic spectrum is $R = (0, r_2, 0, r_4, 0, 0, 0, 0)$, for $r_2 \neq 0$, $r_4 \neq 0$.

If n=9, consider the $BP_3(9)$ -design $\Sigma_9=(X',B')$, obtained from Σ_8 by Construction A), adding a vertex ∞ and all the blocks $\langle x_{2i}, \infty, x_{2i+1} \rangle$, for every i=0,1,2,3. If f is a coloring of Σ_8 such that $f(x_0)=f(x_1)=\alpha_0$, then $f(x_2)=f(x_3)=\alpha_1$, Σ_8 is 4-colorable and Σ_9 can be 4-colorable or 5-colorable, respectively if $f(x_4)=\alpha_2$, $f(x_5)=\alpha_3$, or if $f(x_4)=f(x_5)=\alpha_2$ and $f(x_6)=f(x_7)=\alpha_3$. If $f(x_0)=\alpha_0$, $f(x_1)=\alpha_1$, Σ_9 is 2-colorable, but not 3-colorable. Its chromatic spectrum is: $R=(0,r_2,0,r_4,r_5,0,0,0,0)$, for $r_2\neq 0$, $r_4\neq 0$, $r_5\neq 0$.

If n = 12, consider the $BP_3(12)$ - design $\Sigma_{12} = (X, B)$ defined on $X = \{x_0, x_1, ..., x_{11}\}$, containing Σ_8 and having the further blocks:

$$\langle x_8, x_9, x_{10} \rangle$$
 $\langle x_8, x_{10}, x_{11} \rangle$ $\langle x_8, x_{11}, x_9 \rangle$ $\langle x_5, x_{11}, x_7 \rangle$ $\langle x_4, x_{10}, x_6 \rangle$ $\langle x_4, x_{11}, x_6 \rangle$ $\langle x_5, x_{10}, x_7 \rangle$

and $\langle x_{2i}, x_j, x_{2i+1} \rangle$, for i = 0, 1, 2, 3, j = 8, 9 and for i = 0, 1, j = 10, 11. Σ_{12} is 2-colorable, if f is a coloring such that $f(x_0) = \alpha_0$, $f(x_1) = \alpha_1$. In the case $f(x_0) = f(x_1) = \alpha_0$, $f(x_2) = f(x_3) = \alpha_1$, Σ_{12} is 4-colorable or 5-colorable. The chromatic spectrum is $R = (0, r_2, 0, r_4, r_5, 0, 0, ..., 0, 0)$, for $r_2 \neq 0$, $r_4 \neq 0$, $r_5 \neq 0$.

If n=13, we consider a $BP_3(13)$ -design $\Sigma_{13}=(X',B')$ obtained from Σ_{12} by Construction A) with the further blocks $\langle x_{2i}, \infty, x_{2i+1} \rangle$, for every i=0,1,2,3, and $\langle x_8, \infty, x_{10} \rangle$, $\langle x_9, \infty, x_{11} \rangle$. Σ_{13} is 2-colorable, 4-colorable, 5-colorable, but not 3-colorable. Its chromatic spectrum is $R=(0,r_2,0,r_4,r_5,0,0,...,0,0)$, for $r_2 \neq 0$, $r_4 \neq 0$, $r_5 \neq 0$. Now, let n=4h, $n\geq 4$. Let n=13, containing $n\geq 13$, be the n=13, having vertex set n=13, n=13, containing $n\geq 13$, for n=13, and blocks n=13, n=13, n=13, n=13, n=13, n=13, n=13, with the following further blocks:

for
$$i = 1, 2, ..., h - 2$$
, and $j = 4i, u = 0, 1, ..., 2i - 1$,

$$\langle x_{2u}, x_j, x_{2u+1} \rangle$$
$$\langle x_{2u}, x_{j+1}, x_{2u+1} \rangle$$
$$\langle x_{2u}, x_{j+2}, x_{2u+1} \rangle$$
$$\langle x_{2u}, x_{j+3}, x_{2u+1} \rangle$$

for $i = 0, 1, 2, \dots, 2h - 3$,

$$\langle x_{2i}, x_{4h-4}, x_{2i+1} \rangle \quad \langle x_{2i}, x_{4h-2}, x_{2i+1} \rangle$$

for $i = 4, 5, \dots, 2h - 3$,

$$\langle x_{2i}, x_{4h-3}, x_{2i+1} \rangle$$
$$\langle x_{2i}, x_{4h-1}, x_{2i+1} \rangle$$

and

$$\langle x_0, x_{4h-1}, x_1 \rangle \quad \langle x_2, x_{4h-1}, x_3 \rangle$$

$$\langle x_4, x_{4h-1}, x_6 \rangle \quad \langle x_5, x_{4h-1}, x_7 \rangle$$

$$\langle x_0, x_{4h-3}, x_1 \rangle \quad \langle x_2, x_{4h-3}, x_3 \rangle$$

$$\langle x_4, x_{4h-3}, x_6 \rangle \quad \langle x_5, x_{4h-3}, x_7 \rangle.$$

We see that, in a coloring f of Σ_n , if $f(x_0) = \alpha_0$ and $f(x_1) = \alpha_1$, the only possibility for Σ_n is a 2-coloring. This exists for $\{f(x_0), f(x_1)\}=$ $\{\alpha_0, \alpha_1\}, \{f(x_2), f(x_3)\} = \{\alpha_0, \alpha_1\}, f(x_4) = f(x_7) = \alpha_0,$ $f(x_5) = f(x_6) = \alpha_1$, and $f(x_{2i}) = \alpha_0$ and $f(x_{2i+1}) = \alpha_1$ for i = 4, 5, ..., 2h-1. If $f(x_0) = f(x_1) = \alpha_0$, then $f(x_2) = f(x_3) = \alpha_1$ and $\{f(x_4), f(x_5), f(x_6), f(x_7)\} \cap \{\alpha_0, \alpha_1\} = \emptyset$. In the case $f(x_4) = f(x_5) = \emptyset$ α_2 , it is $f(x_6) = f(x_7) = \alpha_3$ and, since $\langle x_4, x_{4h-3}, x_6 \rangle$, $\langle x_5, x_{4h-3}, x_7 \rangle$, $\langle x_4, x_{4h-1}, x_6 \rangle, \langle x_5, x_{4h-1}, x_7 \rangle$ are blocks of Σ_n , $f(x_{4h-3}) = f(x_{4h-1}) =$ α_2 or α_3 . The only possibility is $f(x_{2i}) = f(x_{2i+1}) = \alpha_i$, for every i = 0, 1, 2, ..., 2h - 3, and $f(x_{4h-4}) = f(x_{4h-2}) = \alpha_{2h-2}$. So, f is a (2h-1)-coloring. In the case $f(x_4) = \alpha_2$, $f(x_5) = \alpha_3$, Σ_n is 4colorable or 5-colorable: it is $f(x) = \alpha_2$ or α_3 for every $x \neq x_{4h-3}$, $x \neq x_{4h-1}$ and Σ_n is 4-colorable if $f(x_6) = \alpha_3$, $f(x_7) = \alpha_2$, Σ_n is 5colorable if $f(x_6) = \alpha_2$, $f(x_7) = \alpha_3$. The chromatic spectrum of Σ_n is $R = (0, r_2, 0, r_4, r_5, 0, \dots, 0, r_{2h-1}, 0, 0, \dots, 0, 0)$, for $r_2 \neq 0, r_4 \neq 0$, $r_5 \neq 0$, $r_{2h-1} \neq 0$ and $r_i = 0$, for 5 < i < 2h - 1.

Observe that Σ_n contains a $sub-BP_3(n-3)-design \Sigma'_{n-3}=(X',B')$, defined on $X'=X-\{x_{n-3},x_{n-2},x_{n-1}\}$: Σ'_{n-3} is obtained from Σ_n by deleting the vertices $x_{n-3}, x_{n-2}, x_{n-1}$ and all the blocks containing them. All the colorings of Σ'_{n-3} are obtained from colorings of Σ_n , by a restriction. Σ'_{n-3} is 2-colorable, 4-colorable, (2h-1)-colorable. Its chromatic spectrum $R=(0,r_2,0,r_4,0,0,...,0,r_{2h-1},0,0,...,0,0)$, for $r_2\neq 0, r_4\neq 0, r_{2h-1}\neq 0$. This completes the proof.

Theorem 3 For every admissible $n, n \ge 8$, there exist $BP_3(n)$ -designs having the only rightmost hole at $\lceil n/2 \rceil - 1$ in the chromatic spectrum.

Proof. To prove the statement, it suffices to construct a family of $BP_3(n)$ -designs, for every $n \equiv 0, 1 \mod 4, n \geq 8$, having chromatic spectrum $R = (0, \ldots, r_{\lceil n/2 \rceil - 2}, 0, r_{\lceil n/2 \rceil}, 0, \ldots, 0)$, for $r_{\lceil n/2 \rceil - 2} \neq 0$, $r_{\lceil n/2 \rceil} \neq 0$, with the only rightmost hole at $\lceil n/2 \rceil - 1$. No gap is possible for n = 4, n = 5.

Case 1: Let $n \equiv 0 \mod 4$, $n \geq 8$. For n = 8, the $BP_3(8)$ -design defined in Theorem 2 has the requested spectrum. If n = 12, the following BP_3 -design $\Sigma_{12} = (X, B)$ is 4 -colorable,

6-colorable, but it is not 5-colorable. Its chromatic spectrum $R = (0, 0, 0, r_4, 0, r_6, 0, 0, 0, 0, 0, 0)$, for $r_4 \neq 0$, $r_6 \neq 0$:

$$\Sigma_{12} = (X, B) ,$$
 $X = \{x_0, x_1, ..., x_{11}\} ,$
B:

$$\begin{array}{c|cccc} \langle x_0, x_1, x_2 \rangle & \langle x_0, x_2, x_3 \rangle & \langle x_0, x_3, x_1 \rangle \\ \langle x_4, x_5, x_6 \rangle & \langle x_4, x_6, x_7 \rangle & \langle x_4, x_7, x_5 \rangle \\ \langle x_1, x_4, x_3 \rangle & \langle x_1, x_5, x_3 \rangle & \langle x_2, x_6, x_3 \rangle \\ \langle x_2, x_7, x_3 \rangle & \langle x_4, x_0, x_5 \rangle & \langle x_4, x_2, x_5 \rangle \\ \langle x_6, x_0, x_7 \rangle & \langle x_6, x_1, x_7 \rangle \end{array}$$

and

```
\langle x_1, x_8, x_2 \rangle
                                     \langle x_4, x_8, x_6 \rangle
                                                                             \langle x_5, x_8, x_7 \rangle
                                                                                                                   \langle x_1, x_9, x_2 \rangle
\langle x_4, x_9, x_6 \rangle
                                     \langle x_5, x_9, x_7 \rangle
                                                                             \langle x_1, x_{10}, x_2 \rangle
                                                                                                                   \langle x_4, x_{10}, x_6 \rangle
\langle x_5, x_{10}, x_7 \rangle
                                     \langle x_1, x_{11}, x_2 \rangle
                                                                             \langle x_4, x_{11}, x_6 \rangle
                                                                                                                   \langle x_5, x_{11}, x_7 \rangle
                                     \langle x_{10}, x_0, x_{11} \rangle
                                                                            \langle x_8, x_3, x_9 \rangle
                                                                                                                   \langle x_{10}, x_3, x_{11} \rangle.
\langle x_8, x_0, x_9 \rangle
```

Observe that Σ_{12} contains three sub-BP₃(4)-designs defined on Y_1 = $\{x_0, x_1, x_2, x_3\}, Y_2 = (x_4, x_5, x_6, x_7), Y_3 = \{x_8, x_9, x_{10}, x_{11}\}.$ It is not possible that a coloring f of Σ_{12} , assigns the same color to x_0 , x_1 . In fact, if $f(x_0) = f(x_1) = \alpha_0$, then $f(x_2) = f(x_3) = \alpha_1$, from which $\{f(x_4), f(x_5), f(x_6), f(x_7)\} = \{\alpha_0, \alpha_1\}, \text{ with } \{f(x_4), f(x_5)\} = \{\alpha_0, \alpha_1\}, \text{ with } \{f(x_4), f(x_5), f(x_5)\} = \{\alpha_0, \alpha_1\}, \text{ with } \{f(x_4), f(x_5), f(x_5), f(x_5), f(x_5)\} = \{\alpha_0, \alpha_1\}, \text{ with } \{f(x_4), f(x_5), f$ $\{\alpha_0,\alpha_1\},\ f(x_6)\neq\alpha_1,\ f(x_7)\neq\alpha_1$ and this gives a monochromatic block. So, $f(x_0) = \alpha_0$, $f(x_1) = \alpha_1$ and $\{f(x_2), f(x_3)\} \subseteq \{\alpha_0, \alpha_1\}$. If $f(x_2) = f(x_3)$, then $f(x_2) = f(x_3) = \alpha_1$ and $f(x_i) \notin \{\alpha_0, \alpha_1\}$ for every i = 4, 5, ..., 11. Further $f(x_4) = f(x_5), f(x_6) = f(x_7)$. It follows $f(x_4) = f(x_5) = \alpha_2$, $f(x_6) = f(x_7) = \alpha_3$ and then $\{f(x_8), f(x_9), f(x_{10}), f(x_{11})\} = \{\alpha_4, \alpha_5\}.$ Therefore, Σ_{12} is 6-colorable. If $\{f(x_2), f(x_3)\} = \{\alpha_0, \alpha_1\}$, then $\{(f(x_4), f(x_5)\} = \{f(x_6), f(x_7)\} = \{f(x_6), f(x_7)\}$ $\{\alpha_0,\alpha_1\}$. We conclude $f(x_3)=\alpha_0$. In fact, for the existence of the blocks $\langle x_1, x_4, x_3 \rangle$, $\langle x_1, x_5, x_3 \rangle$, $f(x_3) = \alpha_1$ implies $f(x_4) = f(x_5) = \alpha_0$, with a monochromatic block in Σ_{12} . Hence $f(x_2) = \alpha_1$. Further, $\langle x_1, x_i, x_2 \rangle \in B$ for every i = 8, 9, 10, 11, implies $f(x_i) \neq \alpha_1$, from which $f(x_i) \in \{\alpha_0, \alpha_2, \alpha_3\}$. At last, from $\langle x_8, x_0, x_9 \rangle$, $\langle x_8, x_3, x_9 \rangle \in B$ it follows $f(x_8) = f(x_9) = \alpha_2$ and from $\langle x_{10}, x_0, x_{11} \rangle$, $\langle x_{10}, x_3, x_{11} \rangle \in B$ it follows $f(x_{10}) = f(x_{11}) = \alpha_3$.

Therefore, Σ_{12} is 4-colorable and the chromatic spectrum of Σ_{12} is $R = (0, 0, 0, r_4, 0, r_6, 0, 0, 0, 0, 0, 0)$, for $r_4 \neq 0$, $r_6 \neq 0$.

Let n=4h, $h \geq 4$, and let $\Sigma_n=(X,B)$ be the BP_3 -design defined as follows. $X=\{x_0,x_1,...,x_{n-1}\}$. The family B contains the following blocks:

for every r = 0, ..., h - 1:

$$\langle x_{4r}, x_{4r+1}, x_{4r+2} \rangle$$

 $\langle x_{4r}, x_{4r+2}, x_{4r+3} \rangle$
 $\langle x_{4r}, x_{4r+3}, x_{4r+1} \rangle$

for every i = 2, ..., h - 2:

$$\begin{array}{ccc} \langle x_{4i}, x_0, x_{4i+1} \rangle & \langle x_{4i+2}, x_0, x_{4i+3} \rangle & \langle x_{4i}, x_3, x_{4i+1} \rangle \\ \langle x_{4i+2}, x_3, x_{4i+3} \rangle & \langle x_1, x_{4i}, x_2 \rangle & \langle x_1, x_{4i+1}, x_2 \rangle \\ \langle x_1, x_{4i+2}, x_2 \rangle & \langle x_1, x_{4i+3}, x_2 \rangle, \end{array}$$

for every u = 2, ..., 2i - 1:

$$\langle x_{2u}, x_{4i}, x_{2u+1} \rangle$$

 $\langle x_{2u}, x_{4i+1}, x_{2u+1} \rangle$
 $\langle x_{2u}, x_{4i+2}, x_{2u+1} \rangle$
 $\langle x_{2u}, x_{4i+3}, x_{2u+1} \rangle$,

for every j = 2, ..., 2h - 3,

$$\langle x_{2j}, x_{4h-4}, x_{2j+1} \rangle$$

 $\langle x_{2j}, x_{4h-3}, x_{2j+1} \rangle$
 $\langle x_{2j}, x_{4h-2}, x_{2j+1} \rangle$
 $\langle x_{2j}, x_{4h-1}, x_{2j+1} \rangle$

and

$$\langle x_1, x_4, x_3 \rangle$$
 $\langle x_1, x_5, x_3 \rangle$ $\langle x_4, x_2, x_5 \rangle$ $\langle x_2, x_6, x_3 \rangle$ $\langle x_2, x_7, x_3 \rangle$ $\langle x_6, x_1, x_7 \rangle$ $\langle x_4, x_0, x_5 \rangle$ $\langle x_6, x_0, x_7 \rangle$,

further

$$\begin{array}{lll} \langle x_{4h-4}, x_0, x_{4h-3} \rangle & \langle x_{4h-2}, x_0, x_{4h-1} \rangle \\ \langle x_{4h-4}, x_1, x_{4h-3} \rangle & \langle x_{4h-2}, x_1, x_{4h-1} \rangle \\ \langle x_{4h-4}, x_2, x_{4h-3} \rangle & \langle x_{4h-2}, x_2, x_{4h-1} \rangle \\ \langle x_{4h-4}, x_3, x_{4h-3} \rangle & \langle x_{4h-2}, x_3, x_{4h-1} \rangle. \end{array}$$

Let f be a coloring of Σ_n . Consider the sub- $BP_3(12)$ -design defined on $X_0 \cup X_1 \cup X_2$. It is $f(x_0) \neq f(x_1)$, necessarily.

```
In fact, if f(x_0) = f(x_1) = \alpha, then f(x_2) = f(x_3) = \beta, from which
\{f(x_4), f(x_5)\}\subseteq \{\alpha, \beta\}. But, since \langle x_4, x_0, x_5 \rangle, \langle x_4, x_2, x_5 \rangle \in B, then
\{f(x_4), f(x_5)\} = \{\alpha, \beta\} and, from this, also \{f(x_6), f(x_7)\} = \{\alpha, \beta\}.
But the existence of the blocks \langle x_2, x_6, x_3 \rangle, \langle x_2, x_7, x_3 \rangle implies f(x_6) =
f(x_7) = \alpha, with the monochromaticity of the block \langle x_6, x_0, x_7 \rangle.
So, f(x_0) = \alpha_0, f(x_1) = \alpha_1, and this implies \{f(x_2), f(x_3)\} \subseteq \{\alpha_0, \alpha_1\}.
We see that f(x_2) = f(x_3) = \alpha_1, necessarily.
In fact, if f(x_2) \neq f(x_3), since \langle x_6, x_0, x_7 \rangle, \langle x_6, x_1, x_7 \rangle are blocks of \Sigma_n
and f(x_0) = \alpha_0, f(x_1) = \alpha_1, it follows \{f(x_6), f(x_7)\} = \{\alpha_0, \alpha_1\}.
This implies \{f(x_4), f(x_5)\} = \{\alpha_0, \alpha_1\}, from which f(x_3) = \alpha_0
and f(x_2) = \alpha_1, because of the existence of the blocks \langle x_1, x_4, x_3 \rangle,
\langle x_1, x_5, x_3 \rangle. It follows \{f(x_8), f(x_9), f(x_{10}), f(x_{11})\} = \{\alpha_0, \alpha_1\}, with
f(x_8) = f(x_9) = \alpha_0, from which f(x_{10}) = f(x_{11}) = \alpha_1. But this im-
plies the monochromaticity of the blocks \langle x_1, x_{10}, x_2 \rangle, \langle x_1, x_{11}, x_2 \rangle. So,
f(x_2) = f(x_3). Since \langle x_0, x_2, x_3 \rangle \in B, then f(x_2) = f(x_3) = \alpha_1.
Therefore: f(x_0) = \alpha_0, f(x_1) = f(x_2) = f(x_3) = \alpha_1. It is immediate to
see that no vertex of X_1 \cup X_2 can be colored by \alpha_1. It is not possible that
f(x_5) = \alpha_0, otherwise also f(x_4) = \alpha_0, for the existence of the block
\langle x_4, x_2, x_5 \rangle, with the monochromaticity of the block \langle x_4, x_0, x_5 \rangle. It is
not possible that f(x_6) = \alpha_0 (resp. f(x_7) = \alpha_0), otherwise also f(x_7) =
\alpha_0 (resp. f(x_6) = \alpha_0), for the existence of the block \langle x_6, x_1, x_7 \rangle, with
the monochromaticity of the block \langle x_6, x_0, x_7 \rangle.
Also f(x_4) \neq \alpha_0, otherwise f(x_5) \in \{\alpha_0, \alpha_1\}, for the existence of the
block \langle x_4, x_2, x_5 \rangle, so \{f(x_4), f(x_5), f(x_6), f(x_7) \cap \{\alpha_0, \alpha_1\} = \emptyset.
There is the same conclusion for the vertices of X_2, and we have
\{f(x_8), f(x_9), f(x_{10}), f(x_{11})\} \cap \{\alpha_0, \alpha_1\} = \emptyset.
We can see that the existence of the blocks \langle x_4, x_2, x_5 \rangle and \langle x_6, x_1, x_7 \rangle
implies f(x_4) = f(x_5) = \alpha_2 and f(x_6) = f(x_7) = \alpha_3. It fol-
lows \{f(x_8), f(x_9), f(x_{10}), f(x_{11})\} = \{\alpha_4, \alpha_5\}. If we consider that
\langle x_4, x_2, x_5 \rangle and \langle x_6, x_1, x_7 \rangle are blocks of \Sigma_n, we can see also that,
```

 $\{f(x_{4i}), f(x_{4i+1}), f(x_{4i+2}), f(x_{4i+3})\} = \{\alpha_{2i}, \alpha_{2i+1}\} \text{ with } f(x_{4i}) = f(x_{4i+1}) = \alpha_{2i}, f(x_{4i+2}) = f(x_{4i+3}) = \alpha_{2i+1}. \text{ So, the } sub\text{-}BP_3\text{-}design$

 $f(x_8) = f(x_9), f(x_{10}) = f(x_{11}),$ necessarily. In general we have, for every i = 1, 2, ..., h - 2:

defined on $X - X_{h-1}$ is uniquely (2h-2)-colorable.

Now, consider the vertices of X_{h-1} . It is immediate to see that $\{f(x_{4h-4}), f(x_{4h-3}), f(x_{4h-2}), f(x_{4h-1})\} \cap \{\alpha_2, ..., \alpha_{2h-3}\} = \emptyset$ for the existence of the blocks

$$\begin{array}{c|cccc} \langle x_{4i}, x_{4h-4}, x_{4i+1} \rangle & \langle x_{4i}, x_{4h-3}, x_{4i+1} \rangle & \langle x_{4i}, x_{4h-2}, x_{4i+1} \rangle \\ \langle x_{4i}, x_{4h-1}, x_{4i+1} \rangle & \langle x_{4i+2}, x_{4h-4}, x_{4i+3} \rangle & \langle x_{4i+2}, x_{4h-3}, x_{4i+3} \rangle \\ & \langle x_{4i+2}, x_{4h-2}, x_{4i+3} \rangle & \langle x_{4i+2}, x_{4h-1}, x_{4i+3} \rangle \end{array}$$

for every i=1,2,...,h-2. We see that it is possible to color the vertices of X_{h-1} as follows: $f(x_{4h-4})=f(x_{4h-2})=\alpha_{2h-2}, f(x_{4h-3})=f(x_{4h-1})=\alpha_{2h-1}$. So, Σ_n is 2h-colorable.

It is also possible to color the vertices of X_{h-1} as follows: $\{f(x_{4h-4}), f(x_{4h-3})\} = \{f(x_{4h-2}), f(x_{4h-1})\} = \{\alpha_0, \alpha_1\}$. So, Σ_n is (2h-2)-colorable.

No other case can be verified. In fact, if $f(x_{4h-4}) = \alpha_0$ (resp. α_1), necessarily $f(x_{4h-3}) = \alpha_1$ (resp. α_0) for the existence of the blocks $\langle x_{4h-4}, x_1, x_{4h-3} \rangle$, $\langle x_{4h-4}, x_0, x_{4h-3} \rangle$. Since $\{f(x_{4h-4}), f(x_{4h-3})\} = \{\alpha_0, \alpha_1\}$, then also $\{f(x_{4h-2}), f(x_{4h-1})\} = \{\alpha_0, \alpha_1\}$. If $f(x_{4h-4}) \notin \{\alpha_0, \alpha_1\}$, then $f(x_{4h-4}) = \alpha_{2h-2}$, necessarily $f(x_{4h-3}) = f(x_{4h-4})$, $f(x_{4h-2}) = f(x_{4h-1})$, from which $f(x_{4h-2}) = f(x_{4h-1}) = \alpha_{2h-1}$, because it is not possible $f(x_{4h-2}) = f(x_{4h-1}) = \alpha_0$ or $f(x_{4h-2}) = f(x_{4h-1}) = \alpha_1$.

Case 2: Let $n \equiv 1 \mod 4$, $n \geq 9$.

For n = 9, consider the $BP_3(9)$ -design Σ_9 , obtained by Construction A), starting from the following $BP_3(8)$ -design $\Sigma_8' = (Y, C)$:

$$\Sigma'_{8} = (Y, C),$$

 $Y = \{y_{0}, y_{1}, ..., y_{7}\},$
C:

$$\begin{array}{llll} \langle y_0, y_1, y_2 \rangle & \langle y_0, y_2, y_3 \rangle & \langle y_0, y_3, y_1 \rangle \\ \langle y_4, y_5, y_6 \rangle & \langle y_4, y_6, y_7 \rangle & \langle y_4, y_7, y_5 \rangle \\ \langle y_0, y_4, y_1 \rangle & \langle y_0, y_5, y_1 \rangle & \langle y_0, y_6, y_1 \rangle \\ \langle y_0, y_7, y_1 \rangle & \langle y_4, y_2, y_5 \rangle & \langle y_4, y_3, y_5 \rangle \\ \langle y_6, y_2, y_7 \rangle & \langle y_6, y_3, y_7 \rangle
\end{array}$$

and adding a vertex ∞ , with all the possible paths $\langle y_{2i}, \infty, y_{2i+1} \rangle$, for every i = 0, 1, 2, 3. It is possible to see that Σ_9 is 2-colorable, 3-colorable, 5-colorable, but not 4 -colorable. Its chromatic spectrum $R = (0, r_2, r_3, 0, r_5, 0, 0, 0, 0)$, for $r_2 \neq 0$, $r_3 \neq 0$, $r_5 \neq 0$. In fact, if f is a coloring of Σ_9 , assigning different colors to y_0, y_1 , $f(y_0) = \alpha_0, f(y_1) = \alpha_1$, then $f(y_i) \in \{\alpha_0, \alpha_1\}$, for every vertex $y_i \in Y - \{y_0, y_1\}$, because of the existence of the block $\langle y_0, y_i, y_1 \rangle \in C$. A 2-coloring of Σ_9 exists for $f(y_{2i}) = \alpha_0$, $f(y_{2i+1}) = f(\infty) = \alpha_1$. If f assigns the same color to $y_0, y_1, f(y_0) = f(y_1) = \alpha_0$, then $f(y_2) = f(y_3) = \alpha_1$, $f(\infty) = \alpha_2$ and no one of the others can be colored by α_0 . If $f(y_i) = \alpha_1$, for some i = 4, 5, 6, 7, then Σ_9 is 3-colorable: in this case necessarily $\{f(y_4), f(y_5)\} = \{\alpha_1, \alpha_2\}, \{f(y_6), f(y_7)\} = \{\alpha_1, \alpha_2\}, f(\infty) = \alpha_1$. If $f(y_i) \neq \alpha_1$, for every i = 4, 5, 6, 7, then Σ_9 is 5-colorable: necessarily $f(y_4) = f(y_5) = \alpha_2, f(y_6) = f(y_7) = \alpha_3, f(\infty) = \alpha_4$. Let $n = 4h + 1, n \geq 13$. Consider the $BP_3(n)$ -design $\Sigma_n = (Y, C)$, de-

$$\langle y_8, y_9, y_{10} \rangle$$
, $\langle y_8, y_{10}, y_{11} \rangle$, $\langle y_8, y_{11}, y_9 \rangle$
... ... $\langle y_{4h-4}, y_{4h-3}, y_{4h-2} \rangle$, $\langle y_{4h-4}, y_{4h-2}, y_{4h-1} \rangle$, $\langle y_{4h-4}, y_{4h-1}, y_{4h-3} \rangle$

fined on $Y = \{y_0, y_1, ..., y_{4h-1}\} \cup \{\infty\}$, consisting of h $BP_3(4)$ -designs defined on $Y_i = \{y_{4i}, y_{4i+1}, y_{4i+2}, y_{4i+3}\}$ for every i = 0, 1, 2, ..., h-1, containing the previous $BP_3(9)$ -design Σ_9 with all its blocks, and hav-

for every i = 2, 3, ..., h - 1:

ing the further blocks:

$$\langle y_0, y_{4i}, y_1 \rangle$$
 $\langle y_0, y_{4i+1}, y_1 \rangle$ $\langle y_0, y_{4i+2}, y_1 \rangle$ $\langle y_0, y_{4i+3}, y_1 \rangle$ $\langle y_2, y_{4i}, y_3 \rangle$ $\langle y_2, y_{4i+1}, y_3 \rangle$ $\langle y_2, y_{4i+2}, y_3 \rangle$ $\langle y_2, y_{4i+3}, y_3 \rangle$,

and for every j = 1, 2, ..., i - 1:

```
\langle y_{4i}, y_{4i}, y_{4i+1} \rangle
                                                     \langle y_{4i}, y_{4j+2}, y_{4i+1} \rangle
  \langle y_{4i+2}, y_{4j}, y_{4i+3} \rangle
                                                   \langle y_{4i+2}, y_{4j+2}, y_{4i+3} \rangle
  \langle y_{4i}, y_{4i+1}, y_{4i+1} \rangle
                                                     \langle y_{4i}, y_{4i+3}, y_{4i+1} \rangle
\langle y_{4i+2}, y_{4i+1}, y_{4i+3} \rangle
                                                   \langle y_{4i+2}, y_{4i+3}, y_{4i+3} \rangle
```

with $\langle y_{2i}, \infty, y_{2i+1} \rangle$, for every j = 4, 5, ..., 2h - 1.

We have examined the possible colorings of Σ_9 . We try to extend them to all Σ_n . When the coloring f assigns different colors to y_0 , y_1, Σ_n is uncolorable or 2-colorable. A 2-coloring of Σ_n exists for $f(y_{2i}) = \alpha_0, f(y_{2i+1}) = f(\infty) = \alpha_1.$ If f assigns the same colour to $y_0, y_1, f(y_0) = f(y_1) = \alpha_0$, then $f(y_2) = f(y_3) = \alpha_1, f(\infty) \notin$ $\{\alpha_0,\alpha_1\}$. In the case that $f(y_i)=\alpha_1$, for some i=4,5,6,7, then Σ_n is (2h-1)-colorable. In fact, necessarily $\{f(y_4), f(y_5)\} = \{\alpha_1, \alpha_2\},$ $\{f(y_6), f(y_7)\} = \{\alpha_1, \alpha_2\}, f(\infty) = \alpha_2, \text{ and } \{f(y_{2i}), f(y_{2i+1})\} = \alpha_2$ $\{\alpha_{j-1}\}\$, for every j = 4, 5, ..., 2h - 1 and $f(\infty) = \alpha_2$. If $f(y_i) \neq \alpha_1$, for every i = 4, 5, 6, 7, then Σ_n is (2h+1)-colorable. In fact, necessarily $f(y_4) = f(y_5) = \alpha_2$, $f(y_6) = f(y_7) = \alpha_3$, and from this $f(y_8) =$ $f(y_9) = \alpha_4, f(y_{10}) = f(y_{11}) = \alpha_5, \dots, f(y_{4h-2}) = f(y_{4h-1}) = \alpha_{2h-1},$ $f(\infty) = \alpha_{2h}$.

This completes the proof.

4 Concluding remark

In this paper we constructed families of BP_3 -designs having only one hole: the leftmost or the rightmost. In [4] we constructed families of BP_3 -designs having gaps of different lengths. We point out that, at the moment, it seems difficult to construct families of BP_3 -designs having simultaneously the only leftmost and rightmost hole.

References

[1] C.Berge. Hypergraphs. North Holland, 1989.

- [2] C.Colbourn J.Dinitz A.Rosa. *Bicoloring Steiner triple systems*, Electronic Journal of Combinatorics, 6, (1999),R25.
- [3] C.Colbourn A.Rosa. *Triple Systems*, Clarendon Press, Oxford., (1999).
- [4] L.Gionfriddo. Voloshin colorings for P_3 -designs, preprint.
- [5] L.Gionfriddo, V.I.Voloshin. The smallest bihypergraph with a gap in the chromatic spectrum has 7 vertices and 9 edges, Bulletin of the ICA, (2001).
- [6] T.Jiang, D.Mubayi, Z.Tuza, V.Voloshin, D.West. Chromatic spectrum is broken, 6th Twente Workshop on Graphs and Combinatorial Optimization. University of Twente, (1999), pp. 231–234.
- [7] L.Milazzo Z.Tuza. Upper chromatic number of Steiner triple and quadruple systems, Discrete Mathematics, 174, (1997), pp. 247–259.
- [8] V.I.Voloshin. *The mixed hypergraphs*, Computer Science Journal of Moldova, 1, (1993), pp.45–52.
- [9] V.I.Voloshin. Coloring of mixed hypergraphs., Monograph, in preparation.
- [10] V.I.Voloshin. On the upper chromatic number of a hypergraph, Australasian J. of Combinatorics. 11, (1995), pp. 25–45.

L.Gionfriddo,

Received October 10, 2001

Lucia Gionfriddo, Dipartimento di Matematica e Informatica, Università di Catania, Viale A.Doria, 6 95125 - Catania, Italia. E-mail: lucia.gionfriddo@dmi.unict.it