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Abstract

We briefly analyze several issues related to the ”computing
with attractors” domain. We present a point of view on the topic
and several new concepts, methods, and techniques for comput-
ing with attractors. We discuss applications where this method
may prove useful. We answer several questions related to the
usefulness of this computing paradigm.

1 Introduction

There are currently several research directions aiming to generalize and
renew the computation principles and the computing machines. Among
these directions, quantum computing [1-3], computing with attractors
[4] and cellular automaton computing [5, 6] promise to revolutionize
both the computation principles and the hardware. The first two meth-
ods go far beyond the typical trends in innovating computing hardware,
as based on classic neural networks, fuzzy logic and GA (see [7] for the
state of the art in these implementations that are more classical.)
Computing with attractors is a generalization in several directions
of the digital computers and is based on neuro-biological findings [8-
13]. Computing in the usual sense means to induce (follow) a successive
string of transitions between states represented by strings of digits (bi-
nary numbers.) The basic element that performs the computation in a
classic computer is a transistor - or a CMOS transistor pair, which rep-
resents the output stage of a logic gate, or of a flip-flop. The transistor
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Figure 1.Conceptual scheme of a computer: systemic point of view
emphasizing the state concept.

operates in two stable states, i.e. its operation, or dynamics is charac-
terized by only two stable states, denoted by 70” and ”1” respectively.
It is immaterial, for the computation purpose, any transitory state of
the transistor and any dynamics of it, between two clock-pulses. Ac-
tually, any dynamics is seen as ”transition noise” and rejected. The
state of the computer is represented, at some given time, by the vector
of the states of its transistors (see Fig. 1). Computation is a string
of transitions between state vectors in the state space of the digital
computer.

A first generalization of computer principles comes with the gen-
eralization of its elementary blocks. Again, without loss of generality,
we shall consider that some output devices (more precisely, some ob-
servable state parameters) of the elementary blocks are essential, and
we disregard any other physical element in the system named ”com-
puter”. We can allow the states of the elements span a larger set, for
example a set of three or more states, allowing multi-valued logic to be
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implemented on that computer. This generalization has seen some suc-
cess in the 1960s, but it has been largely abandoned due to its limited
capabilities.

The second generalization, which is by far more powerful, is the
quantum computing (QC). QC replaces the building elements by quan-
tum elements, characterized by quantum states, named ”quantum
bits”, or qubits. Apart from being extremely small, quantum elements
bring some essential advances, namely the statistical (quanta) states
and their specific properties, which allow us a new type of compu-
tation due to the so-called entanglement process [1-3]. This actually
represents the generalization in another sense of the operation of the
elementary computing elements: they are no more supposed to be in-
dependent, except the input-output relationship characterizing the ele-
ments, but they are considered entangled. Notice that either quantum
or classic, these states are static: they are supposed in some respect
constant (although the spin is seen generally as a rotation, in classic
terms.)

Another radical way to generalize states is to allow them to be dy-
namic states, instead of static states [4]. In this case, we use elements
that exhibit dynamics, and for whom the dynamics is relevant, not the
instantaneous state. In this case, the instantaneous state, and whether
the state is periodically or chaotically varying, is immaterial, as far
as we can characterize and recognize various dynamics. In this case,
the specific dynamics are characterizing the "state” of the elementary
blocks. Basically, a set of oscillating elements can be used to build the
computer, as far as these elements exhibit a well-defined set of oscil-
lations ”oscillatory states” and the oscillatory state can be controlled
in a reliable way by the output states of other elementary blocks. If
these conditions are fulfilled, each dynamic state can be labeled with
symbols from a suitable alphabet, e.g. 0,1,2,...,n and a multi-valued
computation can be performed. Such computation has been dubbed
”computing with attractors”. We shall assume in this paper that we
deal with a network of dynamic subsystems, with no specific restriction
on the systems or on their dynamics. We may name such a system a
chaotic network, or a ”chaotic computer” (briefly, ”cha-puter”), and
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we will denote it by the acronym ChaN (Chaotic Network).

2 Why ”Computing With Attractors”?

From the discussion above, there is no apparent reason to implement
and use the ”"computing with attractors” strategy. It looks that we need
more transistors to implement an elementary block in a ”cha-puter”
than a classic logic gate. Moreover, it is not apparent how to determine
the dynamical states of these elementary blocks. Most important, there
is no apparent benefit in using ”computing with attractors”, because
it seems that the same results can be obtained using other types of
multi-valued computers, even binary, classic computers.

We first notice that Nature has not invented a binary computer, but
did invented ” computing with attractors” long before humans. Indeed,
there is evidence that the nervous system, natural neural networks
(NNNs), moreover most tissues are ”computing with attractors” as a
manner of ”life performing”. It is not clear why this way has been
adopted in the natural systems, except maybe that static ways can not
be supported - life equates dynamics.

2.1 What is chaos

Chaotic behavior occurs in systems described by nonlinear equations,
e.g. NDEs or discrete nonlinear equations (maps). More precisely,
there must be some non-monotonicity in the equations for a chaotic
behavior can be produced. The existence of the chaotic behavior is
tested by determining the Lyapunov coefficients (the way the space
element is expanded and compressed during time by the system.) A
stable system only compresses space; asymptotically unstable systems
only expand space; periodically oscillating systems keep the space ele-
ment unchanged. Only chaotic systems expand the space along some
directions, while compressing it along other directions, the overall vol-
ume remaining essentially unchanged. Therefore, to test for chaos, we
should find at least one Lyapunov coefficient larger than zero, A > 0.
Consequently, two trajectories of the system evolution starting from
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nearby points will (exponentially) diverge. This makes chaotic dynam-
ics "unpredictable,” although it remains deterministic. The system
follows a ”strange” path, neither oscillating, nor stabilizing, nor in-
finitely expanding. While bounded, the trajectory remains an open
curve — a strange attractor. Other ways exist to recognize and char-
acterize chaos, e.g. 1/f spectra, Poincaré sections, fractal dimensions,
bifurcation diagrams, phase plots etc.

Basically, a set of self-oscillating elements (possibly elements that
are able to generate a chaotic behavior by themselves) can be used
to build the machine. These elements should exhibit a well-defined
set of ”oscillatory states” that can be controlled in a reliable way by
the output states of the other elementary blocks, or by some other
parameter. The specific dynamics are characterizing the ”state” of
the elementary blocks. Again, if these conditions are fulfilled, each
dynamic state can be labeled with symbols from a suitable alphabet.
Such a computation has been dubbed ” computing with attractors.” We
need to characterize and recognize various dynamics.

2.2 First reason of using Cha-Ns: Modeling neuronal
structures

Putting apart the question why nature uses ”computing with attrac-
tors” — a question we probably are unable to satisfactory answer — we
can find the first field where technical ” computing with attractors” may
have tremendous advantages: modeling living tissues, chiefly the ner-
vous tissue, and the brain. Such models could be expanded and used in
creating artificial intelligence at the hardware level by mimicking the
nervous tissue and the brain. They might be useful in experimenting
with sound and fast operating models of the nervous tissue and the
brain, including performing psychological experiments. Subsequently,
we detail this issue.

Cousider we need to perform a realistic simulation of how a nervous
tissue autonomously behaves under specific circumstances for, let us
say, a period of time of one month (about 2'592'000 sec.) Assume
the tissue represents 0.01% of the brain. This amounts to about 107
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neurons, for a brain of 10! neurons' The operation of each neuron is
described in the simplest form by a set of at least three differential
equations. This amounts to a set of 3 x 107 equations, that have to be
solved discretely for a sampling rate of about 100 ms. The total number
of equations times the total number of iterations is in the range of 2.610°
sec x0.1/sec x3107 ~ 10'3, that is about 10*® x 10? x 1079 = 108
seconds > 300 hours.

Compare the same problems in a system that mimics the brain
with the same level of complexity as the computation discussed above.
Assume that for every neuron we use an elementary hardware cell.
For building an elementary chaotic system implementing a set of three
differential equations, we need today about 10 to 20 transistors (in-
cluding resistors and simulated capacitors). To model 107 neurons, we
need 109 transistors, which is almost feasible today. The first apparent
advantage of this model is that, in contrast to natural neurons — that
operate at about 1 kHz, the modeled neurons can operate at much
higher frequencies, in the range of 1 MHz or higher. This allows us
modeling the whole brain operation 1 to 10 thousands faster that the
brain operates. This shows us that, with currently available technology,
we are able to perform a modeling of 1% of the brain in 0.1 to 1 ms for
every second modeled. In other words, we can create a partial brain
model that "lives” our ”psychological life” in a few tens to thousands
of hours. Such a psychological modeling could satisfy any psychologist
or neuro-biologist today.

Notice that the use of analog circuitry instead of digital circuitry
has a significant advantage in biological modeling: while the natural
neurons are coutinuous-time and analog machines, digital computers
are discrete-time and discrete-state machines. Therefore, the latter
can only provide approximated results, whose behavior can significantly

! According to [14]: ”The total number of neurons in the central nervous system
ranges from under 300 for small free-living metazoans such as rotifers and nema-
todes” ..., "to well over 200 billion for whales and elephants. Estimates for the
human brain range between 10 billion and 1 trillion.”.... ”In a ...analysis of hu-
man cortex ..., Pakkenberg and Gundersen (1997) have shown that the number
of neocortical neurons ranges from 15 to 31 billion and averages about 21 billion.
... Total neuron number in humans therefore probably averages 95-100 billion.”

118



Novel Principles and Methods for . ..

depart from the continuous solutions.

Moreover, we are now able to produce models of small nervous
systems, such as the nervous systems of nematodes (300 neurons) in
almost full detail, moreover to create populations of such models, and
to analyze the interaction between their ”brains”. We are also able to
create models of human ganglia (clusters of 20-30 neurons). Moreover,
we are able to build models for complex nervous systems, such as that
of "the complex nervous system of grasshoppers, which contain up to
200,000 neurons,” that "may be made up almost entirely of identified
neurons and identified neuron clusters” [14]. This will take a chip of
around 5 million transistors to build a ”fast behaving grasshopper”
and to analyze in a few minutes its behavior along its entire life. I
believe this is the experiment a biologist would like to conduct just
now, instead of using a few electrodes inside an actual grasshopper.

The apparent hardware level difficulty of building all connections
representing the synapses — about 10 to 1000 per neuron — can be over-
come in present integrated circuits with multi-layer interconnections.

From the point of view of the (algorithmic) complexity theory, mod-
eling a natural neuronal system is a polynomial problem. Indeed, for
n neurons with ¢ synapses each, there are n? entries in the system, to
be modeled for p time steps. Therefore, the complexity is of the order
pn? and should be tractable by current machines in reasonable time.
However, this time might be too large for practical problems, like sim-
ulating biological and psychological experiments. The difficulty arises
from the large numbers n, p, and ¢ and from the fact that we try to
model a highly parallel system by a sequential machine (classic com-
puters). A specific architecture should be applied to this problem and
such architectures and systems are at hand today. Using them, the
complexity is reduced to p, or, for one instant, to constant complex-
ity. Notice that using typical CAs or parallel digital machines does
not alleviate the problem, because we apply the wrong machines to the
problem.
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2.3 Second reason: Making use of intrinsic properties

”Computing with attractors” may prove to be more than classic com-
puting, in a way similar to quantum computing. The main intrinsic
property that may benefit this type of computation relays on the hid-
den relationship that exists between the state of a group of subsystems
and the inputs to another set of network elements. This allows build-
ing hidden dependencies that may act as data fusing operators. Also,
ChaNs may act as associative memories and feature extraction sys-
tems, nonlinear transformers of an input space into a different output
space etc. Most of these properties and possible applications are not
specific to ChaNs, and can be found in CAs and usual recurrent neu-
ral networks, however the potential application field may differ. It is
known that ”"the power of quantum computers comes from their abil-
ity to follow a coherent superposition of the computation paths” [3].
At another level, we may expect specific correlations between various
dynamic regimes, and specific paths in the pattern space, for ChaNs.

3 Application: Intelligent interfaces

We have been interested in applying the power of networks of chaotic
systems to derive new measuring concepts and technical means. More-
over, we have been interested in modeling natural sensing structures.

3.1 Current models for the sensing tissues

The state of the art in modeling biologic sensing structures, as estab-
lished by Freeman and several others, is well summarized in a paper
by Baird and Eeckman. They state in the section titled ”71.1. Comput-
ing with attractors” that: "In the design of this system, we follow an
approach inspired by a particular concept of the physical structure re-
quired of macroscopic computational systems in general for reliable
computation...” (our underlying).

Next, these authors detail: ”We view a computational medium as a
set of structurally stable subsystems ...” and further on: ”By ’struc-
turally stable’ we mean that the dynamical behavior of each subsystem
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is to a large extent immune to small perturbations due to noise
or parameter changes.”

This common wisdom has been the law in technology for a long time
already. Notice that in this research, we have started by contradicting
one of the above hypotheses, as subsequently explained - and we do
believe that the new hypothesis we shall formulate may throw light on
several biological sensing processes.

Coming back to the quoted article, the authors state, moreover,
that: ”We assume that the dynamics of each subsystem is organized
into attractor basins. As the overall system evolves in time (...), each
subsystem passes through a sequence of attractors. These sequences of
attractors constitute the ’computation’ of the system.”

Further on, the authors explain that digital computers include flip-
flops that basically have two attractors, denoted by 0’ and ’1°, re-
spectively, while they propose using oscillating subsystems (”neurons”
or populations of neurons) that generate several categories of slow or
fast bursts of impulses (the basic attractors), like natural neuronal net-
works. They further hypothesize that the state (attractors) are sampled
and ”clocked to change” by the alpha rhythm at a 10 Hz rate in the
brain, and suggests a similar procedure is followed in technical systems.

3.2 Analysis of the hidden hypotheses behind the cur-
rent models for computing with attractors and sens-
ing tissues

There are two hypotheses in the quoted paper that may hidden the op-
eration of living neurons and sensing tissues. Both hypotheses are used
to simplify simulations and hardware implementations of these mod-
els. We shall point them out and discuss the consequences of rejecting
them.

A. The first hypothesis is that "the dynamical behavior of subsystems
is immune to small perturbations due to noise or parameter
changes.”
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In natural sensing living systems, this can not be true; instead, we
have to account for the very high sensitivity of living sensing systems
to specific perturbations. This sensitivity, which is typically orders of
magnitude higher than that of technical sensors, is actually based on
the sensitivity to small perturbations. A visual neuron in the retina can
sense minute changes in light, while a hearing cell in the inner ear can
sense small displacements of the otoliths in the cochlea. (An otolith is
a calcareous concretion in the inner ear.)

Consider a model for the sensing tissue consisting in an artificially
built dynamic sensing system [15]. Let us first assume, that the input to
the dynamic sensing system is the measurement value. To account for
the operation of the sensing tissues, we need to induce high seunsitivity
in the models of oscillating cells, and this equates:

i) agreeing either with very high sensitivity of the attractors in the
dynamic behavior, meaning that there are attractors having sim-
ilar ”specific energies” (a fundamentally unstable behavior), or

ii) agreeing with the high sensitivity inside the boundary regions
between attractor basins, meaning that the operation is based on
the transitory regime of the system, rather than on the steady
state regime (on the attractors).

We have used both approaches. We have noticed during the re-
search that the second approach could be feasible, under certain con-
ditions, still preserving some degree of operational stability.

B. The second, less obvious hypothesis is that natural neurons and
living tissue in general separates internal parameters from the
operation during their task accomplishment.

3.3 Relaxed hypotheses to accommodate high sensitivity

In contrast to the above hypothesis, it is well known that informa-
tion traffic is chemically (not energetically) driven (mediated). More-
over, the chemical mediators do change the internal parameters of the
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synapse and neurons, while reactivity to the internal environment (e.g.,
blood O2 or CO2 content) is also due to change of internal (metabolic)
parameters of the living cell. Simulating such changes on digital com-
puters is a rather large computational extra burden, but modelling
them with chaotic electronic circuits may prove simpler. (Hence, one
of our research efforts has been directed toward this ”side purpose”:
to create hardware ”computing systems” specifically designed to solve
the modelling problem in a faster, more flexible way.)

The second, less obvious hypothesis is that natural neurons and
living tissue in general separates internal parameters from the oper-
ation during their task accomplishment. In contrast, information is
chemically (not energetically) driven (mediated). Moreover, the chem-
ical mediators do change the internal parameters of the synapse and
neurons. Therefore, we may assume that the sensitivity is due to the
change of the attractor when the system changes (time-dependent sys-
tem, instead of time-independent system).

We have implemented these modified hypotheses by choosing cir-
cuitry that exhibit large regions corresponding to families of attractor
basins. We define here a family of attractor basins in the parameter
space a set of sets of attractors, each set including attractors that are
characterized by largely similar dynamic regimes, while the dynamic
regimes significantly differs from set to set. It is also possible in the
parameter space to have a large region basically corresponding to a
family of dynamic regimes, with small regions (islands) of different dy-
namic regimes (see Figure 3).

3.4 Intelligent interfaces based on dynamic sensing

Based on our previous researches and on results, we have proposed the
concept of intelligent interface using chaotic systems [15-22]. A classic
interface has the block diagram shown in figure 4.

The concept of interface we propose is much closer to that in living
structures. It consists of merging sensors, sensor drivers, signal pro-
cessing, and classification operations in a single process. To achieve
this goal, the sensors are part of the physical system that performs the
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Figure 2.Possible manner of operation of a time-independent chaotic
system, with sensing in the input space and detection in the transitory
regime mode.
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Figure 3.Possible manner of operation of a time-dependent chaotic sys-
tem, with sensing in the parameter space and detection in the station-
ary regime mode.
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Figure 4.Block diagram of a complete interface.
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signal generation and, at the same time, signal classification. Precisely,
the sensors are parts in a nonlinear dynamic system, whose states are
dependent on the sensed values and whose dynamical behavior can be
classified according to the attractor type (basin of attraction). An-
other step forward was done by performing classification by means of
boundary regions between attraction basins, rather than by the basins
themselves. Moreover, these basins are not required to be basins that
include strange attractors of the system. This new technique, based
on boundary regions, allows us to produce higher sensitivity sensing
system. However, the best performing method is to use families of
dynamic regimes, in the parameter space, and with ”inputs” in the
parameter space.

Previous researches concentrated on obtaining associative memory
operation for various types of neural networks, including oscillating
NNs, but have not focused on the sensing process itself. The concept
of the interface we propose is shown in figure 5:

Examples of various attractors, including strange attractors, through
whom a hardware circuit can pass during its evolution when a single
circuit parameter changes, for fixed initial conditions, are shown in
figure 6.

Coupling several such chaotic cells into appropriate network con-
figurations (see fig. 7) allows mimicking the natural sensing systems.
A problem to solve is the characterization of the attractors, in a sim-
ple and reliable way that does not require complex circuitry. We have
devised several methods and circuits to solve this problem, allowing us
to avoid the requirement of complex computations as needed for the
Lyapunov exponents or other classic features of the attractors. For
example, the computation of the average curvature of the attractor
is such a method, which proves as seunsitive as the method based on
Lyapunov coefficients in evidencing the change of the attractors (Fig.
8).

Regarding the technological aspects, the use of random Boolean
networks (RBN), as presented in [23], is preferred to other network
architectures, like CAs, because of the closeness to the architecture
of NNNs. Other ad hoc interconnecting schemes, inspired from the
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Figure 5.The sketch of the interface based on nonlinear dynamic sys-
tems, as proposed in this project. The dynamic characterization system
may have a complexity that ranges from a very basic electronic rectifier
to a complex neural network or a neuro-fuzzy system.
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Figure 6.Examples of changes of attractors when a parameter value
changes in a simple network of three oscillating systems. Every picture
represents a different attractor that can be used as an output label.

Figure 7.Examples of interconnections of chaotic systems to build ele-
mentary chaotic networks that mimic natural neural networks.
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Figure 8.Change of the curvature, for a logistic process (step 0.1 for
the second parameter). Computer simulation.

natural systems, are also considered. A large degree of flexibility in the
hardware model, with respect to the parameters of the neurons and of
their interconnections, should be provided to allow for a large enough
range of models. We consider using some form of EHW (Evolvable
Hardware) to insure higher flexibility to the system and its capability
of learning. These technological aspects for the ChaNs are still in the
study phase and will be reported elsewhere. It is our intention to
develop several such models and to test them in the near future. We
already have tested several models of 2 to 6 neurons of different types
and we will connect such small neuronal clusters to form clusters that
are more complex. The next steps are to build realistic ganglia and to
automatically generate “environmental stimulation” to these neuronal
clusters, to determine their behavior.

4 Conclusions

It is now recognized that we need to address different problems using
different tools. The digital computers have proved their usefulness in
several problem categories, and they definitely proved their limits in
other problem categories, where they need algorithms that are NP. In
some categories of problems, NNs are better suited, yet having their
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own limits. Quantum computing is another way to deal with several
specific problems. Yet, no method is universal. Similarly, our brain
is excellent in tasks like analog memory and associative memory, in
pattern recognition and classification, in sensation formation, but it
performs extremely poor in tasks involving computations. Looking
around, we can see that computations are not essential for survival,
while recognition of the predators and of the food are essential tasks.
This can explain our brain abilities, as well as its limits. Even poorer is
our brain ability to perform large number factorizations — and almost
the same quality the digital computers have in this task. Human brain
has developed an ability to use approximate reasoning, modeled today
by fuzzy logic, ability that neither digital nor quantum computers have.
It looks that neither our brains, nor our machines are able today to ef-
ficiently deal with large optimization problems, as our genes do. We
have genetic algorithms, but do no have a specific hardware counter-
part for them yet. Concluding these considerations, there is no reason
to favor or even to compare on a general basis various types of comput-
ing paradigms and hardware approaches: We may expect to have in
the future hybrid machines and systems of various types of machine to
cope with a large pallet of problems. Computing with attractors may
show, beyond promises, a benefits in fields as varied as medical diag-
nosis, intelligent interfaces, modeling in biology, robotics, modeling in
psychology and cognitive or behavioral sciences. This research should
be understood in this framework.
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