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An efficient algorithm for mining interesting
set-valued rules

Alexandr A. Savinov

Abstract

We describe the problem of mining set valued rules in large
relational tables containing categorical attributes taking a finite
number of values. An example of such a rule might be “IF
HOUSEHOLDSIZE = { Two OR Tree} AND OCCUPATION
= { Professional OR Clerical} THEN PAYMENT METHOD =
{ CashCheck (Max=249, Sum=4952) OR DebitCard (Max=175,
Sum=3021)} WHERE Confidence=85%, Support=10%.” Such
rules allow for an interval of possible values to be selected for
each attribute in condition instead of a single value for associ-
ation rules, while conclusion contains a projection of the data
restricted by the condition onto a target attribute. An original
conceptional and formal framework for representing multidimen-
sional distributions induced from data is used. The distribu-
tion is represented by a number of so-called prime disjunctions
upper bounding its surface and interpreted as a wide multidi-
mensional interval of impossible combinations of attribute values.
This original formalism generalises the conventional boolean ap-
proach in two directions: (i) finite-valued attributes (instead of
only 0 and 1), and (ii) continuous-valued semantics (instead of
true and false). In addition, we describe an efficient algorithm,
which carries out the generalised dual transformation from pos-
sibilistic disjunctive normal form (DNF) representing data into
conjunctive normal form (CNF) representing knowledge.

Key words: Data mining, Rule induction, Set-valued
possibilistic rule, Prime disjunction, Dual transforma-
tion
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1. Introduction

The problem of rule induction can be stated as follows. Given a
database counsisting of a number of records, where each record is a
sequence of attribute values. Find rules which by their conditions se-
lect wide intervals in a multidimensional space, where the distribution
of values in conclusion is highly inhomogeneous, i.e., contains large
quantity of information. In the case where variables in condition and
conclusion may take only one value we obtain so-called association rules
[1,2,10]:

IF 1 = ai3 AND Iy = ags THEN I3 = aszy

WHERE Support= s% AND Confidence= ¢%

where s and ¢ are rule statistic parameters. If variables may take as
a value any subset of the domain then we obtain so-called set-valued
rules, for instance:

IF I, — {a127a15} AND 9 = {a217a27} THEN

T3 = {a33 - P33,0a36 1P36}

where z is a variable, a;; are their possible values, and p;; are semantic
parameters. Each variable in such a rule may take any value from
the corresponding subset, e.g., in the above rule z; has two possible
values — a1 or ais, while z3 may take only value a3z or asg. The
rule then guarantees that variable(s) in conclusion obeys to constraints
represented by parameters p;;. At the very beginning we would like
to point out a significant difference in computational complexity of
these two approaches. If variables z1,z9,...,x, have ni,no,...,n,
values, respectively, then for association rules the number of conditions
is m1 X ng X ... X n, while for set-valued rules the potential search space
size is 271 x 272 x ... x 2Mn = 2Mitnet. A,

In the article we consider the problem of mining set-valued rules
and suppose that each variable, i.e., each table column, takes only a
finite number of values. The semantics induced from data is represented
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by a frequency distribution over the universe of discourse equal to the
Cartesian product of all sets of the values. Theoretically, all possible
set-valued conditions produce rules, i.e., we have as many potential
rules as the size of the space of conditions. The rule conclusion is
calculated as a formal projection of the distribution restricted by the
condition onto a target variable. (For simplicity we suppose that there
is only one target variable.) Then the problem, which has been paid a
lot of attention in recent years, is whether one or another rule is really
interesting or not. For example, for association rules interestingness
is based on confidence and support factors. For logical approaches it
may be, e.g., a classification power or the number of covered examples.
In this paper we suppose that rule interestingness is equivalent to its
surprisingness, i.e., informally, to what extent information in the rule
is unusual and differs from what has been expected. This notion is
traditionally formalised by means of one or another measure of the
quantity of information. For example, the crisp rule

IF 21 = {a12,a15} THEN 23 = {a31, a32, a33, az4, azs }
is obviously not interesting since it says exactly what we have expected
— the target variable may take any of its 5 values, while the rule

IF I, = {all, a14} THEN Ir3 = {agl, a33,a35}
is more interesting since, contrary to our expectations, it has turned
out that several values are not possible. The main problem, however, is
that information in the rule and its surprisingness should be compared
not only with our default expectations expressed as a projection of
the whole unconditioned distribution but with other rules as well. For
example, the rule

IF r1 = {all, a14} AND Tro = {GQQ, a23} THEN Ir3 — {a31, a33,a35}
may be found interesting in relation to our default expectations but it
contains nothing new in relation to the previous rule, which contains
more information due to a simpler condition. Thus informally, the
more general the rule condition (the wider the interval selected by
the condition) and the more specific the rule conclusion (the closer
the conclusion distribution to the singular form), the more interesting
and informative it is. Note that for each concrete rule there is some
limit to which we can widen (generalise) its condition and restrict the
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conclusion, i.e., there is the notion of the most strong rule.

To find such maximally general in condition and specific in con-
clusion rules we use an approach according to which any finite mul-
tidimensional possibility distribution can be formally represented by
a set of special logical constructions called possibilistic prime disjunc-
tions. Using them we avoid many problems connected with the separate
treatment of conditions and conclusions. Prime disjunction has an im-
portant property of optimality — it is the most informative among all
constructions of such a form and an attempt to generalise it results in
that it becomes wrong, i.e., does not follow from the original distribu-
tion and cannot be used to represent it. It is precisely the property
that later on guarantees an absence of a rule, which is informative
however is not surprising enough in relation to some other rule. Prime
disjunctions are helpful of themselves since they can be interpreted as
negative associations, i.e., they intensionally represent the widest in-
tervals of combinations of values where the distribution induced from
data has the lowest values. In this article, however, it is important that
prime disjunctions can be easily transformed into the form of rules rep-
resenting the most interesting dependencies among attributes.

In addition to the original conceptual and formal frameworks based
on the notion of possibilistic prime disjunction and knowledge repre-
sentation language (Sections 2 and 3) we propose a concrete algorithm
which efficiently generates all the most interesting prime disjunctions.
This algorithm builds all prime disjunctions in parallel while processing
all data elements in succession. The algorithm assumes that at each
moment the semantics is equal to the number of processed records and
the current set of prime disjunctions is updated each time new data el-
ement is processed. Formally this algorithm is based on the generalised
formula for transforming DNF representing data into CNF consisting
of prime disjunctions. An advantage of this approach is that the set of
prime disjunctions is built for one pass through the data set.

The notion of prime disjunction (conjunction, implicant etc.) and
algorithms for finding them have received a lot of attention in various
fields, especially in classical cybernetics (generation of prime implicants
[19]) and combinatorics. In particular, the notion of prime implicant
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is analogous to that of maximum frequent itemset, which is used for
efficient mining association rules [3,9].

Our approach to the interpretation of multidimensional possibility
distributions is somewhat similar to that described in [4,5] (or in fuzzy
form in [8]). However in these papers the main operation considered
is a decomposition of a multidimensional possibility distribution into
a number of distributions of lower dimensionality, which more or less
exactly approximate it and can be used to learn the possibilistic net-
works. In this article we suppose that the possibility distribution can
be represented by a set of prime disjunctions and the problem of rule
induction comes down to finding this set given the dual representation
of the dataset by means of possibilistic DNF.

Our data and knowledge representation language is based on a so-
called method of sectioned vectors and matrices, which originates from
the paper [20] and later was generalised onto fuzzy case [11,14,13].
The idea of transformation from fuzzy DNF into fuzzy CNF and find-
ing rules was proposed in [12]. A fuzzy version of this rule induction
algorithm, which is based on the covering method is described in [15]
while crisp version is described in [18]. The most recent version of this
approach is presented in [16,17].

2. Representation of multidimensional finite
distributions

Let some problem domain at the syntactic level be described by a finite
number of variables or attributes x1,xs,..., T, each of which takes a
finite number of values and corresponds to one column of a relational
table:

r; € Aj = {aq, @iz, . i}, 1=1,2,....n

where n; is the number of values of the i-th variable and A; is
its set of values. For example, a problem domain might be de-
scribed by three attributes 1 =RESPONSE, zo =INCOME, and
z3 =HOUSEHOLDSIZE taking the values from the sets A; ={ No,
Yes}, Ao ={ Low, Average, High}, and A3 ={ One, Two, Three, Four},
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respectively. The state space or the universe of discourse is defined as
the Cartesian product of all sets of the values:

O=A; x Ay x ... x A,.

The universe of discourse is a finite set with a multidimensional
structure. Each syntactic object (state) from the universe of dis-
course is represented by a combination of values of all variables:
w = (z1,z9,...,2,) € . The number of such objects is equal to
the power of the universe of discourse: Q] = n; X ng X ... X ny.
In our example the 3-dimensional universe of discourse consists of
Ay x As x A3 =2 x 3 x 4 = 24 possible objects.

Formally the problem domain semantics is represented by a fre-
quency distribution over the state space. In other words, to represent
the semantics each combination of attribute values (syntactic object)
should be assigned a natural number or 0, which is thought of as its
number of observations. For example, the object ( Yes, High, Three)
might be observed 8 times. In principle, it is possible and for many
cases does make sense to map this distribution into the interval [0,1].
Yet, for the problem of rule induction it is simpler to work directly
with frequencies so we will not use a mapping into [0,1].

The semantics will be represented by elementary propositions about
individual variables, which are combined with the help of logical con-
nectives V and A. All semantic constructions will be written in bold
and one lower index will always mean the number of the variable this
proposition is about, e.g., u; is an elementary proposition about the
1-th variable. Elementary proposition assigns frequencies to all values
of one variable, i.e., it is represented by a local distribution over the
values of this variable. A frequency assigned to one value, i.e., the
local distribution value in one point will be referred to as a compo-
nent. We will write the concrete semantics of elementary propositions
as a sequence of the corresponding local distribution values (compo-
nents): w; = {w;1, U2, ..., U, }. Thus the elementary proposition u;
about the i-th variable is always made up of n; components which are
denoted by the same bold symbol with two lower indexes correspond-
ing to the number of variable and the number of value. For example,
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us = {3,0,15,7} is the elementary proposition about the 3rd variable
(HOUSEHOLDSIZE) which assigns the frequencies 3, 0, 15 and 7 to
its 4 values a3; =One, a3z, =Two, ags =Three, and a3y =Four, respec-
tively.

Several elementary propositions combined with the connective V are
said to be a disjunction and denoted by bold symbol (without index),
e.g., d=dyVdyVdg is a disjunction consisting of 3 elementary propo-
sitions. If elementary propositions are combined with the connective A
then such a construction is said to be a conjunction, e.g., k = k1 AksN\ks
is a conjunction consisting of 3 elementary propositions. A conjunction
of disjunctions is said to be a conjunctive normal form, while dually a
disjunction of conjunctions is said to be a disjunctive normal form.

The semantic constructions themselves do not represent anything —
their concrete meaning is defined by means of interpretation rules. In
other words, interpretation rules allow us to find out what concrete dis-
tribution one or another semantic language construction defines. The
operations maximum and minimum will be used to define interpreta-
tion rules. We will add arguments to propositions when we want to
show that it is the meaning of the proposition in the form of the corre-
sponding distribution rather than simply non-interpreted proposition.
For example, d, K and d; are propositions while d(w), K (w) and d;(z;)
are distributions corresponding to these propositions.

Proposition semantics is defined as a distribution over the universe
of discourse. Elementary propositions are interpreted by extending
their local distribution onto the whole universe of discourse:

ui(w) = u; ((x1,22,. .., Tn)) = ui(z;)

i.e., at any point of the universe of discourse the distribution is equal to
some elementary proposition component. Obviously, this is a particular
case of the operation of cylindrical extension or deprojection, which
allows us to increase the number of dimensions (in our case from 1 to

Two propositions v and v combined with the connective V define
the following distribution:

(u V) (w) =max (u(w),v(w)) .
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It can be shown that the disjunction d defines the distribution,
which is equal to the maximum of its n components corresponding to
the point coordinates:
dw) =d({(x1,29,...,20)) = di(x1)Vde(x2)V. . NVdy(zy) = max di(z;)

For example, the distribution defined by the disjunction u = u; V
ug Vug ={1,3} v{9,0,4} v {3,0,15,7} in the point w = (a11,a21,as1)
has the value u ({a11,a91,a31)) = max(1,9,3) = 9. The maximum is
taken among n components — one from each elementary proposition.

Counjunctions are interpreted dually, i.e., the conjunction %k defines
the distribution, which is equal to the minimum of the components
corresponding to the point coordinates:

k(w) =k ((z1,%2,...,2n)) = k1(z1)Nk2(z2)A. . Nkp(zy,) = i_r{linnki(a:i)

Formally semantics is represented by the corresponding distribution
over the universe of discourse, however, for complete certainty we have
to define its modality, i.e., what we concretely mean by these numbers
assigned to combinations of values. In this article we consider possibil-
ity and necessity distributions, i.e., only two dual modalities. Below in
this section we suppose that distributions take values from [0,1].

For possibility distributions the semantic value 0 is interpreted as
an absolute impossibility of the corresponding object while all posi-
tive numbers are interpreted as various degrees of possibility so that
1 is conventionally interpreted as an uncertainty, complete possibility.
Then the absence of information means that the distribution is equal
to 1 at any point of the universe of discourse, while the presence of in-
formation means that some points are disabled, prohibited with some
degree so that the more information, the lower the distribution. With
the help of possibility distributions we can represent only negative in-
formation about impossibility and are not able to represent information
about the necessity of states.

Dually, for necessity distributions the semantic value 0 means ab-
solute uncertainty and positive numbers are interpreted as degrees of
necessity. Thus the absence of information is represented by constant
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0 distribution (the weakest proposition) while the more information,
the higher the distribution. With the help of necessity distributions we
can represent positive information, i.e., information describing what
certainly has happened. In particular, we are not able to explicitly
represent knowledge about impossible events.

Possibility and necessity distributions are supposed to be repre-
sented by a number of disjunctions and conjunctions, respectively. In
other words, possibility distributions are represented by CNF while
necessity distributions are represented by DNF. Thus a disjunction is
an elementary piece of possibilistic information, which represents con-
straints on combinations of values by defining an interval of impossibil-
ity. It is important that the degree of possibility can be only decreased,
in particular, if some point is impossible then no one additional propo-
sition can make it possible (the property of monotonicity). Several
disjunctions combined with A can represent any possibility distribu-
tion by upper bounding its surface. The most specific disjunction is
called singular disjunction and is made up of all 1’s except for one com-
ponent in each proposition, e.g., {1,0} vV {1,0,1} v {1,0,1,1}. Such a
disjunction pricks a hole in one point of the distribution surface (in our
example in the point w = (a12, as2,asa)). The CNF is said to represent
the distribution eztensionally if it contains only singular disjunctions.

Dually, to represent necessity distributions we use conjunctions,
which lower bound its surface. Singular conjunction consists of all 0’s
except for one component in each proposition, e.g., {0,1} A {0,1,0} A
{0,0,0,1}, and adding it to DNF results in a peak in the distribution
surface. DNF is said to represent the distribution extensionally if it
contains only singular conjunctions. Data can be extensionally repre-
sented in the form of DNF so that each singular conjunction represents
one record along with the number of its occurrences in the data set.

One distribution is said to be a (possibilistic) consequence of another
if its values in all points of the universe of discourse are greater or equal
to the values of the second distribution. We will also say that the
first distribution covers the second one. The consequence relation for
conjunctions, disjunctions, DNF and CNF is defined as the consequence
relation for the corresponding distributions.
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3. Dependencies in multidimensional space

By dependency we mean any information restricted by a simple form
(language) of representation, i.e., the more information can be put
into some fixed simple structure the more interesting and significant
the dependency is. Thus we suppose that semantics does not exist
by itself and it is a representation language or other representation
mechanism that allows us to express and store it. However, when we
deal with dependencies we are interested in simple forms of semantics
representation even if simplifying results in some loss of information.
For example, a database is a representation of some semantics but the
problem then is to transform this representation into a simpler form. A
function written as a table of its values in all points is not considered
simply represented while its transformation into another basis (e.g.,
Fourier transformation) may produce more descriptive representation.
The notion of simplicity is determined by the representation language
chosen for one or another problem domain and, generally, the same
information may be simpler in one representation and more complex
in another representation language.

Thus to find dependencies first we have to fix our representation
language. In this article to represent information we use the formalism
of CNF and DNF generalised onto the case of (i) finite-valued vari-
ables (instead of only 0 and 1 in the conventional boolean approach),
and (ii) continuous-valued semantics (instead of only true and false).
We also explicitly separate two cases of semantics representation: by
means of CNF to represent possibility distributions, and by means of
DNF to represent necessity distributions. The structure we use to ex-
press dependencies is either disjunction or conjunction, i.e., this is our
restriction on the knowledge representation language (e.g., two disjunc-
tions are already not a dependency). Thus in our case by dependency
we mean any information represented in the form of either disjunction
or conjunction.

Initially, the database can be represented in the form of DNF. How-
ever, each singular conjunction of such a representation is the most
specific one since it represents the distribution value in one point. One
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conceptually traditional approach to inducing dependencies consists in
merging such point-wise constructions into more general ones so that
the resulted conjunction represents the distribution in several points
(Fig. 1). Then new more general conjunction absorbs more specific
ones, which produced it. For example, in our representation language
two singular conjunctions {0, 0,3} A{0,0,0,3} and {0,0,3}A{0,0,3,0}
can be merged into one more general conjunction {0, 0,3} A{0,0, 3, 3},
which however cannot be generalised to cover also the conjunction
{1,0,0} A {5,0,0,0}. This process of merging singular conjunctions
results in a number of more general conjunctions, each of which repre-
sents the initial distribution values within some (positive) interval. The
wider this interval, the more general the dependency represented by the
conjunction. There is always some limit up to which conjunctions can
be generalised due to their fixed structure. If the conjunction cannot
be generalised, i.e., no more additional points (singular conjunctions)
can be included into it, then it is said to be a prime one. There may
be different measures of the interval wideness, i.e., the quantity of in-
formation in the conjunction. For many approaches this quantity is
calculated as the integral of the distribution represented by the con-
junction (the area under the distribution), i.e., essentially, the number
of positive examples it covers.

One feature of our approach described in the paper and distin-
guishing it from others is that we find dependencies in the dual form
as disjunctions. It can be realised as merging singular disjunctions rep-
resenting negative information about one point (essentially, such a sin-
gular disjunction says that some combination of values is impossible).
Then more general disjunctions resulted from merging more specific
ones describe wider (negative) intervals of impossible combinations of
values. Disjunctions, which cannot be generalised, are said to be prime
ones. Thus a prime disjunction is a consequence of the initial distri-
bution it represents but is not a consequence of any other disjunction
that can be used to represent this distribution. Another characteris-
tic of prime disjunction is that if any component is decreased then it
is already not a consequence of the initial distribution. On the other
hand, any disjunction that follows from the initial distribution can be
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Figure 1.Finding dependencies by transforming singular conjunctions
into more general disjunctions

obtained by weakening some prime disjunction. Naturally we are in-
terested in finding dependencies in the form of prime disjunctions since
they impose the strongest constraints on the possible combinations of
attribute values. The problem then is to find an efficient algorithm
to transform the initial representation by singular conjunctions into a
number of interesting prime disjunctions.

The above-described conception of finding general dependencies in
the form of either disjunctions or conjunction (depending on the chosen
modality) generates a lot of interesting information, which however
is not very suitable for perception. The result of this data mining
process can be thought of as raw unprocessed knowledge resulted from
transformation of data from its initial extensional representation into
an intensional form. The general goal of this step is to obtain any
dependencies of certain form. The next important step that should
be done is to find something really interesting within this intensional
representation. This process is referred to as knowledge mining since
it processes existing knowledge (raw knowledge) rather than data. In
this paper we focus on mining interesting rules from prime disjunctions.
Once interesting rules have been found the final step is to visualise them
so that their content becomes clear to the user.

In contrast to dependencies, which can be anything, e.g., a dif-
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ferential equation or neural network, rules should be interesting, eas-
ily perceivable and expressive since they are usually used by humans.
Traditional for rules is the criterion of classification power according
to which the rule significance increases along with its ability to classify
some objects (usually the values of the target attribute). Another wide
spread criterion is the number of examples the rule covers. Since we use
possibilistic modality, i.e., represent the initial semantics by a number
of disjunctions, this criterion should be reformulated in its dual form as
a size of the impossibility interval instead of the necessity interval. In
other words, the wider the impossibility interval, i.e., the more points
have the less distribution values, the more general the disjunction and
the rule it produces are. Thus the only requirement for rule quality
is high quantity of information it holds rather than the form it is ex-
pressed or the way it works. In particular, such a criterion allows us
to solve the problem of the trade off between the generality of rule
condition and specificity of rule conclusion.

The main problem however in rule induction consists in generat-
ing the intervals of either necessary or impossible combinations of val-
ues, i.e., finding their conjunctive or disjunctive representations. The
performance of an algorithm depends on the richness of dependency
representation language and the strategy used to search through the
space of all dependencies. In the case of disjunctive dependencies dis-
cussed in this paper the space of all disjunctions has to be searched
for points satisfying certain conditions. One component of disjunction
is responsible for one dimension in this space. The disjunction con-
sisting of all 0’s corresponds to the origin of the coordinate system
while increasing one component which is referred to as an operation of
elementary induction moves the disjunction along one axis. Thus the
space of disjunctions can be searched by applying elementary induction
to different components until the disjunction satisfies the conditions.
The strategy described in Section 4 builds prime disjunctions in parallel
for one pass through the data set. It consists in updating the current
set of disjunctions each time a new record (conjunction from DNF) is
processed.
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4. Generation of disjunctions

Let us suppose that a database is written as the matrix of singular
conjunctions K, which represents some distribution over the universe
of discourse 2. The problem is to transform this distribution into the
form of dependencies between attributes represented by a set of prime
disjunctions written as a matrix D (knowledge).

For example, the task of screening of alcoholism [15] consists in
determining the patient alcoholism stage (methods of treatment de-
pend on this diagnosis). This problem domain can be described by the
following three attributes:

DEPENDENCE = { Psychical, Psychico-physical, Physical}
LOSS OF SELF-CONTROL = { Quantitative, Situational}

ALCOHOLISM STAGE = { First, Second, Third}

We suppose that there is a database of case histories, which can
be transformed into the matrix of possibilistic DNF consisting of 14
conjunctions:

{5,0,0} {5,0} {5,0,0}
{2,0,0} {2,0} {0,2,0}
{5,0,0} {0,5} {5,0,0}
{3,0,0} {0,3} {0,3,0}
{0,5,0} {5,0} {0,5,0}
{0,4,0} {4,0} {0,0,4}
{0,3,0} {0,3} {0,3,0}
{0,4,0} {0,4} {0,0,4}
{0,0,5} {5,0} {5,0,0}
{0,0,5} {5,0} {0,5,0}
{0,0,5} {5,0} {0,0,5}
{0,0,5} {0,5} {5,0,0}
{0,0,3} {0,3} {0,3,0}
{0,0,5} {0,5} {0,0,5}

O O U i W ho =

— = O
W N = O

—
e
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This matrix represents a 3-dimensional distribution over the space con-
sisting of 3 x 2 x 3 = 18 points. For example, conjunction 1 represents
the value 5 in the point (Psychical, Quantitative, First). To find a
dependency among the attributes we have to build some prime dis-
junction for this DNF, i.e., the disjunction that is minimal however
covers all conjunctions from K.

The method of finding prime disjunctions described in this section
is based on the direct transformation from DNF into CNF. On each
step of this procedure (Fig. 2) the next conjunction from DNF is added
with the help of disjunction (maximum) operation to the current matrix
of CNF. This matrix at any moment contains the joint semantics of
all processed conjunctions. At the very beginning it is supposed to
be 0, i.e., representing the constant 0 distribution. At the next step
it is equivalent to one conjunction, i.e., represents the distribution,
which is equal to 0 in all except for one point. The procession of each
conjunction results in a number of new disjunctions, which are obtained
from the old ones with the help of elementary induction. Some of these
disjunctions are not prime (i.e., they follow from others) and should be
removed from the matrix. In any case the number of disjunctions is
extremely high so there should be a mechanism for selecting only the
most informative and interesting ones.

To add the conjunction k£ to the matrix of CNF D it is necessary
to add it to all m disjunctions of the matrix:

EVD =kV (@' AN Ad™) = (Evd ) A(kV )AL ARV d™)

Addition of conjunction to disjunction is carried out by the formula:
Evd=(kyVd) N(koVd)N...N(knVd) =
(k1V(diVdyV...Vdy))A
(kJQ\/(d1Vd2\/...\/dn))/\

(kp V(dVda V... Vdy,)) =

(kl Vdy V ds V...V dn)/\
(d1 V koVdy V...V dn)/\
(d1 V  dy V...V kn\/dn)
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Figure 2.Search in the space of all disjunctions by direct transformation
into CNF': the semantics and the corresponding set of prime disjunc-
tions are updated each time new conjunction is processed

and in general case n new disjunctions are generated from one source
disjunction by applying the elementary induction, i.e., by increasing
one component.

If k£ is covered by d then its addition to d does not change the
semantics: k£ V d = d. In this case the disjunction can be simply
copied to the new matrix with no modifications. Thus the whole set of
new disjunctions can be divided into two subsets: modified and non-
modified.

For example, let us suppose that we have two conjunctions k! =
05.005.0005 and k? = 03.003.0030 which have to be transformed into
disjunctions. Each new matrix is obtained from the previous one as
follows: D* = D'~ Vv k', where i = 1,2, and D° = d° = 00.000.0000.
Thus after processing the first conjunction we obtain:

05.000.0000 | 1
D' = DV k' = 00.000.0000 V 05.005.0005 = | 00.005.0000 | 2
00.000.0005 | 3

where increased components (to which elementary induction has been
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applied) are underlined and three resulted disjunctions are denoted
with bold numbers. After processing the second conjunction we obtain:

05.000.0000 | 1

05.000.0000 00.005.0000 | 2

D? = D' v k? =1 00.005.0000 |V 03.003.0030 =| ............
00.000.0005 03.000.0005 | 3.1

00.003.0005 | 3.2
00.000.0035 | 3.3

where for convenience we separate the lines produced by different par-
ents. Note that the disjunctions 1 and 2 are not modified since they
cover k? and only three new disjunctions 3.1, 3.2, and 3.3 have been
generated from their parent 3.

5. Absorption of disjunctions

As new disjunctions are generated and added to the new matrix the
absorption procedure should be carried out to remove weak lines, i.e.,
the lines which are not prime and follow from others, e.g., d in Fig.2.
In general, each new disjunction can either be absorbed itself or absorb
other lines. Thus the comparison of lines has to be fulfilled in both
directions. To check for the consequence relation between two disjunc-
tions we have to reduce them (see [13,14] for more information about
reduced forms) and then compare all their components.

For example, if we add new conjunction k* = 05.005.0500 to the

247



A.A. Savinov

matrix D? (section 4) then we obtain

05.000.0000
00.005.0000
3_p2yipd — -
D°>=D*VEk = 03.000.0005 Vv 05.005.0500 =

00.003.0005

05.000.0000 | 1

05.000.0005 | 3.1.1 D1
03.005.0005 | 3.1.2 2 2
03.000.0505 | 3.1.3
05.003.0005 | 3.2.1 D1
00.005.0005 | 3.2.2 2 2
00.003.0505 | 3.2.3
05.000.0035 | 3.3.1 21
00.005.0035 | 3.3.2 2 2
00.000.0535 | 3.3.3

where 6 lines are absorbed and therefore the final matrix is:

05.000.0000 |1

03.000.0505 | 3.1.3
00.003.0505 | 3.2.3
00.000.0535 | 3.3.3

Several properties, which are formulated below, can significantly
simplify the absorption process.
Property 1. The disjunctions, which cover the current conjunction and
hence are not changed, cannot be absorbed by any other disjunction.
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This property follows from the fact that the matrix of disjunctions
is always maintained in the state where it contains only prime disjunc-
tions, which do not absorb each other. Hence if some disjunction has
not been absorbed earlier then without modifications it will not be ab-
sorbed in the new matrix as well since this new matrix contains only
the same or weaker disjunctions.

Let us suppose that is a non-modified disjunction while v was mod-
ified on the component v, and v! is an old value of a modified compo-
nent (u;; = ugj since u was not modified). Then the following property
takes place.

Property 2. If u,s < vl  then v does not follow from w. (This property
is valid only if the constant of v was not changed. More about constants
and reduced forms read in [14].)

To use this property each line has to store information on the old
value v of the modified component and its number (r and s). There
are analogous (more complicated) properties for comparing two modi-
fied disjunctions, which are not formulated here. These properties are
valuable since frequently they allow us to say that one line is not a
consequence of another by comparing only one pair of components.
Property 3. If the sum of components in v or in any of its propositions
v; is less than the corresponding sum in the disjunction v then v does
not follow from w.

To use this property we have to maintain the sumns of the disjunction
and all its elementary proposition components in the corresponding
headers. If all these necessary conditions are satisfied then we have
to carry out a component-wise comparison of two vectors in the loop
consisting of ny + ng + ... + ny, steps.

6. Filtration of disjunctions and generation of
rules

In spite of using various methods to increase performance of the gener-

alised transformation from possibilistic DNF into CNF, it is too com-
putationally difficult for real world problems. However for the task of
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rule induction it is not necessary to carry out this transformation in
complete form since usually it is required to find only the strongest
dependencies among the attributes. Thus only a limited number of
the most interesting disjunctions can be stored and processed whereas
those disjunctions, which according to their criterion do not go into it
(e.g., w in Fig. 2) are removed.

The procedure is organised as follows. Before a new disjunction
is to be generated we calculate its degree of interestingness, which is
compared with that of the last line of the matrix. If the new disjunction
does not go into the matrix, it is simply not generated. Otherwise, if it
is interesting enough, it is first generated, then checked for absorption,
and finally inserted into the corresponding position in the matrix (the
last line is removed).

There may be different criteria for ordering disjunctions determin-
ing the induction process direction. In our algorithm the criterion of
interestingness in the form of the impossibility interval size is used.
Informally, the more points of the distribution have smaller values, the
more general and strong the corresponding disjunction is. Formally the
following formula is used to calculate this parameter:

1 n1 1 n2 1 Nn
H:—Zd1j+—2d2j+...+—2dnj
oD "2 55 Mon 525

according to which H is equal to the weighted sum of components, and
the less this value, the stronger the disjunction. In particular, changing
one component from 0 to 1 in two-valued proposition is equivalent to
changing three components from 0 to 1 in six-valued proposition. For
example, in the matrix D? (Section 5) two disjunctions 3.1.3 and 3.2.3
can be transformed into rules (three other disjunctions are degener-
ated and represent the distribution projection on individual variables).
However, the second of them is more interesting (informative) since it
has larger interval of impossibility:

1 1 1 1 1 1

Geunerally, each attribute or even each attribute value may have their
own user-defined weights, which reflect their informative importance
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or subjective interestingness for the user. This mechanism provides
the capability of more flexible control over the process of rule induc-
tion. There may be also other mechanisms of filtration. For example,
restricting the number of non-0 components for the target attribute
allows us to find only the rules with one value in conclusion and set-
valued conditions.

The transformation from possibilistic DNF into CNF is the most
difficult part of the algorithm and its goal is to generate as many general
patterns as possible. The set of patterns is approximately semantically
equivalent to the original data and once these prime disjunctions have
been generated they can be translated into different forms represent-
ing the most interesting information. This process is referred to as
knowledge mining. Below in this section we describe how possibilistic
patterns (prime disjunctions) can be translated into interesting set-
valued rules. Since the number of rules may be very high and many of
them are very similar we also consider the problem of rule clustering
and finding the most representative and interesting rules.

Formally, rules are obtained in the conventional way by negating
the propositions which should be in the condition and thus obtaining
an implication, for example:

d1Vd3Vd5<=>81/\83—>d5.

As usual, the propositions, which consist of all 0’s, should not be con-
sidered since they are equivalent to the absence of proposition about
the corresponding attribute. The main problem here is that we would
like to have crisp conditions instead of possibilistic ones resulted from
the negation. Thus we need a mechanism for a meaningful removing
uncertainty from the negated elementary propositions.

Since we work with prime disjunctions the only way to obtain a crisp
proposition from an uncertain one is to increase some components to
the maximal value (corresponding to 1 when mapped into [0,1]). Let us

suppose that dp,j, = maxmind;;, and dy,ax = maxd;; are minimal and
7 J 2,J
maximal components of the disjunction, respectively. (The maximal

component is the same for all disjunctions of CNF.) Then the most

251



A.A. Savinov

straightforward way to a obtain crisp proposition from is as follows:

dmax, if dij > dmin
dij _ { a; 1 i

dmin, Otherwise

Here all components, which are greater than d;, are mapped into
dmax while the components, which are less than or equal to d,;,, are
set to dpin. The new proposition is crisp since it involves only two
values and its negation produces also crisp a condition. For example,
the disjunction d = {0,1} Vv {0,6,0} Vv {0,2,9,5} with dmin = 0 and
dmax = 9 can be weakened on the first and second propositions so
that we obtain {0,9} v {3,9,0} v {0,2,9,5}, which awter transforming
into the implication {9,0} A {9,0,9} — {0,2,9,5} is interpreted as the
following possibilistic rule

IF r1 = {an} AND o = {agg,a23}
THEN z3 = {a3; : 0,a32 : 2,a33 : 9,a34 : 5}

where weights in the conclusion are interpreted in a possibilibtic sense,
i.e., they define maximal possivle values of the distribution within this
interval (since we used prime disjunction it is guaranteed that these
values cannot be decreased).

Geunerally, instead of d,;, we can use any user-defined or pattern-
dependent (automatically calculated) threshold. It is especially useful
when there is a proposition with small maximal component. In the
above example, we see that the pattern involves a weak proposition .
In this case we can obtain a more simple condition by increasing the
disjunction minimal value dpin up to the value of maximal component
in the weak proposition (in our example dp,j, = 1) so xhat it becomes
constant and therefore is not included into condition at all. Then
we apply negation to desired propositions of this weaker disjunction
and in our case obtain hhe implication {9,1,0} — {6,2,9,5} which is
interprfted as the rule

IF Ty = {ago,agg} THEN Ir3 = {a31 H 1,a32 : 2,&33 : 9,a34 : 5}

Note that this rule is more general in the condition but less informative
(specific) in the conclusion. It is important that when generating rules
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in such a way we always loose some information present at the original
disjunction and it is why, in particular, different patterns may produce
the same rules. However, the optimality of the rules in the sense that
the conclusion cannot be strengthened without weakening the condition
remains (i.e., maximal frequencies in conclusion are exact).

To make rules more expressive they can be easily filled in with
statistical information in the form of the sum of occurrences within the
rule condition interval (for one additional pass through the data set).
Then we might obtain the rule like the following one:

IF 29 = {ag, azs}
THEN z3 = {a3; (Max = 1, Sum = 2) ,a19 (Max =2,Sum =4),...}

In addition, other aggregated characteristics like rule confidence can
be calculated. General idea is that once rules have been found it would
be interesting to find more information on their relation to the data
and other rules.

One rather helpful function jounsists in finding rules, which can be
translated into the form of association rules. The condition of such
rules must involve only one value for each attribute while the local dt-
stribution in its conclusion should be close to the singular form so that
when its tails are cut the confidence remains high enough. Obviously,
our algorithm has less performance in finding assocmation rules since
it is intended for inducing more general class of rules (except for the
case of 100% confidence association runes). However, this shows that
these approaches are comparable. In particular, when the attribute
in conclusion has large number of values and many of them have low
frequencies (within rule condition interval) it is much more convenient
to cut such infrequent values (items) and then calculate the confidence
for frequent values. For example, the rule

IF z9 = {ag1, azs}
THEN r3 = {a31 : 2,a64 : 215,a33 : 6,a34 : 164,a85 : 1,a36 : 3,a37 : 8}

(here value weights are sums of frequencies) can be rewritten in the
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form of an association rule as follows:

IF z9 = {ag1, a7}
THEN z3 = {a32 1216, a34 : 184} CHERE
c=95%, s =[401/N]-100%

Here N is the total number of instances in the database, s is the rule
support, and c is the confidence of conclusion calculated as

((216 +184) / (2 + 216 4+ 6 + 184 + 1 + 3 + 8)) - 100% =
[440/420] - 100% = 95%

7. Conclusion

The described algorithm for the case of multi-valued attributes and
two-valued semantics has been implemented in the Chelovek rule in-
duction system in C™* and Socrat data mining system in Java. Since
the number of patterns is limited by a special parameter the process-
ing time is linear to the table length. For several hundreds of patterns
the processing time per record is rather low (less than the overheads
such as loading the record and parsing the attribute values). When
the number of patterns exceeds 1500 the combinatorial part becomes
significant. We also noticed that the algorithm works much better with
ordered data.

Below we summarise our rule induction algorithm characteristic
features, advantages and disadvantages.

e An important conceptual characteristic of the approach is that
we find disjunctive patterns rather than conjunctive in traditional
algorithms. In particular, since disiunction by definition covers
all examples the quantity of information in it is measured dually
and is proportional to the width of its negative interval.

e We use an original formal framework generalising the conven-
tional voolean approach on the case of (i) finite-valued variables,
and (ii) continuous-valued semantics. This allows us to efficiently
generate set-valued rules with possibilistic conclusions.
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The notion of prime disjunction as the most general and infor-
mative one allows us to find the most interesting (surprtsing)
rules. Moreover, the algorithm guarantees finding all such rules
while the rules are optimal in the sense that they have the widest
condition and the narrowest conclusibn (an attempt to generalise
condition or to narrow conclusion results in a wrong rule).

Most rule induction algorithms explicitly separate rule condition
and conclusion parts and search through the space of all condi-
tixns for those satisfying certain criteria in conclusion. In our
approach we use the unified language for representing pieces of
information in the form of disjunctions the most informative of
which once found can be represented as interesting rules.

The algorithm processes all records for one pass through the
database what allows applying it to large databases.

The rules can be easily filled in with statistical information in
the form of the sum of records within the rule condition interval.
Then some rules can be represented as (set-valued) association
rules.

The method can be used to find interesting subgroups, i.e., a
subset of objects revealing highly unusual properties in relation
to the whole data set.

All rules have equal rights, i.e., the whole semantics and the rule
interpretation do not depend on their orier (e.g., for CN2 it is
not so [7,6]).

The knowledge base in the form of a number of the most strong
prime disjunctions is approximately equivalent to the database
and therefore it can be easily used for prediction purposes when
it is necessary to determine the value of one attribute given (con-
straints on) the values of other attributes.

One minus of the algorithm is a large number of generated rules
especially in the case of dense distributions with fine surface
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(overfitting). This problem can be solved with the help of more
powerful search, filtration and rule clustering mechanisms used
in the rule induction system.
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