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T-invariants for jumping Petri nets ∗

Cristian Vidraşcu

Abstract

This paper introduces the notions of T-invariants for the class
of finite jumping Petri nets, and extends the results concerning
T-invariants from classical Petri nets.

Keywords: parallel/distributed systems, Petri nets, jumping
Petri nets, invariants, verification of properties.

1 Introduction

A Petri net is a mathematical model used for the specification and the
analysis of parallel/distributed systems. An introduction about Petri
nets can be found in [4]. The place and transition invariants are a
formal analysis method for Petri nets, which was introduced in [3].

The basic idea behind place invariants is to construct equations
which are satisfied for all reachable markings, an idea which is very
similar to that of invariants in program verification. First we formulate
some equations, which we postulate to be satisfied independently of the
steps that occur. Then we prove that the equations are indeed satisfied,
and finally we use them to prove dynamic properties of the modelled
system.

Place and transition invariants are useful to prove dynamic proper-
ties, like reachability, boundedness, home, liveness and fairness proper-
ties. Another advantage of invariants is that they can be constructed
during the design of a system, and this will usually lead to an improved
design.
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It is well-known that the behaviour of some distributed systems
cannot be adequately modelled by classical Petri nets. Many exten-
sions which increase the computational and expressive power of Petri
nets have been thus introduced. One direction has led to various mod-
ifications of the firing rule of nets. One of these extensions is that of
jumping Petri nets, introduced in [5].

A jumping Petri net is a classical Petri net Σ equipped with a binary
relation R on the markings of Σ. The meaning of a pair (M,M ′) ∈ R
is that the net Σ may spontaneously “jump” from the marking M to
the marking M ′ (this is similar to λ-moves in automata theory). A
jumping Petri net is finite if the set of jumps R is finite.

This paper defines the notions of transition invariants for finite
jumping Petri nets, and shows that all the results about T-invariants
from classical Petri nets (i.e. P/T-nets) hold in the case of finite jump-
ing Petri nets, too.

The paper is organized as follows. Section 2 presents the basic
terminology, notation and results concerning Petri nets and jumping
Petri nets. Section 3 introduces the notion of transition invariants for
finite jumping Petri nets and extends the results concerning invariants
from P/T-nets. Finally, section 4 concludes this paper and formulates
some open problems.

2 Preliminaries

We will assume to be known the basic terminology and notation about
sets and relations, vectors and matrixes, and formal languages. Let us
just say that the notation #(a,w) will denote the number of occurences
of the symbol a in the word w.

This section will establish the basic terminology, notation, and re-
sults concerning Petri nets in order to give the reader the necessary
prerequisites for the understanding of this paper (for details the reader
is referred to [1], [4], [2]). Mainly, it will follow [2], [5].
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2.1 Petri nets

A Place/Transition net, shortly P/T-net or net, (finite, with infinite
capacities), abbreviated PTN, is a 4-tuple Σ = (S, T, F, W ), where S
and T are two finite non-empty sets (of places and transitions, resp.),
with S ∩ T = ∅, F ⊆ (S × T ) ∪ (T × S) is the flow relation and
W : (S × T ) ∪ (T × S) → N is the weight function of Σ verifying
W (x, y) = 0 iff (x, y) /∈ F .

For any x ∈ S ∪ T , the sets •x = {y ∈ S ∪ T |(y, x) ∈ F} and, resp.,
x• = {y ∈ S ∪ T |(x, y) ∈ F} are called the preset, resp. postset, of x.
Moreover, for any X ⊆ S ∪ T , •X = ∪{•x|x ∈ X} and X• = ∪{x•|x ∈
X}. An element x ∈ S ∪ T is called isolated iff •x ∪ x• = ∅.

A marking of a PTN Σ is a function M : S → N ; it will be
sometimes identified with a |S|-dimensional vector. The operations
and relations on vectors are componentwise defined. NS denotes the
set of all markings of Σ.

A marked PTN, abbreviated mPTN, is a pair γ = (Σ,M0), where
Σ is a PTN and M0, called the initial marking of γ, is a marking of Σ.

In the sequel the term “Petri net”(PN ) or “net” will be often used
to denote a PTN or a mPTN whenever it is not necessary to specify
its type (i.e. marked or unmarked).

Let Σ be a net, t ∈ T and w ∈ T ∗. The functions t−, t+ : S → N
and ∆t, ∆w : S → Z are defined by: t−(s) = W (s, t) , t+(s) = W (t, s),
∆t(s) = t+(s)− t−(s), and

∆w(s) =
{

0, if w = λ∑n
i=1 ∆ti(s), if w = t1t2 . . . tn (n≥1)

, for all s ∈ S.

The sequential behaviour of a net Σ is given by the so-called firing
rule, which consists of

• the enabling rule: a transition t is enabled at a marking M in Σ
(or t is fireable from M), abbreviated M [t〉Σ , iff t− ≤ M ;

• the computing rule: if M [t〉Σ, then t may occur yielding a new
marking M ′, abbreviated M [t〉ΣM ′, defined by M ′ = M + ∆t.

The notation “[.〉Σ” will be simplified to “[.〉” whenever Σ is under-
stood from the context.
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In fact, any transition t of Σ establishes a binary relation on NS ,
denoted by [t〉Σ and given by: M [t〉ΣM ′ iff t− ≤ M and M ′ = M +∆t.
If t1, t2, . . . , tn (n ≥ 1) are transitions of Σ, [t1t2 . . . tn〉Σ will denote the
classical product of the relations [t1〉Σ, . . . , [tn〉Σ, i.e. [t1t2 . . . tn〉Σ =
[t1〉Σ ◦ . . .◦ [tn〉Σ. Moreover, the relation [λ〉Σ is considered, by defining
[λ〉Σ = {(M,M)|M ∈ NS}.

Let γ = (Σ,M0) be a marked Petri net, and M ∈ NS . The word w ∈
T ∗ is called a transition sequence from M in Σ if there exists a marking
M ′ of Σ such that M [w〉ΣM ′. Moreover, the marking M ′ is called
reachable from M in Σ. TS(Σ,M) = {w ∈ T ∗|M [w〉Σ} denotes the
set of all transition sequences from M in Σ, and RS(Σ,M) = [M〉Σ =
{M ′ ∈ NS |∃w ∈ TS(Σ,M) : M [w〉ΣM ′} denotes the set of all reachable
markings from M in Σ. In the case M = M0, the set TS(Σ,M0) is
abbreviated by TS(γ) and it is called the set of all transition sequences
of γ, and the set RS(Σ,M0) is abbreviated by RS(γ) (or [M0〉γ) and
it is called the set of all reachable markings of γ.

A place s ∈ S is bounded if there exists an integer k ∈ N such that
M(s) ≤ k, for all M ∈ [M0〉γ . The net γ is bounded if all its places are
bounded.

A transition t ∈ T is quasi-live if there exists a reachable marking
M ∈ [M0〉γ such that t is fireable from M , i.e. M [t〉γ . The net γ is
quasi-live if all its transitions are quasi-live.

A transition t ∈ T is live if for any reachable marking M ∈ [M0〉γ ,
there exists a marking M ′ reachable from M , i.e. M ′ ∈ [M〉γ , such that
t is fireable from M ′, i.e. M ′[t〉γ . The net γ is live if all its transitions
are live.

2.2 Jumping Petri nets

Jumping Petri nets ([5]) are an extension of P/T-nets, which allows
them to do “spontaneous jumps” from one marking to another one
(this is similar to λ-moves in automata theory).

A jumping P/T-net, abbreviated JPTN, is a pair γ = (Σ, R), where
Σ is a PTN and R is a binary relation on the set of markings of Σ (i.e.
R ⊆ NS × NS), called the set of (spontaneous) jumps of γ. In what
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follows the set R of jumps of any JPTN will be assumed recursive,
that is for any couple of markings (M, M ′) it can be effectively decided
whether or not (M, M ′) is a member of R.

Let γ = (Σ, R) be a JPTN. The pairs (M, M ′) ∈ R are referred to
as jumps of γ. Σ is called the underlying P/T-net of γ. A marking of γ
is any marking of its underlying P/T-net. If γ has finitely many jumps
(i.e. R is finite), then γ is called a finite jumping Petri net, abbreviated
FJPTN.

A marked jumping P/T-net is defined similarly as a marked
P/T-net, by changing “Σ” into “Σ, R”. The abbreviations used will
be mY, with Y ∈ {JPTN ,FJPTN }.

In the sequel the term “jumping net”(JN ) will be often used to
denote a JPTN or a mJPTN whenever it is not necessary to specify its
type (i.e. marked or unmarked).

Pictorially, a jumping net will be represented as a classical net and,
moreover, the relation R will be separately listed.

Let γ be a jumping net, and r = (M ′,M ′′) ∈ R. The function
∆r : S → Z is defined by: ∆r(s) = M ′′(s)−M ′(s), for all s∈S.

The behaviour of a jumping net γ is given by the j-firing rule, which
consists of

• the j-enabling rule: a transition t is j-enabled at a marking M (in
γ), abbreviated M [t〉γ,j , iff there exists a marking M1 such that
MR∗M1[t〉Σ (Σ being the underlying P/T-net of γ and R∗ the
reflexive and transitive closure of R);

• the j-computing rule: if M [t〉γ,j , then the marking M ′ is j-
produced by occurring t at M , abbreviated M [t〉γ,jM

′, iff there
exists two markings M1, M2 such that MR∗M1[t〉ΣM2R

∗M ′.

The notation “[.〉γ,j” will be simplified to “[.〉j” whenever γ is un-
derstood from the context.

The notions of transition j-sequence and j-reachable marking are
defined similarly as for Petri nets (the relation [λ〉γ,j is defined by
[λ〉γ,j = R∗ = {(M,M ′)|M, M ′ ∈ NS ,MR∗M ′} ). The set of all
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j-reachable markings of a marked jumping Petri net γ is denoted by
RS(γ) or by [M0〉γ,j (M0 being the initial marking of γ).

All other notions from P/T-nets (i.e. bounded place, bounded net,
quasi-live transition, quasi-live net, live transition, live net, etc.) are
defined for jumping Petri nets similarly as for P/T-nets, by considering
the notion of j-reachability instead of reachability from P/T-nets.

Some jumps of a marked jumping Petri net may be never used.
Thus a mJPTN γ = (Σ, R, M0) is called R-reduced iff, for any jump
(M,M ′) ∈ R, M 6= M ′ and M ∈ [M0〉γ,j .

3 T-invariants for finite jumping Petri nets

This section will present some linear algebraic techniques for analysing
the properties of jumping Petri nets. More exactly, it will show how
T-invariants can be defined for finite jumping Petri nets.

In the sequel, the matrixes and the vectors will be considered to
have integer numbers as components. The linear combinations will be
also considered to have integer numbers as coefficients. The (row or
column) vector with all its components 0, no matter its size, will be
abbreviated by 0. The inequality on vectors will be understood as the
inequalities on the components, and the strict inequality as inequality
with strict inequality on at least one component.

First, we will briefly give a presentation of the notions of incidence
matrix and S-invariants, which we introduced in [6]. And then we will
introduce the notion of T-invariants for finite jumping Petri nets and
extend the results concerning T-invariants from P/T-nets.

3.1 Incidence matrix

As in the case of P/T-nets, in order to be able to define the notion of
the incidence matrix for a finite jumping Petri net γ = (Σ, R), where
Σ = (S, T, F,W ) is the underlying P/T-net of γ, it is necessary to have
a total ordering of the sets S, T and R. Without loss of generality, it
will be assumed that, if these sets are of the form

S = {s1, . . . , sm}, T = {t1, . . . , tn}, and R = {r1, . . . , rp},
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then they are totally ordered by the natural order on the indexes of
the elements:

S : s1 < . . . < sm, T : t1 < . . . < tn, and R : r1 < . . . < rp.

Now, let us recall the definition of the incidence matrix from [6]:

Definition 3.1.1 Let γ = (Σ, R) be a finite jumping Petri net. The
m× (n + p)-dimensional matrix Iγ defined by

Iγ(i, j) =
{

IΣ(i, j) , ∀ 1≤j≤n
IR(i, j − n) , ∀ n + 1≤j≤n + p

, ∀ 1≤ i≤m,

is called the incidence matrix of the net γ, abbreviated by Iγ = (IΣ, IR),
where:

1) IΣ is the m× n-dimensional matrix given by

IΣ(i, j) = ∆tj(si), ∀ 1≤ i≤m, ∀ 1≤j≤n,

i.e. it is the incidence matrix of the underlying P/T-net of γ;

2) IR is the p× n-dimensional matrix given by

IR(i, j) = ∆rj(si), ∀ 1≤ i≤m, ∀ 1≤j≤p ;

it is called the incidence matrix of the jumps of γ.

The notion of incidence matrix is extended also to marked finite
jumping Petri nets (Σ, R, M0) through the unmarked underlying net
(Σ, R).

The main result from [6] about the incidence matrix is the following:

Theorem 3.1.1 Let γ = (Σ, R) be a FJPTN, and M1,M2 two mark-
ings of γ. If M2 is j-reachable from M1, then there exists a positive
column vector f such that M2 = M1 + Iγ · f .

Proof. See [6]. The vector f is equal with the sum of the “effects”
(i.e. f =

∑
∆t +

∑
∆r) of all the transitions and jumps through which

the marking M2 is j-reachable from M1.
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s1

-

t1

-

ks2

+

t2

-

s3

R = {((1, 0, 5), (1, 0, 0))}

Figure 1:The jumping net from example 3.1.1

Example 3.1.1 Let γ be the mFJPTN from figure 1. The incidence
matrix of γ is

Iγ =



−1 1 0

1 −1 0
1 0 −5


 .

The transition sequence t1t2 is j-enabled at the marking M = (1, 0, 5)
and the marking j-produced by the occuring of t1t2 at M is

M ′ = M + Iγ ·



1
1
1


 =




1
0
1


 ,

if the jump occurs before the occuring of transition t1, resp.

M ′′ = M + Iγ ·



1
1
0


 =




1
0
6


 ,

otherwise (i.e. the jump does not occur at all).

3.2 S-invariants

In the modelling of real systems by Petri nets it is very important to
know if the number of tokens lying in the places of the net is preserved
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or not during the evolution of the system; uncontrolled losses of tokens
are unwanted. The dynamic behaviour of marked finite jumping Petri
nets depends on the structure of the net and on the initial marking.
Both factors are known a priori and, thus, they can be investigated
independently of the dynamic behaviour of the net.

Example 3.2.1 Let γ be the mFJPTN from figure 2. In the net γ the
total number of tokens is not preserved, because the number of tokens
which can appear in the place s1 is unlimited. But, on the other hand,
the initial marking of γ can be reproduced, using the jump of the net.

t1

-

s1

-

t2

?

s2

6

t3

-

s3

-

R = {((0, 1, 0), (0, 0, 1))}

Figure 2:The jumping net from example 3.2.1

Now, let us recall the definition of S-invariants from [6]:

Definition 3.2.1 Let γ = (Σ, R) be a finite jumping Petri net, with
Σ = (S, T, F,W ) being the underlying P/T-net of γ. An S-invariant
of γ is any |S|-dimensional vector J of integer numbers which satisfies
the equation J t · Iγ = 0, where Iγ is the incidence matrix of γ.
The S-invariant J > 0 is called minimal if there exists no S-invariant
J ′ such that 0 < J ′ < J .

Example 3.2.2 The net from figure 1 has the minimal S-invariant:

J =




1
1
0


 ,
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any other S-invariant of the net being a linear combination of the form
z · J , with z ∈ Z. Similarly, for the jumping net from figure 2 there is
one minimal S-invariant:

J ′ =




0
1
1


 .

The main results from [6] about the S-invariants are the following:

Theorem 3.2.1 If J is an S-invariant of a mFJPTN γ=(Σ, R,M0),
then

J t ·M = J t ·M0, for any M ∈ [M0〉γ,j .

This theorem says that any S-invariant of a mFJPTN γ gives the
weights for the places of a subnet of γ in which the tokens are preserved
(through these weights).

The converse of theorem 3.2.1 holds under a supplementary hypoth-
esis:

Theorem 3.2.2 Let γ = (Σ, R, M0) be a mFJPTN quasi-live and
R-reduced. If J is a vector of integers satisfying the property

J t ·M = J t ·M0, for any M ∈ [M0〉γ,j ,

then J is an S-invariant of γ.

All other results concerning S-invariants from P/T-nets hold also
for finite jumping Petri nets (see [6]).

3.3 T-invariants

As in the case of P/T-nets, another important aspect in the analyse
of jumping Petri nets, besides the preserving of the number of tokens
during the evolution of the system, is the reproducibility of the mark-
ings.

The notations used will be those from subsection 3.1.
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Definition 3.3.1 A marking M of a jumping Petri net γ = (Σ, R) is
called reproducible if there exists a transition j-sequence w ∈ T ∗ such
that M [w〉γ,jM and, moreover, w 6= λ or (M,M) ∈ R+ (where R+ is
the transitive closure of the relation R).

Let us notice that not every reproducible marking M of a JPTN
γ satisfies the property that any marking M ′ ≥ M of γ is also re-
producible. Therefore, the result about the monotony of reproducible
markings from P/T-nets does not hold for jumping Petri nets. The jus-
tification of this remark follows from the fact that the property about
the monotony of transitions’ firings from P/T-nets does not hold in the
case of jumping Petri nets, i.e.

M1[t〉γ,jM2 ∧ M ′
1 ≥ M1 6⇒ M ′

1[t〉γ,jM
′
2, with M ′

2 = M ′
1 + M2 −M1.

Another remark is that, if M is reproducible, then M [w〉γ,jM , and,
proceeding from theorem 3.1.1, there exists a positive vector f such
that M + Iγ · f = M , i.e. Iγ · f = 0.

Definition 3.3.2 Let γ = (Σ, R) be a finite jumping Petri net, with
Σ = (S, T, F,W ) being the underlying P/T-net of γ.

(1) A T-invariant of γ is any (n + p)-dimensional vector J of in-
teger numbers which satisfies the equation Iγ · J = 0, where
Iγ = (IΣ, IR) is the incidence matrix of γ.
Remark: Iγ · J = 0 is equivalent to IΣ · JΣ + IR · JR = 0, where
JΣ is the n-dimensional vector defined by JΣ(i) = J(i), 1≤ i≤n,
and JR is the p-dimensional vector defined by JR(i) = J(n + i),
1≤ i≤p, and we will abbreviate this by J = (JΣ, JR).

(2) If J is a T-invariant of γ, then the set

PJ = {ti ∈ T | J(i) 6= 0} ∪ {ri ∈ R | J(n + i) 6= 0}

is called the support of J .

(3) The T-invariant J is called positive if J ≥ 0.
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(4) The T-invariant J >0 is called minimal if there exists no
T-invariant J ′ such that 0 < J ′ < J .

(5) The finite jumping Petri net induced by the T-invariant J is de-
fined by

γ′ = (Σ′, R′), with Σ′ = (S′, T ′, F ′,W ′),

where:

a) T ′ = PJ ∩ T ;
b) S′ = •T ′ ∪ T ′•;
c) F ′ = F ∩ ((S′ × T ′) ∪ (T ′ × S′));
d) W ′= W |F ′;
e) R′ = PJ ∩R.

It is easy to notice that any linear combination of T-invariants is a
T-invariant:

Lemma 3.3.1 If J1 and J2 are T-invariants of a finite jumping Petri
net γ, and z ∈ Z, then J1 + J2 and z · J1 are T-invariants of γ, too.

Obviously, any finite jumping Petri net has at least one T-invariant,
J = 0, but this one is trivial. Thus, a jumping net is said to have
T-invariants if it has at least one non-null T-invariant.

Example 3.3.1 The net from figure 1 has the minimal T-invariant

J =




5
5
1


 ,

any other T-invariant of the net being a linear combination of the form
z · J , with z ∈ Z.

The jumping net from figure 2 has two minimal T-invariants

J1 =




1
1
0
0


 , J2 =




0
0
1
1


 ,
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t1

-

s1

-

t2

?

s2

6

R = ∅

(a)

s2t3

-

s3

-

R = {((1, 0), (0, 1))}

(b)

Figure 3:The induced nets from example 3.3.1

any other T-invariant of the net being a linear combination of the form
z1 · J1 + z2 · J2, with z1, z2 ∈ Z. The jumping nets induced by the
T-invariants J1 and J2 are represented in figure 3(a) and, resp., 3(b).

Unfortunately, there exists no connection between the T-invariants
of a finite jumping Petri net and those of its underlying P/T-net, de-
spite the fact that there exists such a connection for S-invariants ([6]).

Clearly, if a net has reproducible markings, then it has T-invariants.

Theorem 3.3.1 Let γ be a finite jumping Petri net. If γ has repro-
ducible markings, then γ has positive T-invariants.

Proof. Let M be a reproducible marking of γ. Then, there exists
a transition j-sequence w ∈ T ∗ with M [w〉γ,jM , and, proceeding from
theorem 3.1.1, there exists a positive vector f such that M +Iγ ·f = M .
It follows that Iγ · f = 0. Thus, f is a positive T-invariant of γ.

The converse of this theorem does not hold, unfortunately, for jump-
ing Petri nets, although it holds in case of P/T-nets. The justification of
this remark follows from the fact that the property about the monotony
of transitions’ firings from P/T-nets does not hold in the case of jump-
ing Petri nets, i.e.

M1[t〉γ,jM2 ∧ M ′
1 ≥ M1 6⇒ M ′

1[t〉γ,jM
′
2, with M ′

2 = M ′
1 + M2 −M1.
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s
¾2

t

-

R1 = {((1), (0))}

(a)

s1

} 2

t1

?
s2

?
t2

>

R2 = {((1, 0), (0, 0))}

(b)

Figure 4:The jumping nets from example 3.3.2

The following example ilustrates this remark.

Example 3.3.2 Let us consider the marked R-reduced jumping Petri
nets γ1 = (Σ1, R1) and γ2 = (Σ2, R2) represented in figure 4(a) and,
resp., 4(b). The vectors

J1 =
(

1
1

)
, resp. J2 =




1
1
1


 ,

are the minimal T-invariants of the nets γ1 and, resp., γ2. However,
on the other hand, it is easy to see that neither one from the nets γ1

and γ2 has reproducible markings.

Let us remark that, in the particularly case of a finite jumping
Petri net γ = (Σ, R) which has a T-invariant J = (JΣ, JR) > 0 (this
means that IΣ · JΣ + IR · JR = 0), such that J satisfies supplementary
the restrictive condition IΣ · JΣ = IR · JR = 0, then γ has reproducible
markings. Indeed, from IΣ ·JΣ = 0, we conclude that Σ, the underlying
P/T-net of γ, has reproducible markings, i.e. there exists a marking
M and a transition sequence w ∈ T ∗ such that M [w〉ΣM . Therefore,
we have also M [w〉γ,jM (without any jump), so γ has reproducible
markings.
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Definition 3.3.3 A T-invariant J of a mFJPTN γ = (Σ, R, M0) is
called realizable iff there exists a marking M ∈ [M0〉γ,j and a transition
j-sequence M [w〉γ,jM

′ such that J(i) = #(ti, w), for all 1≤ i≤n, and,
moreover, for any n + 1≤ i≤ n + p, J(i) is equal with the number of
(“hidden”) appearances of the jump ri−n in the transition j-sequence
M [w〉γ,jM

′.

In other words, the T-invariant J is realizable iff there exists a
marking M ∈ [M0〉γ,j and a transition j-sequence

Mu′1M
′
1[ti1〉ΣM ′′

1 u′′1M1u
′
2M

′
2[ti2〉ΣM ′′

2 u′′2M2 . . . u′hM ′
h[tih〉ΣM ′′

hu′′hMh,

with h ≥ 0, ti1 , . . . , tih ∈ T , and u′1, u
′′
1, . . . , u

′
h, u′′h ∈ R∗, such that

J(i) =
{

#(ti, ti1 · · · tih) , for any 1≤ i≤n
#(ri−n, u′1u

′′
1 · · ·u′hu′′h) , for any n + 1≤ i≤n + p

Remark: h = 0 iff PJ ∩ T = ∅; in this case, the transition j-sequence is
of the form MuM ′, with u ∈ R+, and the requirement which must be
fulfill is

J(i) =
{

0 , for any 1≤ i≤n
#(ri−n, u) , for any n + 1≤ i≤n + p

It is easy to remark that not every positive T-invariant of a marked
finite jumping Petri net is realizable.

Obviously, the following converse of theorem 3.3.1 holds, with a
stronger hypothesis:

Theorem 3.3.2 Let γ be a mFJPTN. If γ has realizable T-invariants,
then γ has reproducible markings.

Proof. Let J be a realizable T-invariant of a mFJPTN γ. Thus, there
exists a marking M ∈ [M0〉γ,j and a transition j-sequence M [w〉γ,jM

′

such that J(i) = #(ti, w), for all 1 ≤ i ≤ n, and, moreover, for any
n+1≤ i≤n+p, J(i) is equal with the number of (“hidden”) appearances
of the jump ri−n in the transition j-sequence M [w〉γ,jM

′. From this
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fact, and accordingly to the meaning of the incidence matrix of a net,
it is easy to notice that the marking M ′ can be computed from the
marking M as (see theorem 3.1.1) :

M ′ = M + Iγ · J.

But, we have Iγ ·J = 0, because J is a T-invariant of γ. It follows that
M ′ = M , and, therefore, M is a reproducible marking of γ.

In the sequel, we will show that the result from P/T-nets, which
says that the bounded and live nets are covered by T-invariants, holds
also for finite jumping nets.

Definition 3.3.4 A FJPTN γ is said to be covered by T-invariants if,
for each transition t ∈ T , there exists a positive T-invariant Jt of γ with
t ∈ PJt, and, for each jump r ∈ R, there exists a positive T-invariant
Jr of γ with r ∈ PJr .

Example 3.3.3 The nets from figure 1 and figure 2, are covered by
T-invariants.

Lemma 3.3.2 If γ is a FJPTN covered by T-invariants, then there
exists a T-invariant J with PJ = T ∪R.

Proof. By the hypothesis, for each t ∈ T , there exists a positive
T-invariant Jt with t ∈ PJt , and, for each jump r ∈ R, there exists a
positive T-invariant Jr with r ∈ PJr . Using lema 3.3.1, the vector

J =
∑

t∈T

Jt +
∑

r∈R

Jr

is a T-invariant fulfilling the requirements.

We will introduce now a notion of liveness of a jump, for jumping
Petri nets, similarly with the notion of liveness of a transition.
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Definition 3.3.5 Let γ = (Σ, R, M0) be a marked jumping Petri net.
A jump r=(M1,M2) ∈ R is called R-live if for any j-reachable marking
M ∈ [M0〉γ,j, the marking M1 is j-reachable from M , i.e. M1 ∈ [M〉γ,j.
The net γ is called R-live if all its jumps are R-live.

Theorem 3.3.3 Any marked finite jumping Petri net, bounded, live
and R-live, is covered by T-invariants.

Proof. Let γ = (Σ, R,M0) be a mFJPTN, which is bounded, live
and R-live.
1) Since γ is bounded, there exists an integer number k such that for
all M ∈ [M0〉γ,j and for all s ∈ S, M(s) ≤ k. We conclude that the
reachability set [M0〉γ,j is finite, because it can have at most (k + 1)|S|

elements. Let q = |[M0〉γ,j | ∈ N.
Let t ∈ T be an arbitrary transition of γ. The transition t is

live, because γ is live, and therefore we have that ∀M ∈ [M0〉γ,j ,
∃M ′ ∈ [M〉γ,j such that M ′[t〉γ,j , or equivalent:

(∗) ∀M ∈ [M0〉γ,j , ∃M ′′ ∈ [M0〉γ,j , ∃w ∈ T ∗ such that M [wt〉γ,jM
′′,

where M ′′ = M ′ + ∆t.
Let M1 ∈ [M0〉γ,j be an arbitrary marking. Applying (∗) for M =

M1, there exists M2 ∈ [M0〉γ,j and w1 ∈ T ∗ such that M1[w1t〉γ,jM2.
Using (∗) for M = M2, we conclude that there exists M3 ∈ [M0〉γ,j and
w2 ∈ T ∗ such that M2[w2t〉γ,jM3.

By iterating q times this reasoning, we obtain that there exists the
markings M2,M3, . . . , Mq+1 ∈ [M0〉γ,j and w1, w2, . . . , wq ∈ T ∗ such
that

M1 [w1t〉γ,j M2 [w2t〉γ,j M3 . . . Mq [wqt〉γ,j Mq+1.

Thus, we have q + 1 markings M1,M2, . . . ,Mq+1. Since |[M0〉γ,j | = q,
it has to exist two indexes l, k with 1 ≤ l < k ≤ q such that Ml = Mk.

Now let us consider the subsequence

Ml [wlt〉γ,j Ml+1 [wl+1t〉γ,j . . . Mk−1 [wk−1t〉γ,j Mk,

in which t appears at least once because l < k ; thus we have

Ml[w〉γ,jMk, with w = wltwl+1t . . . wk−1t.
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Proceeding from theorem 3.1.1, there exists a positive column vector
Jt : {1, . . . , n+p} → Z such that Mk = Ml +Iγ ·Jt ; moreover, we have
that Jt(j) = #(tj , w), for all 1 ≤ j ≤ n.

Since Ml = Mk, we obtain Iγ · Jt = 0. Thus, Jt is a positive
T-invariant of γ, and, moreover, t ∈ PJt because t appears at least
once in the sequence w.

Since t ∈ T was chosen arbitrary, we conclude that for any t ∈ T
there exists a positive T-invariant Jt such that t ∈ PJt .

2) Now we will make a similar reasoning about the jumps of the net.
Let r = (M1,M2) ∈ R be an arbitrary jump of γ. The jump r is

R-live, because γ is R-live, and therefore we have that ∀M ∈ [M0〉γ,j ,
M1 ∈ [M〉γ,j , or equivalent:

(∗∗) ∀M ∈ [M0〉γ,j ,∃w ∈ T ∗ such that M [w〉γ,jM1rM2.

Using (∗∗) for M =M2, we obtain that there exists w1 ∈ T ∗ such that

M2[w1〉γ,jM1rM2.

For this transition j-sequence, proceeding from theorem 3.1.1, there
exists a positive column vector Jr : {1, . . . , n + p} → Z such that
M2 = M2 + Iγ ·Jr. Thus, we obtain Iγ ·Jr = 0, which means that Jr is
a positive T-invariant of γ, and, moreover, r ∈ PJr because r appears
at least once in the above transition j-sequence.

Since the jump r ∈ R was chosen arbitrary, we conclude that for
any r ∈ R there exists a positive T-invariant Jr such that r ∈ PJr .

From 1) and 2) we conclude that γ is covered by T-invariants.

4 Conclusion

In this paper the notion of T-invariants was introduced for the class
of finite jumping Petri nets. Also, the paper extended the results con-
cerning T-invariants from the class of P/T-nets to the class of finite
jumping Petri nets.
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Some problems remain to be studied, for example: i) extending
the notion of T-invariants to the entire class of jumping Petri nets;
ii) making some case studies on models of real-world systems.
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