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Confluent-Functional solving systems

V.N. Koval Yu.V. Kuk

Abstract

The paper proposes a statistical knowledge-acquision
approach. The solving systems are considered, which are able
to find unknown structural dependences between situational and
transforming variables on the basis of statistically analyzed input
information. Situational variables describe features, states and
relations between environment objects. Transforming variables
describe transforming influences, exerted by a goal-oriented sys-
tem onto an environment. Unknown environment rules are sim-
ulated by a structural equations system, associating situational
and transforming variables.

Keywords: environment, situational variables, goal variables,
goal-oriented systems, confluent systems, functional models, con-
fluent models.

1 Introduction

The paper considers previously introduced goal-oriented solving sys-
tems [1], able to select optimally a needed goal situation on the basis
of an information in an initial situation. The main attention is paid to
the ability of these systems to find unknown environment regulations
on the basis of statistical analysis of input information, distorted by
random noises, as well as to the ability to use these regulations in or-
der to solve concrete problems of transformation of the initial situation
into the goal one.

Environment description variables are usually related. These rela-
tions may be described by a set of some unknown interrelations between
variables to be found. There are very many relations of this type in na-
ture and in human society. The main point is to propose efficient ways
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in which such dependencies are modelled when real practical problems
are solved. The paper supposes that the information a priori about
a form of these relations is known. In this case, unknown functional
relations between variables are expressed by known functions with un-
known parameters.

The environment [2], in which the problem is defined, means such
a triple < V, K, A >, where V is a set of objects; K is a set of features,
states and relations between objects from V; and A is a set of actions,
allowed for execution with respect to elements of V and K. When the
problem is solved, environment fragments (i.e. situations) are operated
with. The situation is a pair < Vi, K; >, where V; and K, are subsets
of, respectively V and K. Assume that an initial situation consists of a
finite number of objects. Their features and states, as well as relations
between them are described by a set of initial variables. Variables,
describing a goal situation, are goal variables. A goal-oriented sys-
tem may make use of certain actions in order to transform the initial
situation into the goal situation. Variables, describing these actions,
are transforming variables. Consider the problem of attainment of
some goal situation, described by the certain goal variable value set
(y1,--.,yq). Denote initial situation variables by vector (z1,...,znN).
Transforming influences are described by variables (uy,...,uk). Pre-
dicted variables result from approximation of goal variables performed
by means of situation and transforming variables. Main variables are
understood as goal, initial and transforming ones. Let values of every
main variable be observed at time moments t =1,...,n.

2 Types of Confluent Intelligent Solving Sys-
tems

The intelligent solving systems, aimed at functional modelling and con-
sidered in [3], construct a functional model of an environment. It is
supposed in this case, that previously unknown functional relations
between goal, initial and transforming variables are present. If these
variables are random in accordance with their nature, then structural
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modelling systems are used to construct a model. In this case, an en-
vironment model is described by structural relations and not by func-
tional relations between variables. And such a model is called struc-
tural model. Note, that initial and transforming variables are consid-
ered as exactly known in the solving systems of functional modelling.
Although these variables are random in the structural modelling sys-
tems, their values are measured without errors. The present paper
goes on discussing the functional modelling systems, but it is supposed
now, that, when initial and transforming variables are measured, er-
rors are present. If randomly emerging initial and transforming vari-
able measurement errors are treated in a model, then it is possible to
construct generalized models for functional and structural ones. Such
generalized models are described by structural relations between ob-
served variables, resulting from confluence of main variables and ran-
dom errors. Therefore, they are, respectively, confluent-functional
and confluent-structural models. The confluent-functional intelli-
gent solving systems (CFISs) and confluent structural intelligent solv-
ing systems are used to construct unknown confluent-functional and
confluent-structural models of an environment, respectively, on the ba-
sis of the statistical analysis of an obtained input information. Also,
the above-mentioned systems are designed in order to solve different
problems, when the found environment model is applied. Note, that,
when functional environment models are dealt with, then it is possible
to determine goal variable values according to initial and transform-
ing variable ones, but when structural and confluent models are taken
into consideration, then one may only say about a probability, with
which goal variable values are found in stated confidence intervals un-
der specified initial and transforming variable values. Only the shortest
intervals are interesting in practice.

The paper considers two types of the CFISs: a) the open systems,
characterized by their operation with observed main variables, when
values of initial and transforming variables, onto which random distur-
bances exert their influence during problem solution, are known; and
b) the closed systems, characterized by their operation with observed
main variables, when values of initial and transforming variables, onto
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which random disturbances exert their influence during problem solu-
tion, are not known. Depending on the CFIS type, the environment
models, built up by them, are divided, respectively, into the open and
closed confluent-functional ones.

Finding of a confluent environment model is based on the statisti-
cal analysis of observed main variable values, arrived at a goal-oriented
system input at time moments £ = 1,...,n. When models are con-
structed by means of the CFISs, it is supposed that unknown functional
relations between variables, which describe a confluent-functional en-
vironment model, are expressed by known functions with unknown pa-
rameters ©g. The paper considers the case, when values of initial and

transforming variables z1(¢),...,zn(t), u1(t),...,ux(t), required for
problem solution, cannot be found exactly enough, and goal variables
yi(t), i=1,...,Q are observed with some errors. Therefore, an open

confluent model of an environment may be represented as the set
of the following structural relations:

yit) = fil@i(®), ... 2y (), ui(t), ... u(t); Oo) + &),
i=1....Q 1)
zi(t) = w;(t) +eult), j=1,...,N;
’U,;C(t) = up(t) +epult), k=1,.... K; (2)
where z1(t),...,zn(t),u1(t),...,ux(t) are known initial and trans-

forming variable values, specified for problem solution and under which
goal variable y;(t) must be observed. The values of y;(t), 2} (t), uj (t) are
the results, obtained in observation of main variables v;(t), z; (t)u (%),
respectively, and real value of y;(¢) is not known. &;(¢) is an error of
observation of goal variable, €;,(t), ek, (t) are random errors in fixa-
tion of initial and transforming variables, 7 =1,....N; k=1,...,K;
i=1,...,0.

A closed confluent model of an environment may be repre-
sented as the set of the following structural relations:

y;(t) = fi(xl(t)a s axN(t)aul(t)a s auK(t);@U) +5i(t)7
i=1,...,Q; (3)
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y;(t) = yi(t)+€i(t)7 x;’(t):xj(t)'i'gjw(t)a jzla'--aN;
up(t) = ug(t) +epu(t), k=1,...,K; (4)

where €, (%), eku(t), €i(t), 5=1,...,N, k=1,...,K,i=1,...,Q are
uncontrollable random errors. yi(t), i = 1,...,Q; x}(t), j=1,...,N;
uy(t), k=1,...,K can be measured. The values of v;(t), z;(¢), ug(t),
j=1L....N;k=1,...,K;i=1,...,Q are unknown.

Introduce not very strict assumptions, which, from the computa-
tional point of view, allow to reduce construction of confluent environ-
ment models to construction of some auxiliary functional models. The
procedure of construction of the latter is considered in [3].

Let the following conditions be met:
A) functions fi(z1(t),...,zn(t),ui(t),...,uk(t);©¢) have mixed
derivatives as for main variables up to the third-order derivative in-

clusive, and these derivatives are uniformly restricted on the set of
admissible initial and transforming variable values;

B) random errors, included into main observed variables €;,(t),
epa(t), €i(t), j=1,....,N; k=1,...,K;i=1,...,Q are independent
in their totality; and the mathematical expectations are

Eej () = 0, Bepy(t) =0, Eei(t) =0, Be2(t) = o7,
5j:1:(t) = 'YVj:r(t)a 5ku(t) = 7Vku(t)7 E(V(t)VT(t)): d.

v(t) = (112(t), .-, Nz (t), V14 (t), ..., vKky(t)) is a vector of standard-
ized random values (for instance, with a unique dispersion) with the
restricted third-order mixed moment:

E(lv;.(t)vr.(t)vs.(t)|) =¢, 3,k,s=1,...,N+P;

¢ is some constant. The dimensionality of v(t) isp = N+ K. d is a
diagonal pxp-dimensional matrix.
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3 Constructing Open Models by CFISs under
Known Noise Parameters.

Introduce the denotations

X'(t) = (z1(t) +e1e®),...,2n(t) + 12(2);
u1(t) + e1u(t), ... uk(t) + e1u(t);)

and
Xo(t) = (z1(t), ..., on(t);ur(t), ..., uk(t);).

It is easy to check that the following relation takes place for the math-
ematical expectation and dispersion of goal variable:

Myj(t) = M[f(X"(t); ©0) + &i(t)] = [ (Xo(t); ©0) + 0o(¥"); ()
Dyj(t) = A7 (Xo(t); ©0) + o(7%); (6)
where

fi(Xo(t);00) = fi(Xo(t);©0) +

& f(X(t); ©) '
+0505p (d * —oxoXT HO) .
Ail(XU(tﬁ@U) = o? +02 . W .
df (X (t); ©o) _
| (d. DX (1):00) X:X0> S

T is the transposition operation.

Therefore, construction of an open confluent-functional environ-
ment model is reduced with accuracy within o(y?) to construction of
the following auxiliary nonconfluent functional environment model:

yit) = fH@(@t),. . on(t),ur(t),. .., uk(t); ) + pi(t),
i=1,...,0Q; (9)
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here p;(t) is a transformed error,
Epa(t) =0, Ep(t) = X' (Xo(t); ©). (10)

The essential difference between the present functional environment
model and the one in [3] consists in the fact that the dispersion of the
transformed error j;(t) depends on the unknown parameters g, o2,
d.

If the goal variable error dispersion o? and the covariant error ma-
trix d for initial and transforming variables are known, then, to find
unknown parameters, determining the functional environment model,
the procedure [4]

OF = lim O, (11)

S—r0oQ
where

n

O, = arg m@innfltzzl)\(Xg,@S,l)[yg(t) — f¥(Xo,0)]%,

or the modification of Newton-Rafson method

Oy =0,_1+ aszgl(@s—l)wn(@s—l)a (12)

where

2,(0) = 'S AXo(1), 0) F (Xo(t),0) EY (Xo(),0),  (13)
t=1

n

Wa(©) = n™'STAXo (), ©)[yi(t) — f7(Xo(t), ©)] F; (Xo(t),0),

t=1

Fy (Xo(t),0) = w X=X

are used.
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The factor ay is chosen in the same way as in the usual Newton-
Rafson procedure.

It is possible to show [4], that under some additional conditions,
except conditions A) and B), the considered iterative procedures con-
verge with the probability 1, and the obtained estimates are consistent
and normal.

These conditions are as follows.

C) The sequence

n

w(©) = 11y AN Xo(1), ©)Lf] (Xi(t), ©) — f(Xo(t), ©0))?

t=1

uniformly converges with respect to © € €, and limw?(©) = w?(O)

takes here place, and the function w?(©) has the only one minimum
under © = 6.
D) Under all © € €, there exist ©-continuous derivatives

OfF(Xo(t);0)  0fF(Xo(t); ©)
00 ’ 00067

and the sequences

n

{1 A Xo(1), ©0)¢(Xo(t), ©)3(Xo (1), ©)},

t=1

where the functions ¢(Xo(t),0), ¥ (Xo(t),©) may coincide with any
above-mentioned derivatives, and the sequences uniformly converge
with respect to © € (.

E) The matrix

2(00) = lim 1S AXo(0), €0) Fi (Xo(t),00) BT (Xo(t),00)
t=1

is not unusual.
When conditions A)-E) are met, then:
1. lim P, =1, where P, is the probability that iteration procedure

n— 00
(11) converges under selection of a volume n;
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2. the estimate ©}, determined by procedure (11), is strongly con-
sistent, and if there are some solutions under X, than any of them are
taken as O ;

3. the estimation ©;, is asymptotically normal, i.e.

lim P{v/n(6;, — ©9) < s} = &(s; 0, Z7'(6y)),

and, in this case, Z,(0}) is the strongly asymptotical estimation of the
matrix Z(0p,).

4 Constructing Open Models by CFISs under
Unknown Noise Parameters.

If a goal variable error dispersion and a covariant initial and trans-
forming variable error matrix are unknown, then, to find unknown pa-
rameters which determine an auxiliary functional environment model,
the more complicated iteration procedure is applied. This procedure
allows to additionally state a goal variable error dispersion and a co-
variant main variable error matrix.

To find the estimates ©* for ©( under unknown o2 and d, introduce
the following new unknown parameter vector:

where dT:(d11d12 P djl P dpp)
By analogy, as it is done in the case with expressions (9) and (10),
consider the auxiliary regression problem:

yi(t) = f7(Xo(t);Z0) + pi(t), i=1,...,Q; (14)

Epi(t) =0, Epi(t) = A1 (Xo(t); Eo)- (15)

Note, that the functions f7(Xo(t);Z) and A™1(X¢(t); Z¢) depend
on different groups of the parameters in Z¢. Assume that the random
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values p;(t) are distributed normally. To meet this condition, the errors
contained in main variables should be supposed to be normal in the
initial problem.
The estimates Z* for Zg are found according to the following iter-
ation procedure:
= = lim Z (16)

§— 00 s

By = arg Héi*nnflz {MXo (), E51)[mi (1) — £ (Xo(t), E5 1)) +

t=1
+%)\2(X0(t), =) (Xo(t), =5 y) —
—(

yi(t) — £ (Xo(1), 25 1))}

Consider the convergence conditions for this procedure and the
features of obtained estimates. Let the functions f*(Xo(t);Z¢) and
A~H(Xo(t); Zp) satisty condition D). Besides this, the function

E) = Y A0, B — i (Ko(0), 2 +
t=1
N (Xo(0), ZDIN ! (Xo(8),57) -

satisfies condition C).
Introduce the matrix

where
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Instead condition E), the matrix

G(Z)) = lim G(Z;)
is required, and it is necessary for this matrix to be nondegenerated.

If these five conditions are met, the result is as follows [5]:

1. nll)rrgo F,, = 1, where P, is the probability that iteration procedure
(16) converges;

2. the estimate =7, determined by procedure (16), is strongly con-
sistent, and if there are some solutions under 7, then any of them is
taken as = ;

3. the estimation =7 is asymptotically normal, i.e.

lim P{\/n(E; —2y) < s} = ®(s; 0, G~1(E)),

n—00

*

and, in this case, G, (E},

matrix G(Ey).

) is the strongly consistent estimation of the

5 Constructing Closed Models by CFISs

If a closed confluent-functional environment model is constructed, this
point is much more difficult, than the open model case. To construct a
closed model, the CFISs use the least-distances method instead of the
least-squares one. Consider some 1 + N + K-dimensional Euclidean
space for those points, coordinates (y;, x1,...,Zn,U1,...,ux) of which
correspond to main (goal, initial and transforming) variables. For
each coordinate of this Fuclidean space, the respective mean-square
variable error deviation is used as a length unit. A variable error
here corresponds to some given coordinate. It is o2 for the first co-
ordinate and it is v? for the rest of them. Such points are dealt
with in the present space, coordinates of which are equal to observed
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values of main variables for each observation time moment, i.e. to
(yi(t), 2 (t), ..., 2y (t),u)(t),...,u(t)). Number of points is equal to
the number of observation time moments. Let these points be called
observable. Parameter values are taken as an estimate of unknown
parameters of the given functional relation, included into a closed
confluent-functional model. And those parameter values are taken as
the estimate, under which the sum of distances from every observed
point in this metrics to the surface

yi(t) = fi(z1(t),...,zn(t),ur(t),...,ur(t); Op)

is minimum. The surface

yi(t) = fi(z1(t), -, an(t), ua (), .., uk (t); Oo)

is determined by the functional relation

©* = arg min Zl%(@g), (17)
©0 i3

where

At (Xo(t) - X'(1)],  (18)

= 1),y zn () ur(t), ... uk(t);),
Xl(t) = (x’l(t)u s 7'TIN(t);u’1(t)7 s 7ulK(t);)7

y;(t) = yi(t)+5i(t)7 x;(t):xj(t)'i'gjx(t)a jzla'--aN;
up(t) = up(t) +epu(t), k=1,...,K;

Estimates (17) are the estimates for the least-distances method

[5]-
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In the linear case, i.e. under
yi = fi(Xo(t); ©0) = Of Xo(2),
formula (18) is

(v; — 05 X'())?
0?2 + 120740 -

17(8¢) =

In the case with the arbitrary function y; = f;(Xo(¢); ©¢), and when
conditions A) and B) are met, the approximate formula

[1(©0) = (yi — 7" (X(1):©0))*A(X' (t); ©0) + ()

takes place, where

(X' (1);00) = fi(X'(t);00) —

9% f (X (t); ©o)

—0.50%Sp (d * ———— ) ; (19)
0XoxT [

2 OF(X(t); Qo) , Of(X(t); ©0)

A HX(1);00) = o? ;
( ()760) g +V 8XT 8X X:XI’

(20)

Therefore, the estimates of the least-squares methods are as follows:

O} —arguin 3 (3 — /(X' (1: 00)*AX'(1):€0). (1)
t=1

Consider the conditions, when the obtained estimates are strongly
consistent and asymptotically normal.

Assume
U (X(t):0) = w’
a(x;0) = TLELIO) g DL CHLEO)
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and let the conditions, similar to conditions A)-E), be met, when
[F(Xo(t),0q) is replaced by f**(X'(t);©0¢) and Fi (Xo(t),0) is re-
placed by v, (X'(t); ©). Besides this, there is the limit

2(0p) = nli_glon’lz)\(Xo(t),®O)d*(Xg(t), Oy).
t=1
Then:

1) estimates (21) are strongly consistent and asymptotically nor-
mal [4], i.e.

Jim P{VA(®;, ~€0) < s} = (s 0. A(8))
where
A(89) = Z 1(00)[Z(00) +7*2(00)]Z(O0);

2) the matrix

n—liwo(t);@:;)[\i (Xo(); O (Xo(1):0%)—2d* (Xo(t); ©3)
t=1

is the strongly consistent estimate for the matrix Z(0y).
3) the matrix

n

n’lg)\(Xo(t); 0,,)d" (Xo(t); ©;,)

is the strongly consistent estimate for the matrix z(©g).

Note, that, in contrary to the open model case, since the informa-
tion that goal variable error dispersion and covariant initial and trans-
forming variable error matrix are absent, it is impossible for CFISs to
counstruct strongly consistent and asymptotically normal estimates for
closed model.
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6 Example.

The task for one of the main methods, used to control mechanical
features of products made of steels and other materials is to measure
hardness. Measurement of hardness is carried out in the majority of
cases in order to check up correctness of modes, in which products made
of structural steels pass their heat treatment. Hardness is measured at
different devices depending on product strength levels, dimensions and
forms, on an applied technology and on many other factors. Let HB be
Brinel harduness, and Rockwell hardness is abbreviated as HRC. Con-
sider the problem, concerned with measurement of ultimate strength
oy , when proceeding from the values of HB or HRC. The tables of con-
version of HB into oy , of HRC into o , of HB into HRC and vice versa
were made up as far back as in 1920s on the basis of the experiments.
However, when these conversion tables were applied, it was noticed
that practical values of mechanical characteristics were considerably
different from the values in the conversion tables. According to the ta-
ble data, the hardness value and the ultimate strength are interrelated
by the linear functional dependence. To correct the present functional
model, it is necessary to construct a confluent-functional model instead
of it. The dependences between the following pairs of variables are now
of interest: HB and o, HRC and o3, HB and HRC. Each variable here
may be treated as a goal variable, i.e. six interrelations between these
variables are dealt with. Let y be the goal variable, and the initial
variable is denoted by z. The following factors exert their influence
onto z, y and interrelations between them: chemical composition w;
; heat treatment ws ; features of a specified specimen (local chemical
composition and heat treatment, dimensions of a grain in a print zone,
etc.) w3 and measurement errors wy . The dependences of z and y on
these factors are determined by the following expressions:

z = z(wi,wy, w3, wq) (22)

Yy = y(w17w27w37w4) (23)

If many products are manufactured for one melting (fixed w;) and
if it is necessary to make them pass heat treatment in one mode (fixed
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w9), then it is possible to estimate mean values for studied mechanical
characteristics as for the specified wi and ws with sufficient accuracy.
Denote these mean values by z12 and y;9 . Introduce the denotations
for the balances:

34 = z(ws,wi/wi,ws) =z — T12,
yza = Ylws,wi/wr,w2) =y — yi2.

It follows from these formulas that, under fixed wy , wo, the conventional
mean values are:

M12$374 =0 and M12y374 =0. (24)

The collected experimental data, on the basis of which the tables
are made up, provide the assumption that there exists the fundamental
relation between mean values of x and y, and this relation may depend
on chemical composition wy:

Y12 = f(z12,w1). (25)

According to the data a priori (table), this relation is linear within
sufficiently broad intervals of values of x:

Y12 = a(w1) + b(wi)z12. (26)

Therefore, the observed variables are described by the following
closed confluent-functional model:

r = I12 + CL‘3’4, (27)

y = a(wy) + b(wr)z12 + Yy3.4. (28)

When w; , wy are fixed, conditions (24) are met as well as the
following assumptions:
1) the pairs of random values (234, y34) for different specimens do
not depend on each other.
2) there exist the dispersions for .’13374, y374 : D12$374, D12y374 .

191



V.N. Koval, Yu.V. Kuk

The model is constructed on the basis of the test results, concerned
with the groups of the products of one melting for each steel quality.
The products pass here heat treatment as for different strength [6].
There are only 15 values of HB and o, for different heat treatment

wo(y), j=1,...,5b:

Speci- | wa(1) | w2(l) | w2(2) | w2(2) [ w2(3) | w2(3) | wa2(4) | w2(4) | w2(5) | wa(5)
men HB 243 HB 243 HB <33 HB 243 HB 243
No.

1 263 88.5 277 95.5 331 109.0 363 120.0 383 126.0
2 262 90.0 275 95.5 335 111.5 356 117.0 383 127.0
3 262 90.5 278 94.0 331 109.5 350 118.5 385 128.0
4 262 87.5 278 93.5 331 109.5 352 117.5 390 129.0
14 265 89.5 275 92.5 341 110.5 352 120.0 383 129.0
15 263 90.0 277 93.5 327 109.5 354 119.0 384 128.5

The test results provide the dependencees between HB and oy |
HRC and o0, , HB and HRC, which are linear within the interval o, =
90 — 130 kg/mm?. For instance, the points in the above table are
between the lines, depicted in Figure 1.

Figure 1.
NE 140
E
(o]
=
= 120 4
§’ —e— Upper boundary
2 —=— Lower boundary
® 100 -
[
©
E
5 80 n T T T T T T

260 280 300 320 340 360 380
HB,kg/mm?

When « is converted into y according to the table and if steel quality
is taken into account, the spreading of actual values of y(w1,wa, w3, w4)
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near the table value is the sum of spreading inside melting (i.e. of devi-
ations of y(w1,ws, w3, wy) from a line a(wi) + b(wy)x12) plus difference
between this line and the table one. A contribution, made by the first
term, may be characterized by an in-melting dispersion averaged with
respect to different meltings. It is easy to characterize a contribution of
the second term by its mean square of a distance between a table line
and a(wp) + b(wy)z12, when this mean square is averaged with respect
to the studied interval of values for z. In the latter case, the totality of
meltings and chemical composition are taken into consideration. Here
arises the question: which value of any one characteristic corresponds
to the measured value x of another characteristic? It follows from the
above considerations, that this question cannot be answered exactly,
i.e. it is impossible to give one number. It is possible to speak only
about the probability, with which the value of y is found within the cer-
tain interval (y1,y2) under the specified value of z. If this probability
is assumed to be equal to 0.95, then, when conventional distribution
of y under specified x is supposed to be normal, it is possible to ob-
tain upper and lower interval boundaries for the 30 HGSA steel quality
(Figures 2-4). Figures 2—4 show the line, yielded on the basis of the
table data.

The upper and lower confidence boundaries in Figures 2-4 allow
to correctly foresee values of the considered goal variables with the
probability of 0.95.

7 Conclusion.

Any experimental variable is always measured under influences of some
noises, which never can be removed completely. Measurements of these
and similar variables are faced with in quantum-mechanical and biolog-
ical investigations, in some chemical kinetic problems and in a number
of other scientific and technical branches. Many processes run under
influences, exerted by the factors, which not always can be fully taken
into consideration. Many production processes are just those ones, un-
der which features of manufactured products depend, for instance, on
different properties of raw materials and on some technological pro-
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Figure 2.

128
124 -
120 -
116 -
112
108 -
104 -
100

—e—Table line
—&— Upper boundary
—a— Lower boundary

Ultimate strength, kg/mm?2

320 330 340 350 360
HB, kg/mm?

cess parameters, which cannot undergo continuous and sufficiently full
examination. These properties and parameters include, for example,
admixtures in raw materials, changes in temperature and humidity,
accidentally emerging abnormalities in machine operation, etc.

Confluent-functional solving systems allow to study dependences
between variables, which describe environment on the basis of the sta-
tistical analysis of input information. They can find unknown struc-
tural relations between environment variables, distorted by random
noises. They help to solve a whole number of urgent problems: to es-
tablish a dependence between features of a product and factors, char-
acterizing technological product manufacturing process, to examine re-
lations between some characteristics and parameters, stating product
operation conditions. In addition, they are able not only to state un-
known regularities, existing in the environment, but also to foresee
further development of situations.

Regularities, existing in the environment, are revealed and situa-
tions are made foreseen, and, after this, the goal-oriented solving sys-
tems use them in order to solve a concrete problem, concerned with
transformation of an initial situation into a goal situation. Due to this
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Figure 3.
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circumstance, it turns out that it is quite necessary to apply the meth-
ods, which would provide not only data processing way, but also allow
to optimally arrange problem solution. The problem of acquisition of
as many knowledge about studied processes under limited costs as pos-
sible is rather urgent at present. Note, that problem solution planning
is expedient only when a CFIS has stated a final goal of environment
model construction. The statistical problem solution planning meth-
ods are the tool, by means of which it becomes easier to achieve the
stated goal. For instance, when new chemical-technological processes
are developed, the optimality criterion consists in required maximum
amount of reaction products. Planning in this case consists in finding
of such values of temperature, pressure, composition percentage, etc.,
for reagents, under which the stated task can be fulfilled. To solve this
problem, it becomes necessary to reveal the dependence of a reaction
product yield on temperature, pressure, etc., for reagents, i.e. to find
a function, able to state a correspondence between this yield and val-
ues, exerting their influence onto the reaction process. In other words,
a model of this process is needed. The confluent-functional models,
derived as the CFIS operation result, can serve as the efficient math-
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Figure 4.
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ematical apparatus, when highly-dimensional systems are designed for
functioning in different branches of economy, in scientific investigations,
in military art and in other spheres.
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