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Abstract

In [Discrete Math. 174, (1997) 247-259] an infinite class of
STSs(2h−1) was found with the upper chromatic number χ̄ = h.
We prove that in this class, for all STSs(2h − 1) with h < 10,
the lower chromatic number coincides with the upper chromatic
number, i.e. χ = χ̄ = h; and moreover, there exists a infinite
sub-class of STSs with χ = χ̄ = h for any value of h.

1 Introduction

A mixed hypergraph [9, 10] is a triple H = (X, C,D), where X is the
vertex set and each of C, D is a family of subsets of X, the C-edges
and D-edges respectively. If C = ∅, then H is called a D-hypergraph; if
D = ∅, then H is called a C-hypergraph; if C = D, then H is called a bi-
hypergraph. A proper k-coloring of a mixed hypergraph is a mapping
from the vertex set into a set of colors {1, 2, . . . , k} so that each C-
edge has at least two vertices with Common color and each D-edge
has at least two vertices with Distinct colors. A mixed hypergraph
is k-colorable (uncolorable) if it has a proper coloring with at most k
colors (it admits no colorings). A strict k-coloring is a proper coloring
using all k colors. The minimum number of colors in a coloring of H is
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the lower chromatic number χ(H); the maximum number of colors in
a strict coloring is the upper chromatic number χ̄(H). From coloring
view point, D-hypergraphs coincide with classical hypergraphs [1] and
their lower chromatic number coincides with the chromatic number
introduced by Erdös and Hajnal in 1966 [3].

For each k, 1 ≤ k ≤ n, let rk be the number of partitions of the
vertex set into k nonempty parts (color classes) such that the coloring
constraint is satisfied on each C- and each D-edge. In fact, rk is the
number of different strict k-colorings of H if we ignore permutations of
colors. The vector R(H) = (r1, . . . , rn) is the chromatic spectrum of H.

A Steiner Triple System STS(v) (also denoted as S(2, 3, v)) is de-
fined as a pair (X,B), where X is a finite set of v vertices and B is
a family of subsets of X called blocks, (i.e. it is a hypergraph) and
such that it has the following two properties: each block contains three
vertices, and each two vertices of X belong to a single block in B. As
it is known, the value of v in an STS(v) cannot be arbitrary, but must
be v ≡ 1 or 3 (mod 6 ).

In [6] STSs(v) are studied as two particular cases of mixed hyper-
graphs, the first called CSTSs(v) (Co-Steiner Triple Systems), in which
all the blocks are C-edges (also called co-edges), and the second called
BSTSs(v) (Bi-Steiner Triple Systems) in which all the blocks are bi-
edges (i.e. C- and D-edges at the same time). For both CSTSs and
BSTSs two particular infinite subclasses of order 2h − 1 with upper
chromatic number h have been studied.

A strict coloring using h colors may be viewed as a partition (h-
coloring) of size h of the vertex set X, such that each b ∈ B meets
exactly two color classes.

Determining the lower and upper chromatic numbers of BSTS is
a complex problem. But even if known, they do not assure the exis-
tence of colorings using any intermediate number of colors because as
it was discovered recently [7, 8], the chromatic spectra of mixed hyper-
graphs (even of 3-uniform bi-hypergraphs) may have gaps. We have no
information about the gaps in the chromatic spectra of BSTSs.

In this paper we attempt to determine the lower chromatic num-
ber for BSTSs(2h − 1) with χ̄ = h. In Section 2 we give preliminary
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results regarding BSTSs. In Section 3 we investigate about necessary
conditions for the existence of the smallest value of h for which there
exists a BSTS(2h−1) with χ̄ = h and χ = h−1. In Section 4 we prove
that χ̄ = χ = h for any BSTS(2h − 1) with h < 10. Finally in Section
5 we show that all the point - line designs associated with a projective
geometry over GF(2) are a subclass of BSTS(2h − 1) with χ̄ = h, and
we prove that for this subclass χ̄ = χ = h for any value of h.

When h ≥ 10 the problem to find out if the upper and lower chro-
matic numbers for these structures coincide, remains open.

2 Background

2.1 “2v + 1 construction”

In this subsection we will illustrate a technique for the recurrent con-
struction of STS(v). It is called 2v+1 construction and allows to obtain
an STS(2v + 1) from an STS(v).

Let (X ′,B′) be an STS(v) with | X ′ |= v, X ′′ be a set of vertices
disjoint from X ′ with a cardinality | X ′′ |= v + 1. Obviously, v + 1
is an even number and so it is possible to consider a 1-factorization
F = {F1, F2, . . . , Fv} of a complete graph Kv+1 on the set of vertices
X ′′. Let us now define the family of triples B on the set X ′ ∪ X ′′ as
follows:

1. each triple belonging to B′ belongs to B;

2. if zi ∈ X ′ (i = 1, 2, · · · , v) and y1, y2 ∈ X ′′, then {zi, y1, y2} ∈ B
if and only if {y1, y2} ∈ Fi.

It is easy to prove that (X,B) is an STS(2v + 1) and that (X ′,B′) is a
subsystem of it, whereas X ′′ is a stable set.

Among the various possible 1-factorization of a complete graph on
the vertex set X ′′ let us consider F̄ , called “K2k,2k”, in which X ′′ =X̃
∪X̄ with | X̃ |=| X̄ |= 2k and it consists of 4k − 1 1-factors. The last
2k 1-factors of F̄ are identified by a 1-factorization of K2k,2k on X̃ and
X̄, whereas all the remaining 1-factors are the union of a 1-factor of
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K2k on X̃ and a 1-factor of K2k on X̄. Table 1 gives an example of a
1-factorization of the type “K2k,2k” in which k = 2, X̃= {1, 2, 3, 4} and
X̄= {5, 6, 7, 8}.

1 2 1 3 1 4 1 5 1 8 1 7 1 6
3 4 2 4 2 3 2 6 2 5 2 8 2 7
5 6 5 7 5 8 3 7 3 6 3 5 3 8
7 8 6 8 6 7 4 8 4 7 4 6 4 5

Table 1

2.2 Preliminary Results

The following theorem [5] gives the information about the parity of
color classes in a strict coloring P of a BSTS.

Theorem 1 If P is a strict coloring for BSTS(v), then there is pre-
cisely one coloring class having an odd number of vertices.

The next three results [6] allow to determine the sharp upper bound
for the upper chromatic number.

Theorem 2 If H is a BSTS(v) or CSTS(v) such that v ≤ 2h−1, then
χ̄(H) ≤ h.

Corollary 1 If H is a BSTS(v) or CSTS(v) with v ≤ 2h − 1 and
χ̄(H) = h, then:

1. v = 2h − 1;

2. in a strict coloring of H with h colors, the color classes have
cardinalities:

20, 21, 22, · · · , 2h−1;
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3. H is obtained from STS(3) by repeated application of 2v + 1 con-
struction.

Theorem 3 The upper chromatic number of BSTS or CSTS of order
2h − 1 is equal to h if and only if BSTS or CSTS is obtained from
STS(3) by a sequence of 2v + 1 constructions. In this case the system
contains h− 2 subsystems of cardinality 2i − 1, i = 2, 3, . . . , h− 1.

Theorem 3 gives a possibility to identify two infinite classes of
BSTSs and CSTSs with cardinality 2h − 1 and an upper chromatic
number χ̄ = h, h = 2, 3, . . ..

3 Lower chromatic number for BSTSs(2h − 1)

In this section we deal with the problem of determining the lower chro-
matic number for BSTSs characterized by Theorem 3. Evidently, χ = 1
for any CSTSs .

Let us consider now the class of BSTSs(2h−1) obtained from STS(3)
by a sequence of h recursive 2v+1 constructions. For the trivial system
BSTS(22−1), χ̄ = χ = 2. In all the next theorems, let h̄ be the smallest
value of h for which there exists a BSTS(2h̄−1) denoted by H̄=(X,B),
with χ̄(H̄) > χ(H̄).

By Theorem 3 and the hypotheses concerning h̄, there exists a
subsystem H̄′=(X ′,B′), which is a BSTS(2h̄−1 − 1), and for which
χ̄(H̄′) = χ(H̄′) = h̄ − 1. Therefore χ(H̄) = h̄ − 1. This means that
there exist a strict coloring P of H̄ with h̄−1 colors. In P, the vertices
of X \ X ′ receive the colors from the set of {1, 2, . . . , h̄ − 1} colors.
Notice that | X − X ′ |= 2h̄−1 and the h̄ − 1 color classes are defined
by the subsystem H̄′. In addition, in this subsystem the cardinalities
of color classes are 20, 21, 22, · · · , 2h̄−2. Let us number the colors in
this order and use [i], 1 ≤ i ≤ h̄−1, to denote the i-th color from h̄−1
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colors of P. Denote also by Xi, 1 ≤ i ≤ h̄ − 1, the sets of vertices of
X −X ′ colored with the color [i] and let | Xi |= xi. In this notation,
the color classes of P have the cardinalities 2i−1 + xi. Further we use
the vector (x1, x2, · · · , xh̄−1) to identify the strict coloring P. The next
theorem gives a necessary condition for the existence of P.

Theorem 4 If H̄ is the BSTS(2h̄−1) with the smallest value of h̄ such
that χ̄ = h̄ and χ = h̄− 1, then all the strict colorings with h̄− 1 colors
satisfy the following equalities:





∑h̄−1
i=1 x2

i +
∑h̄−1

i=1 2ixi = 22h̄−2

∑h̄−1
i=1 xi = 2h̄−1.

(1)

Proof. Since |X − X ′| =
∑h̄−1

i=1 xi = 2h̄−1 it remains to show that
the first equality of (1) holds. We have that H̄=(X,B) which is a
BSTS(2h̄− 1) is obtained from H̄′=(X ′,B′) which is a BSTS(2h̄−1− 1)
by a 2v+1 construction. Let F̄ be the 1-factorization of X−X ′ needed
to obtain H̄ and let Fl ∈ F̄ be a generic 1-factor corresponding to the
vertex zl ∈ X ′ colored with the color [i].

We count the numbers of monochromatic and non monochromatic
pairs in X − X ′ using the factorization F̄ . The total number of
monochromatic pairs is

∑h̄−1
i=1

(xi
2

)
because any two vertices of the same

color from X − X ′ are contained in one block with the third vertex
from X ′.

Further, if xi = 0, then in Fl all the pairs are monochromatic (all
these colors are different from [i]; no other xj is odd). If xi > 0, then in
Fl there are xi non monochromatic pairs of vertices (colored with two
colors, one vertex being colored with the color [i]), while the remaining
2h̄−2 − xi pairs are again monochromatic.

Since the i-th color class in the subsystem H̄′ contains precisely
2i−1 vertices there are 2i−1 1-factors in F̄ colored like Fl. Thus the
total number of non monochromatic pairs is

∑h̄−1
i=1 2i−1xi. The number

of all pairs in F̄ is 2h̄−2(2h̄−1 − 1). We therefore have:

264



Lower and upper chromatic numbers . . .

h̄−1∑

i=1

(
xi

2

)
+

h̄−1∑

i=1

2i−1xi = 2h̄−2(2h̄−1 − 1).

By simple calculation we obtain the first equality of (1) and the theorem
follows.

Observation 1 It is important to point out that if there exists an
xj = 0, then all the xi > 0 are even.

Numerical analysis of the system (1) shows that it does not ad-
mit integer solutions when h ≤ 5, so with these values of h we have
χ̄ = χ = h. With values of h ≥ 6 the system does admit integer
solutions, for example with h = 6 and 7 the vectors (3, 8, 0, 4, 17) and
(0, 1, 11, 5, 15, 32) are two solutions of system (1), but by Observation 1
they do not determine the values of xi in a strict coloring.

Another important necessary condition for the existence of a strict
coloring of a BSTS(2h̄ − 1) is given by the following theorem.

Theorem 5 If P is a strict coloring of BSTS(2h̄ − 1) with xi > 0
and xj > 0 for some 1 ≤ i, j ≤ h̄ − 1, then xi ≤ 2i−1 + 2j−1 and
xj ≤ 2i−1 + 2j−1.

Proof. Let us fix an element x′ ∈ Xi. It forms xj bichromatic pairs
colored with the colors [i] and [j]. These pairs belong to separate 1-
factors corresponding to the vertices zl ∈ X ′ colored either with the
color [i] or with the color [j]. The number of these factors is 2i−1+2j−1,
so xj ≤ 2i−1 + 2j−1. In the same way starting with x′′ ∈ Xj we obtain
that xi ≤ 2i−1 + 2j−1.

The following two theorems give important characterizations of the
possible colorings of the system BSTS(2h̄ − 1) and are of fundamental
importance in determining the main results reported on in this paper.

265



M.Buratti, M.Gionfriddo, L.Milazzo, V.Voloshin

Theorem 6 If P is a strict coloring of the system BSTS(2h̄−1) using
h̄−1 colors, then there exists at least one xi = 0 and all the xj > 0 are
even.

Proof. It is obvious that if some xi = 0, then by Observation 1, all
the xj > 0 are even. Let us assume from the contrary that xi > 0 for
all 1 ≤ i ≤ h̄−1. Recall that h̄ is the smallest value of h for which there
exists a system BSTS(2h̄−1) denoted by H̄=(X,B) with χ(H̄) = h̄−1.
By Theorem 3, H̄ contains a sub-system BSTS(2h̄−1 − 1) denoted by
H̄′= (X ′,B′), for which χ̄(H̄′) = χ(H̄′) = h̄ − 1. Let X ′′ = X − X ′,
with | X ′′ |= 2h̄−1.
If t is the number of vertices of X ′′ colored with the color [h̄− 1], then
t ≤ 2h̄−2 holds. The vertex x′ belonging to the generic Xi must be
present in each of the 2h̄−2 1-factors corresponding to the vertices of
X ′ colored with the color [h̄ − 1]. Therefore it can form in them at
most t bichromatic pairs of vertices of the type [i] − [h̄ − 1] and at
least 2h̄−2 − t monochromatic pairs of the type [i]− [i]. Thus we have
xi ≥ 2h̄−2 − t + 1 where 1 ≤ i ≤ h̄− 2.

Let us suppose t ≤ 2h̄−2 − 3; thus we have

xi ≥ 2h̄−2 − t + 1 ≥ 2h̄−2 − 2h̄−2 + 3 + 1 = 4,

that is, xi ≥ 4 where 1 ≤ i ≤ h̄− 2. But by Theorem 5 we have x1 ≤ 3
and x2 ≤ 3 and this is a contradiction. Therefore, since P is a strict
coloring, one of the following three cases remains to consider for t.

Case 1: t = 2h̄−2 − 2, so xi ≥ 3 and by Theorem 5 we have x1 = 3
and x2 = 3. All the bichromatic pairs of the type [1]− [3] and [2]− [3]
belong to the 1-factors corresponding to the vertices of X ′ colored with
the color [3], so x3 ≥ 6, but by Theorem 5 as x1 > 0, we have x3 ≤
20 + 22 = 5 and this is a contradiction.

Case 2: t = 2h̄−2 − 1, so xi ≥ 2. By Theorems 1 and 5 x1 = 3 and
x2 = 2, but in this case in the 1-factors corresponding to the vertices of
X ′ colored with the color [2] there exists a bichromatic pair in which the
color [1] is present, which makes impossible to color the corresponding
block correctly.
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Case 3: t = 2h̄−2. In this case the last 2h̄−2 1-factors will be formed
by bichromatic pairs of the type [h̄ − 1] − [i] with i 6= h̄ − 1, while in
the remaining 1-factors there are 2h̄−4 monochromatic pairs of the type
[h̄− 1]− [h̄− 1] which cover all the pairs of KXh̄−1

.
H̄′ is not colorable with h̄ − 2 colors, so this value of t is not ac-

ceptable either and the Theorem follows.

Theorem 7 Let P be a strict coloring of the system BSTS(2h̄ − 1)
using h̄ − 1 colors, xi > 0 and xl = 0 for l < i (i = 1 is possible),
and let xj > 0 and xk = 0 for i + 1 ≤ k < j. Then xj+t > 0 for all
j + t > i + 1.

Proof. Let us assume from the contrary that xj+t = 0. Observation 1
implies that all the xm > 0 are even. Let us consider a vertex x′ ∈ Xi

and a vertex z′ ∈ X ′ colored with the color [l] or [k]: The pair {x′, z′}
will be found in a block {x′, x′′, z′} where x′′ ∈ Xi. All this holds for
each of the 2n−1 vertices colored with a color [n] to which a xn = 0
corresponds. Therefore we have

2j−1 − 1− 2i−1 + 2j+t−1 ≤ xi ≤ 2i−1 + 2j−1,

where the inequality on the right is true according to Theorem 5, xi is
even and so

2j−1 − 2i−1 + 2j+t−1 ≤ xi ≤ 2i−1 + 2j−1,

After simple calculation we obtain:

2j+t−1 ≤ 2i,

or j + t ≤ i + 1, a contradiction.

Corollary 2 Let P be a strict coloring of the system BSTS(2h̄−1) us-
ing h̄− 1 colors, and let xi > 0 where i > 1 and xl = 0 with 1 ≤ l < i.
Then xi ≥ 2l−1.
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The following Proposition allows us to determine relations between
the values xh̄−1 and xh̄−2.

Proposition 1 If P is a strict coloring of a BSTS(2h̄− 1) using h̄− 1
colors, then the following inequality holds:

2h̄−2 ≥ dxh̄−1(xh̄−1 − 1)
2h̄−1 − 2

e+ xh̄−2. (2)

Proof.
In a factorization of X ′′ each 1-factor possesses 2h̄−2 pairs of vertices.
In the 1-factors corresponding to the vertices of X ′ colored with the

color [h̄− 2] there are at least dxh̄−1(xh̄−1 − 1)
2h̄−1 − 2

e+ xh̄−2 pairs, and this

proves (2).

4 BSTSs(2h − 1) with h < 10

Numerical analysis (by exhaustive computer search) of system (1), tak-
ing into account the conditions determined by Theorems 5 and 6, Corol-
lary 2 and Proposition 1, did not give solutions (x1, x2, · · · , xh−1) cor-
responding to strict colorings when h ≤ 8. When h = 9 the following
solutions were found:

1) (0, 0, 0, 18, 14, 30, 68, 126)
2) (0, 0, 0, 16, 20, 22, 70, 126)
3) (0, 0, 0, 22, 10, 30, 68, 126)
4) (0, 0, 6, 6, 20, 30, 68, 126)
5) (0, 0, 10, 12, 6, 34, 68, 126)
6) (0, 4, 4, 10, 18, 26, 66, 128)
7) (0, 6, 2, 10, 18, 26, 66, 128)

Table 2

The first five solutions in Table 2 do not satisfy Proposition 1, while it
can be proved, using the same technique as used in Case 3, Theorem 6,
that the last two do not determine strict colorings.
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We can now enunciate the following Theorem.

Theorem 8 For BSTSs(2h− 1) obtained by a sequence of 2v + 1 con-
structions starting from STS(3) we have χ̄ = χ = h for all h < 10.

5 BSTSs(2h − 1) from projective geometries

Here we prefer to consider a strict coloring of a BSTS which uses h
colors as a partition C = {X1, X2, · · · , Xh} of vertex set X. We say
that C has size h. Note that any h-coloring C of a BSTS induces a
coloring in any subsystem of it. If W is the vertex set of the subsys-
tem, the induced coloring, denoted by C|W , is the set of all non-empty
intersections Xi ∩W with Xi ∈ C. In this section we considered point-
line designs associated with PG(h, 2) as a BSTSs(2h+1 − 1) obtained
from particular sequences of ”2v + 1 constructions” i.e., the point line
design associated with PG(h, 2) [2]. For these systems we have both
lower and upper chromatic numbers equal to h for any value of h.

We prove in fact that, up to isomorphism, there exists exactly one
BSTS(2h+1 − 1) whose underlying STSs is PG1(h, 2). By “isomor-
phism” between two BSTSs we mean an isomorphism between their
underlying STSs mapping color classes into color classes.

5.1 Uniqueness of a colouring of PG1(h, 2)

First, we show that PG1(h, 2) admits at least one colouring.

Lemma 9 For any flag f = (π0, π1, ..., πh−1, πh) of PG(h, 2) we have
that C(f) = {π0, π1 − π0, ..., πi − πi−1, ..., πh − πh−1} is a colouring of
PG1(h, 2).

Proof. It is easily seen by induction on h.

W
¯

e are going to show that any other colouring of PG1(h, 2) is of
the form C(f) for some flag f .
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Lemma 10 Any colouring of PG1(h, 2) is of the form C(f) = {π0, π1−
π0, ..., πi − πi−1, ..., πh − πh−1} where f = (π0, π1, ..., πh−1, πh) is a flag
of PG(h, 2).

Proof. By induction on h. The theorem is obviously true for
h = 0 and h = 1. Assume the theorem true for h = k.

We have to show that a colour class of any colouring of PG1(k+1, 2)
is the complement of a hyperplane.

Let C be a colouring of PG1(k+1, 2). By induction, C|π is a (k+1)-
colouring for any hyperplane π of PG(k + 1, 2). Let α be a hyperplane
and let C|α = {C1∩α, ..., Ck+1∩α} where the Ci’s are colour-classes of C.
By induction, one class of C|α, say Ck+1∩α, is α−σ where σ is a suitable
(k − 1)-dimensional subspace of α. Thus C|σ = {C1 ∩ σ, ..., Ck ∩ σ}

Let β and γ be the other two hyperplanes containing σ.
If C = {C1, ..., Ck+1}, then at least one point P ∈ β − σ is coloured

k + 1 otherwise C|β would be a k-colouring. Analogously, at least one
point Q ∈ γ − σ is coloured k +1 otherwise C|γ would be a k-colouring.
On the other hand, the line through P and Q obviously has its third
point in α− σ and hence all its points are coloured k + 1, absurd.

By the above paragraph C has one more colour-class Ck+2. Let P
be a point of Ck+2. Of course P ∈ (β − σ) ∪ (γ − σ).

Assume, for instance, that P ∈ β − σ. In this case no point of β is
coloured k + 1 otherwise C|β would have size at least k + 2.

Also, each point Q ∈ γ − σ is coloured k + 1 or k + 2 otherwise
the line through P and Q (whose third point is in α − σ) would have
points of pairwise distinct colours. On the other hand colours k + 1
and k + 2 cannot be present together in γ otherwise C|γ would be a
(k + 2)-colouring. It follows that either γ−σ ⊂ Ck+1 or γ−σ ⊂ Ck+2.

If γ − σ ⊂ Ck+1, then Ck+1 is the complement of β.
If γ − σ ⊂ Ck+2, then β − σ is also contained in Ck+2 otherwise we

would have a line with points of pairwise distinct colours. So, Ck+2 is
the complement of α. The assertion follows.

C
¯
onsidering that the automorphism group PGL(h + 1, 2) of

PG1(h, 2) acts transitively on the flags of PG(h, 2), the above two
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lemmas allow to state

Theorem 11 Up to isomorphism, there is exactly one colouring of
PG1(h, 2).

Corollary 3 For any h the lower and upper chromatic numbers of
PG1(h, 2) coincide and they are equal to {h + 1}.

Observation 2 The full automorphism group of the only BSTS(2h+1−
1) associated with PG(h, 2) obviously is the stabilizer of a flag of
PG(h, 2) under the action of PGL(h + 1, 2).

Hence, it is isomorphic to the group of nonsingular (h+1)× (h+1)
upper-triangular matrices over GF(2). Its order is 2h(h+1)/2.

6 Concluding remarks

Theorem 8 and 11 reinforce the importance of the strict colorings de-
termined in [6] for BSTSs(2h − 1). These systems can, in fact, only
be colored with strict colorings using h colors whose color classes have
cardinalities of 20, 21, 22, · · · , 2h−1.

The problem of determining whether Theorem 8 is true for any
value of h, or whether there exists an h̄ such that χ = h̄ − 1 remains
an open problem.
If it were true, the strict coloring using h̄ − 1 colors would be identi-
fied by the vector (0, 0, · · · , xi, 0, · · · , 0, xj , xj+1, xj+2, · · · , xh̄+1), where
xi ≥ 0 and xt > 0 for j ≤ t ≤ h̄− 1, and each xk is even.

If it were possible to determine an h̄, then we would have χ̄ 6= χ
for each h ≥ h̄. Starting from the system BSTS(2h̄ − 1), in fact, it
would be possible to use a sequence of 2v + 1 constructions based on
1-factorization of the type K2k−1,2k−1 on the disjoint sets X̃ and X̄ with
X ′′=X̃ ∪ X̄ and | X̃ |=| X̄ |= 2k−1.
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