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On strong quasistability of a vector problem on

substitutions

V.A. Emelichev V.G. Pakhilka

Abstract

A type of the stability of the Pareto, Smale, and Slater sets
for a problem of minimizing linear forms over an arbitrary set
of substitutions of the symmetric group is investigated. This
type of stability assumes that at least one substitution preserves
corresponding efficiency for ”small” independent perturbations
of coefficients of the linear forms. Quantitative bounds of such a
type of stability are found.

In the paper [1], two types of stability for a vector integer linear
programming (ILP) problem are investigated. This problem consists
in finding the Pareto set. Note that these types of stability are first
introduced for a scalar trajectory problem in [2]. In [1], a formula for
the strong quasistability radius is deduced and a necessary and suffi-
cient condition of such a stability for a vector ILP problem is obtained.
The aim of this paper is to extend these results to vector combina-
torial problems of finding the Pareto, Smale, and Slater sets among
substitutions of the symmetric group.

1 Preliminaries

Let m, n ∈ N, m ≥ 2, A = [aij ]n×m and B = [bij ]n×m be the pair
of real matrices (throughout the paper, N denotes the set of natural
numbers). Let Sm be the symmetric group of substitutions acting on
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the set Nm = {1, 2, ..., m}. On a nonempty set of substitutions T ⊆ Sm,
we specify the vector criterion

f(t, A, B) = (f1(t, A1, B1), f2(t, A2, B2), ..., fn(t, An, Bn)) → min
t∈T

with partial criteria of the form

fi(t, Ai, Bi) =
m∑

j=1

aijbit(j), i ∈ Nn,

where t = ( 1 2 ... m
t(1) t(2) ... t(m) ). Here and subsequently, a lower index at

a matrix (vector) points to the corresponding row (component) of the
matrix (vector). For example, Ai = (ai1, ai2, ..., aim).

In this context, traditional definitions (see for instance [3]) of the set
of strongly efficient substitutions (Smale set), set of truly efficient sub-
stitutions (Pareto set), and set of weakly efficient substitutions (Slater
set) have, respectively, the form:

Tn
k (A, B) = {t ∈ T : τk(t, A, B) = ∅}, k ∈ N3,

where
τ1(t, A, B) = {t′ ∈ T \ {t} : q(t, t′, A, B) ≥ 0(n)},

τ2(t, A,B) = {t′ ∈ T : q(t, t′, A,B) ≥ 0(n), q(t, t′, A,B) 6= 0(n)},
τ3(t, A, B) = {t′ ∈ T : ∀i ∈ Nn (qi(t, t′, Ai, Bi) > 0)},

q(t, t′, A, B) = (q1(t, t′, A1, B1), q2(t, t′, A2, B2), ..., qn(t, t′, An, Bn)),

qi(t, t′, Ai, Bi) = fi(t, Ai, Bi)− fi(t′, Ai, Bi), i ∈ Nn,

0(n) = (0, 0, ..., 0) ∈ Rn.

It follows directly from these definitions that

Tn
1 (A,B) ⊆ Tn

2 (A,B) ⊆ Tn
3 (A,B). (1)

For any number k ∈ N3, let us denote by Zn
k (A,B) the problem

of finding the set of efficient substitutions Tn
k (A,B). As we assumed
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the nonemptiness of the set T , it is evident that Tn
2 (A, B) 6= ∅ and

Tn
3 (A,B) 6= ∅ for any A,B ∈ Rnm. Notice that the set of strong

efficient substitutions Tn
1 (A,B) can be empty. In the sequel, speaking

about the problem Zn
1 (A,B) we suppose that Tn

1 (A,B) 6= ∅.
Obviously, if we go over the single-criterion case (n = 1, A,B ∈

Rm), the sets T 1
2 (A,B) and T 1

3 (A,B) coincide and turn into the set
of optimal substitutions whereas our problem turns into a well-known
scalar problem of minimizing linear forms over an arbitrary set of sub-
stitutions (see, e.g., the monographs [4,5] and the review [6] with its
bibliography). In the case when an optimal substitution t∗ of the prob-
lem Z1

2 (A,B) is unique, we obviously see that T 1
1 (A, B) = T 1

2 (A,B) =
T 1

3 (A,B) = {t∗}. Otherwise the set of strongly efficient substitutions
of the scalar problem is empty.

As it was known before, to carry out the solution sensitivity analysis
to variation of problem’s parameters is one of the important elements
of solving practical optimization problems. In this paper, we study
the behavior of the set of efficient substitutions for perturbation of
elements of the matrix A. Now the question is: how much strongly
can one vary these parameters independently from each other such
that at least one substitution preserves corresponding efficiency in any
perturbed problem? Such a type of stability of a vector problem is
accepted to call strong quasistability. Note that the sense of this term
is explained in [1]. A quantitative characteristic of similar stability
naturally leads to the concept of the strong quasistability radius of the
problem. Before giving the strong definition of such a radius, following
[2] we introduce the following notation.

For a substitution t ∈ Tn
k (A,B), k = 1, 2, let

Wn
k (t, B) = {t′ ∈ T : In(t, t′, B) 6= ∅};

for a substitution t ∈ Tn
3 (A,B), let

Wn
3 (t, B) = {t′ ∈ T : In(t, t′, B) = Nn},

where
In(t, t′, B) = {i ∈ Nn : δi(t, t′, Bi) > 0},
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δi(t, t′, Bi) =
m∑

j=1

|bit(j) − bit′(j)|.

Clearly, for any substitution t ∈ Tn
1 (A,B), we have

T \ {t} = Wn
1 (t, B) = Wn

2 (t, B) ⊇ Wn
3 (t, B); (2)

for t ∈ Tn
2 (A,B), we have

T \ {t} ⊇ Wn
2 (t, B) ⊇ Wn

3 (t, B).

For any k ∈ N3, we call a problem Zn
k (A,B) nontrivial if the

set Wn
k (t, B) is not empty for any efficient substitution t ∈ Tn

k (A,B).
In the case when there exists a substitution t ∈ Tn

k (A,B) such that
Wn

k (t, B) = ∅, a problem Zn
k (A,B) is called trivial.

In the above notation, we give the following evident properties.

Property 1 . The problem Zn
1 (A,B) of finding the set Tn

1 (A,B) is
nontrivial if and only if |T | > 1.

Property 2 . If |T | = 1, then any problems Zn
2 (A,B) and Zn

3 (A,B)
are trivial.

Property 3 . If

∃t′ ∈ T ∀i ∈ Nn (qi(t, t′, Ai, Bi) > 0),

then t 6∈ Tn
3 (A,B).

Property 4 . Let a problem Zn
k (A, B), k ∈ N3, be nontrivial. Then

we have

∀t ∈ Tn
k (A,B) ∀t′ ∈ Wn

k (t, B) (In(t, t′, B) 6= ∅).

Property 5 . It follows that

δi(t, t′, Bi) = 0 ⇒ qi(t, t′, Ai, Bi) = 0,

In(t, t′, Bi) = In(t, t′′, Bi) = ∅ ⇒ In(t′, t′′, Bi) = ∅.
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Property 6 . If In(t, t′, B) 6= Nn, then

∀i ∈ Nn \ In(t, t′, B) ∀A′i ∈ Rm (qi(t, t′, Ai + A′i, Bi) = 0).

Property 7 . Let t ∈ Tn
k (A,B), k = 2, 3, |T | > 1, and all elements of

each row in the matrix B pairwise different. Then the following three
assertions are true:

• ∀t′ 6= t (In(t, t′, B) = Nn);
• Wn

k (t, B) = T \ {t};
• the problem Zn

k (A,B) is nontrivial.

For any natural number d, by the norm of a vector x = (x1, x2, . . . ,
xd) ∈ Rd we mean the norm l∞ as follows:

‖x‖ = max{|xi| : i ∈ Nd}.
By the norm of a matrix we mean the norm of the vector constrained
from the elements of the matrix.

Property 8 . If different substitutions t, t′ ∈ T , an index i ∈ Nn, and
a vector A′i ∈ Rm are such that

qi(t, t′, Ai, Bi) + ‖A′i‖δi(t, t′, Bi) < 0,

then it follows that

qi(t, t′, Ai + A′i, Bi) < 0.

Actually, on account of the obvious inequality

qi(t, t′, A′i, Bi) ≤ ‖A′i‖δi(t, t′, Bi),

deduce qi(t, t′, Ai + A′i, Bi) = qi(t, t′, Ai, Bi) + qi(t, t′, A′i, Bi) ≤ qi(t, t′,
Ai, Bi) + ‖A′i‖δi(t, t′, Bi) < 0.

As stipulated above, perturbation of elements of the matrix A is
realized by addition with corresponding elements of a matrix A′ of the
same dimension. For any number ε > 0, consider the set of perturba-
tion matrices

A(ε) = {A′ ∈ Rnm : ‖A′‖ < ε}.
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A problem Zn
k (A+A′, B), where A′ ∈ A(ε), obtained from an initial

problem Zn
k (A, B) by addition of matrices A and A′ is called perturbed.

For arbitrary fixed number k ∈ N3, the radius of strong quasistabil-
ity of the problem Zn

k (A,B) will be denoted by ρn
k(A,B) and defined

by

ρn
k(A,B) =

{
sup Ω, if Ω 6= ∅,

0 otherwise,

where Ω = {ε > 0 : ∃t ∈ Tn
k (A,B) ∀A′ ∈ A(ε) (t ∈ Tn

k (A + A′, B))}.
Thus the radius of strong quasistability of a problem assigns the

limit of independent perturbations of elements of the matrix A, with
at least one substitution preserving corresponding efficiency.

Due to inclusions (1), we see that

ρn
2 (A,B) ≤ ρn

3 (A,B)

for all problems Zn
2 (A,B) and Zn

3 (A,B); if matrices A and B are such
that the Smale set Tn

1 (A,B) is not empty, then

ρn
1 (A,B) ≤ ρn

2 (A, B) ≤ ρn
3 (A,B). (3)

It is natural to consider that the radius of strong quasistability
of a problem Zn

k (A, B) is infinite whenever there exists an efficient
substitution t ∈ Tn

k (A, B) such that t ∈ Tn
k (A + A′, B) for all matrices

A′ ∈ Rnm.

Lemma 1 . The radius of strong quasistability of any trivial problem
Zn

k (A,B), n ∈ N, k ∈ N3, is equal to infinity.

Proof. It follows from the triviality of the problem Zn
k (A, B) that there

exists a substitution t ∈ Tn
k (A,B), k ∈ N3, such that Wn

k (t, B) = ∅. If
k = 1, then |T | = 1 follows by Property 1 and the lemma is evident in
this case.

Further, let k = 2. Then, in accordance with the definition of
the set Wn

2 (t, B), the set In(t, t′, B) = ∅ for any substitution t′ ∈ T .
Therefore Property 6 yields

∀t′ ∈ T ∀i ∈ Nn ∀A′i ∈ Rm (qi(t, t′, Ai + A′i, Bi) = 0).
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This means that t is a truly efficient substitution of the problem Zn
2 (A+

A′, B) for any perturbation matrix A′ ∈ Rnm, i.e. ρn
2 (A,B) = ∞.

Let k = 3. Then, according to the definition of the set Wn
3 (t, B),

for any substitution t′ ∈ T , we get In(t, t′, B) 6= Nn. Using Property
6, we therefore obtain

∀t′ ∈ T ∀i ∈ Nn \ In(t, t′, B) ∀A′i ∈ Rm (qi(t, t′, Ai + A′i, Bi) = 0).

The above means that t ∈ Tn
3 (A + A′, B) for any matrix A′ ∈ Rnm, i.e.

ρn
3 (A,B) = ∞. ¤

In view of Lemma 1, let us deduce a formula for the radius of
quasistability for a nontrivial problem.

The two next properties follow immediately from the definition of
ρn

k(A,B).

Property 9 . Let a problem Zn
k (A,B), k ∈ N3, be nontrivial and

t ∈ Tn
k (A,B). If there exists a number ϕ > 0 such that the inclusion

t ∈ Tn
k (A + A′, B) holds for any perturbation matrix A′ ∈ A(ϕ), then

ρn
k(A,B) ≥ ϕ.

Property 10 . Suppose a problem Zn
k (A,B), k ∈ N3, is nontrivial,

ϕ ≥ 0, and for any number ε > ϕ there exists a perturbation ma-
trix A′ ∈ A(ε) such that t ∈ Tn

k (A,B) ⇒ t 6∈ Tn
k (A + A′, B). Then

ρn
k(A,B) ≤ ϕ.

The following lemma is needed for the sequel
Lemma 2[9]. Suppose a problem Zn

k (A,B), k ∈ N3, is nontrivial,
t ∈ Tn

k (A,B), ϕ > 0, and the formula

∀A′ ∈ A(ϕ) ∀t′ ∈ Wn
k (t, B) ∃i ∈ In(t, t′, B) (qi(t, t′, Ai + A′i, Bi) < 0)

is true. Then t ∈ Tn
k (A + A′, B) for any matrix A′ ∈ A(ϕ).

2 Main result

For arbitrary number k ∈ N3, by definition, put

ϕn
k(A,B) = max

t∈T n
k (A,B)

min
t′∈W n

k (t,B)
max

i∈In(t,t′,B)
Γi(t, t′, Ai, Bi),
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Γi(t, t′, Ai, Bi) = −qi(t, t′, Ai, Bi)
δi(t, t′, Bi)

.

Theorem. For any numbers k ∈ N3 and n ∈ N, the formula for the
radius of strong quasistability of a nontrivial vector problem Zn

k (A,B)
is as follows:

ρn
k(A, B) = ϕn

k(A,B).

Proof. Let t ∈ Tn
k (A,B), k ∈ N3. On account of the nontriviality of

the problem Zn
k (A,B), we then conclude that Wn

k (t, B) 6= ∅. It follows
from Property 4 that the set In(t, t′, B) is empty for each substitution
t′ ∈ Wn

k (t, B). It is not hard to see that ϕk := ϕn
k(A,B) ≥ 0.

First we prove ρn
k(A,B) ≥ ϕk. It is natural to assume that ϕk >

0 (in the case ϕk = 0 there is nothing to prove). Then the set of
perturbation matrices A(ϕk) 6= ∅ and according to the definition of the
number ϕk, for any matrix A′ ∈ A(ϕk), we get

∃t ∈ Tn
k (A,B) ∀t′ ∈ Wn

k (t, B) ∃i ∈ In(t, t′, B)

(‖A′i‖ < ϕk ≤ Γi(t, t′, Ai, Bi)).

Hence Property 8 gives

qi(t, t′, Ai + A′i, Bi) < 0.

Therefore, applying Lemma 2, one can be sure that t ∈ Tn
k (A + A′, B)

for any matrix A′ ∈ A(ϕk). Thus, by Property 9, we finally obtain
ρn

k(A,B) ≥ ϕk.
Now we prove the inequality ρn

k(A,B) ≤ ϕk. According to the
definition of the number ϕk, we have

∀t ∈ Tn
k (A, B) ∃t′ ∈ Wn

k (t, B)∀i ∈ In(t, t′, B)
(ϕk ≥ Γi(t, t′, Ai, Bi)). (4)

Note that In(t, t′, B) 6= ∅. Let ε > ϕk. Consider the perturbation
matrix A∗ = [a∗ij ]n×m such that

a∗ij =
{

α for bit(j) ≥ bit′(j),

−α for bit(j) < bit′(j),
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where ϕk < α < ε. Obviously, the matrix A∗ ∈ A(ε).
Taking into account (4) and the structure of the matrix A∗, we

easily get

∀i ∈ In(t, t′, B) (qi(t, t′, Ai + A∗i , Bi) = qi(t, t′, Ai, Bi)+
+αδi(t, t′, Bi) ≥ (α− ϕk)δi(t, t′, Bi) > 0). (5)

Let us consider 2 cases.
Case 1: In(t, t′, B) = Nn. By (5) and Property 3, we then have

∀ε > ϕk ∃A∗ ∈ A(ε) (t 6∈ Tn
3 (A + A∗, B)).

From (1), we therefore get t 6∈ Tn
k (A + A∗, B). Thus, according to

Property 10, we conclude that ρn
k(A,B) ≤ ϕk.

Case 2: In(t, t′, B) 6= Nn. Since Wn
k (t, B) 6= ∅, it follows from the

definition of the set Wn
3 (t, B) that k 6= 3 in our case. Therefore we

have 2 subcases.
2.1. Let k = 2. Then t ∈ Tn

2 (A,B). By Property 6, we now deduce
that

qi(t, t′, Ai + A∗i , Bi) = 0

for any index i ∈ Nn \ In(t, t′, B). Using (5), we hence obtain

∀ε > ϕ2 ∃A∗ ∈ A(ε) (t 6∈ Tn
2 (A + A∗, B)).

Now, taking into account Property 10, we have

ρn
2 (A,B) ≤ ϕ2.

2.2. Let k = 1. Then t ∈ Tn
1 (A,B) and it follows from (1) that

∀ε > ϕ1 ∃A∗ ∈ A(ε) (t 6∈ Tn
1 (A + A∗, B)).

Application of Property 10 concludes ρn
1 (A, B) ≤ ϕ1. ¤

3. Corollaries

The following assertions are extracted immediately from the theo-
rem.
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Corollary 1 . The radius of strong quasistability ρn
k(A,B), n ∈

N, k ∈ N3, of any nontrivial problem Zn
k (A,B) is a finite number.

Corollary 2 . For any nontrivial problem Zn
2 (A,B), n ∈ N, the fol-

lowing conditions are equivalent:
•ρn

2 (A,B) = 0,

•∀t ∈ Tn
2 (A,B) ∃t′ ∈ Wn

2 (t, B) (q(t, t′, A, B) = 0(n)).

Corollary 3 . For any nontrivial problem Zn
3 (A,B), n ∈ N, the fol-

lowing conditions are equivalent:
•ρn

3 (A,B) = 0
•∀t ∈ Tn

3 (A,B) ∃t′ ∈ Wn
3 (t, B) (q(t, t′, A, B) ≥ 0(n)).

For n = 1, the theorem passes on to the following claim.

Corollary 4 . For the radius of strong quasistability of a nontrivial
scalar problem Z1

2 (A,B),

A = (a1, a2, ..., am), B = (b1, b2, ..., bm), m ≥ 2,

the formula is as follows:

ρ1
2(A,B) =

= max
t∈T 1

2 (A,B)
min

t′∈W 1
2 (t,B)

(
m∑

j=1

aj(bt′(j) − bt(j)))(
m∑

j=1

|bt(j) − bt′(j)|)−1.

A problem Zn
k (A,B) is called strongly quasistable if its strong qua-

sistability radius is positive.

Corollary 5 . Any nontrivial problem Zn
1 (A,B), n ∈ N, is strongly

quasistable.

Proof. Since the problem Zn
1 (A,B) is nontrivial, it follows from Prop-

erty 1 that |T | > 1. Let t ∈ Tn
1 (A, B). Then we have

∀t′ ∈ T \ {t} ∃i ∈ Nn (qi(t, t′, Ai, Bi) < 0). (6)
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According to Property 4, In(t, t′, B) 6= ∅. Now we show that the
index i pointed in (6) belongs to the set In(t, t′, B). Suppose the con-
trary, i.e. i ∈ Nn \ In(t, t′, B). Then δi(t, t′, Bi) = 0. By Property 5,
we now obtain qi(t, t′, Ai, Bi) = 0. This contradicts (6).

Thus i ∈ In(t, t′, B). Therefore δi(t, t′, Bi) > 0, i.e., with account
of (6), Γi(t, t′, Ai, Bi) > 0. Hence we conclude that

∀t′ ∈ Wn
1 (t, B) ∃i ∈ In(t, t′, B) (Γi(t, t′, Ai, Bi) > 0).

Combining this and the definition of the number ϕn
1 (A,B), on the basis

of the theorem, we obtain

ρn
1 (A, B) = ϕn

1 (A,B) ≥ Γi(t, t′, Ai, Bi) > 0.

Finally, the problem Zn
1 (A,B) is strongly quasistable. ¤

The next claim follows from Corollary 5 and (3).

Corollary 6 . Suppose the Smale set Tn
1 (A,B), n ∈ N, is not empty.

Then the nontrivial problems Zn
2 (A,B) and Zn

3 (A,B) are strongly qua-
sistable.

Now we cite an example illustrating that the proposition inverse to
Property 6 is, in general, not true.
Example. Given n = 2, m = 3,

A =
[
0 1 2
0 1 2

]
, B =

[
1 1 0
1 1 0

]
, T = {t1, t2, t3},

where

t1 =
(

1 2 3
1 2 3

)
, t2 =

(
1 2 3
2 1 3

)
, t3 =

(
1 2 3
3 2 1

)
.

Then

f(t1, A,B) = f(t2, A,B) = (1, 1), f(t3, A, B) = (3, 3),

T 2
1 (A,B) = ∅, T 2

2 (A,B) = T 2
3 (A,B) = {t1, t2}.
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Using the theorem, one can easily be sure that ρ2
2(A, B) =

ρ2
3(A,B) = 1 > 0, i.e. the problems Z2

2 (A,B) and Z2
3 (A,B) are

strongly quasistable whereas the Smale set T 2
1 (A,B) is empty.

Thus, unlike a vector integer linear programming problem [1], the
nonemptiness of the Smale set is not a necessary condition for the
strong quasistability of the vector problems Zn

2 (A,B) and Zn
3 (A,B).

For any nontrivial problem Zn
k (A,B), k = 2, 3, by definition, put

Ṫn
k (A,B) =

{t ∈ Tn
k (A,B) : ∀t′ ∈ Wn

k (t, B) ∃i ∈ In(t, t′, B) (qi(t, t′, Ai, Bi) < 0)}.
Corollary 7 . Let k = 2, 3. A necessary and sufficient condition that
a nontrivial problem Zn

k (A,B), n ∈ N be strongly quasistable is that the
set Ṫn

k (A,B) be nonempty.

Proof. Necessity. Suppose a nontrivial problem Zn
k (A, B), k = 2, 3, is

strongly quasistable. Then ρn
k(A,B) > 0. By the theorem, we now get

∃t ∈ Tn
k (A,B) ∀t′ ∈ Wn

k (t, B) ∃i ∈ In(t, t′, B) (−qi(t, t′, Ai, Bi)
δi(t, t′, Bi)

> 0).

Since i ∈ In(t, t′, B), it follows that δi(t, t′, Bi) > 0. Therefore
qi(t, t′, Ai, Bi) < 0. Hence t ∈ Ṫn

k (A,B), i.e. Ṫn
k (A,B) 6= ∅.

Sufficiency. Let t ∈ Ṫn
k (A, B). According to the definition of the

set Ṫn
k (A,B), we then have

∀t′ ∈ Wn
k (t, B) ∃i ∈ In(t, t′, B) (qi(t, t′, Ai, Bi) < 0). (7)

If we combine this and δi(t, t′, Bi) > 0 (since i ∈ In(t, t′, B)), we obtain

∀t′ ∈ Wn
k (t, B) ∃i ∈ In(t, t′, B) (Γi(t, t′, Ai, Bi) > 0).

Further, taking account of Ṫn
k (A,B) ⊆ Tn

k (A,B), on the basis of
the theorem, we derive

ρn
k(A,B) = max

t∈T n
k (A,B)

min
t′∈W n

k (t,B)
max

i∈In(t,t′,B)
Γi(t, t′, Ai, Bi) > 0. ¤

In the partial case (n = 1), Corollary 7 is as follows.
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Corollary 8 . A scalar nontrivial problem Z1
2 (A,B) is strongly qua-

sistable if the condition

∀t′, t′′ ∈ T 1
2 (A,B) (δ1(t′, t′′, B) = 0) (8)

holds.
Proof. Necessity. We give the proof by contradiction. Let there exist
optimal substitutions t′ and t′′ of a problem Z1

2 (A,B) such that

δ1(t′, t′′, B) > 0. (9)

Since the problem Z1
2 (A,B) is strongly quasistable, it follows from

Corollary 7 that Ṫ 1
2 (A, B) 6= ∅. Let t ∈ Ṫ 1

2 (A,B), i.e. we have

∀t̂ ∈ W 1
2 (t, B) (q(t, t̂, A, B) < 0).

This points that W 1
2 (t, B) ∩ T 1

2 (A, B) = ∅. It follows that t′, t′′ 6∈
W 1

2 (t, B). Therefore, we have

I1(t, t′, B) = I1(t, t′′, B) = ∅.

Hence, on the basis of Property 5, we get I1(t′, t′′, B) = ∅, i.e.
δ1(t′, t′′, B) = 0. This contradicts (9).

Sufficiency. Suppose a problem Z1
2 (A, B) is not strongly qua-

sistable. By Corollary 7, Ṫ 1
2 (A,B) = ∅, so that

∀t′ ∈ T 1
2 (A,B) ∃t′′ ∈ W 1

2 (t′, B) (q(t′, t′′, A, B) = 0). (10)

Hence t′′ ∈ T 1
2 (A,B). Therefore, by (8), we see that δ1(t′, t′′, B) = 0,

i.e. I1(t′, t′′, B) = ∅, and finally that t′′ 6∈ W 1
2 (t′, B). This contradicts

(10). ¤
Aside from Corollary 7, we obtain the following concomitant result

(cf. [1], Corollary 2).

Corollary 9 . Suppose n ∈ N, |T | > 1, and all elements of each row in
a matrix B are pairwise different. A necessary and sufficient condition
that the problems Zn

2 (A,B) and Zn
3 (A,B) be strongly quasistable is that

the Smale set Tn
1 (A,B) be nonempty.
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Proof. Necessity. If all elements of each row in a matrix B are pairwise
different, then the problem Zn

k (A,B), k = 2, 3, is nontrivial according
to Property 7. Therefore it follows from the strong quasistability of
this problem and by virtue of Corollary 7 that Ṫn

k (A,B) 6= ∅. Suppose
t ∈ Ṫn

k (A,B). Then (7) holds and on account of Property 7, it takes
the form

∀t′ ∈ T \ {t} ∃i ∈ Nn (qi(t, t′, Ai, Bi) < 0). (11)

Hence the substitution t is strongly efficient, i.e. Tn
1 (A, B) 6= ∅.

Sufficiency. Suppose Tn
1 (A,B) 6= ∅ and t ∈ Tn

1 (A,B). Therefore
(1) gives t ∈ Tn

k (A,B), k = 2, 3. Further, according to the definition
of the set Tn

1 (A, B), we have (11). On account of Property 7, it takes
the form (7). Consequently,

t ∈ Ṫn
2 (A,B) ∩ Ṫn

3 (A,B),

i.e. the sets Ṫn
2 (A, B) and Ṫn

3 (A,B) are nonempty. To complete
the proof, it remains to apply Corollary 7 stating that the problems
Zn

2 (A,B) and Zn
3 (A,B) are strongly quasistable. ¤
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