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Small Universal Circular Post Machines

Manfred Kudlek Yurii Rogozhin

Abstract

We consider a new kind of machines with a circular tape and
moving in one direction only, so-called Circular Post machines.

Using 2-tag systems we construct some small universal machines
of this kind.

1 Introduction

In 1956 Shannon [11] introduced the problem of constructing very
small universal (deterministic) Turing machines. The underlying model
of Turing machines is defined by instructions in form of quintuples
(p,z,y,m,q) with the meaning that the machine is in state p, reads
symbol z € X, overwrites it by y, moves by m € {—1,0,1}, and
goes into state q. Another equivalent model is defined by quadru-
ples (p, z,a, q) where « € XU{—1,0,1}. This model is also equivalent
to so called Post machines [6]. Whereas the quintuple model allows to
construct equivalent machines with 2 states this is impossible for the
quadruple model [1].

We introduce (deterministic) Circular Post machines (CPM).
These are similar to those presented in [2], with the difference that
the head can move only in one direction on the circular tape. It is also
possible to erase a cell or to insert a new one. We consider 5 variants
of such machines, distinguished by the way a new cell is inserted. It is
shown that all variants are equivalent to each other, and also to Tur-
ing machines. We also show that for all variants there exist equivalent
Circular Post machines with 2 symbols, and for 3 variants with 2 states.

To construct small universal Circular Post machines we use a
method first presented in [4] (see also [9, 10]). This method uses tag
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systems [3] which are special cases of monogenic Post Normal systems
8], namely of the form s;vu — uc; with v € ¥¥~! and k > 1 a con-
stant. In [4] it is also shown that 2-tag systems (i. e. k = 2) suffice
to simulate all Turing machines, with halting only when encountering
a special symbol sg. Since Circular Post machines are also monogenic
Post Normal systems we expect to get a more natural simulation of tag
systems and perhaps smaller universal machines.

We show that a still unsolved problem of Post from 1921 [7, 5] can
be simulated by a CPMO0(6,2), i.e. a machine of variant 0 with 6 states
and 2 symbols. We present a CPMO0(5,3) simulating the also unsolved
(?7) Collatz (3n+ 1) problem. Finally, we construct universal machines
UCPMO0(13,4), UCPMO0(11,5), UCPMO0(8,6), and UCPMO(7,7).

2 Definitions and Basic Results

Here we introduce some variants of circular Post machines.

Definition 1: (Circular Post machine (CPMO))

A Circular Post machine is a quintuple (X, Q, qo,qys, P) with a fi-
nite alphabet 3 where 0 is a blank, a finite set of states Q, an initial
state qo € Q, a terminal state qy € Q, and a finite set of instructions
of the forms

pz — q (erasing of the symbol read)

pr — yq (overwriting and moving to the right)

p0 — yqO0 (overwriting and creation of a blank)

The storage of such a machine is a circular tape, the read and write
head moving only in one direction (to the right), and with the possibility
to cut off a cell or to create and insert a new cell with a blank.

This version is called variant 0. Note that by erasing symbols the
circular tape might become empty. This can be interpreted that the
machine, still in some state, stops. However, in the universal machines
constructed later, this case will not occur.

In this article it will assumed that all machines are deterministic.

O

There are variants equivalent to such machines.
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Definition 2: (Variant CPM1)
The instructions are of the form
Pr—q PT — yq pz — zq0 (0 blank)

Definition 3: (Variant CPM2)
The instructions are of the form

pr —q pr — yq pz — yq0 (0 blank)

Definition 4: (Variant CPM3)
The instructions are of the form

pr —q pr — yq pr — yzq.

Definition 5: (Variant CPM4)
The instructions are of the form

pr —q pPT — yq pr — yxq

Lemma 1: All variants of Circular Post machines are equivalent.
Proof : Variant 0 simulates variants 1, 2, 3, 4 by

pru — Oqiu — q10% — O0qett — q20u — xqOu

using the instructions (# denoting u with 0 replaced by 0)

pr — 0011
a1s — sq1 (s #0, s
q2s — sq2 (s #0, s

) | @10 — O0qy Oh(:) — 0q2
) | 920 — zq0 | q20 — Oqq

£0
£0

pzu — Oqiu — q102 — 0q2@ — q20u — yqOu
using the instructions

pz — Oqy
Qs — sq1 (s #0,5#0) | 10 — Oqr | @10 — 0q2
Q25 — 5q2 (s #0, 5 #0) | 920 — yq0 | q20 — 0q2
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pru — O0qiu — q102 — 0qett — q20u — yq30u — yzqu
using the instructions

pr — (_)(h

Qs = squ (s #0,5#0) | 10 = 0aqu | 10 — Oqy

dzs — 5q2 (s # 0, 5 #0) | q20 — yq30 | q20 — 0q2
q30 — zq

where the states q; are understood to carry the information yz
as q1(yz), q2(yz) and qs(z).

CPMA4 is a special case of CPM3.

Variant 1 simulates variant 0 by
pru — yqiu — qiyu — yq20u — q2y0u — yqOu
using instructions

Pr — yqi
qi1s — sq1 | 915 — 5920
q25 — Sq2 | 25 — sq

Variant 2 includes variant 1 as a special case.

Variant 3 simulates variant 0 by
pru — Z0qiu — q120u — xqOu
using instructions

px — z0q;
qi1s — sq1 | Q1S — sq

Variant 4 simulates variant 0 by
pru — 0qiu — qi0u — §0d2 — q20u — FasOu — Fogzu —
q3y0u — yqOu
using instructions

pr — 6011

qis — sqi (s #0) q10 — 70q>
Q25 — $Q2 Q25 — 5q3 B

q3s — sq3 q3s — sq | q30 — Oq3
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Proposition 1: Any Turing machine (in quintuple version) can be
simulated by a Turing machine with the following restrictions.

1 : The configuration is represented by Supaxv$ where $ is a marker
for the left and right end of the tape inscription (the rest of the tape
contains only blanks 0)

2 : The inscription is enlarged on the left end by
Op$u — q100u — $q20u — q$0u
and on the right end by
up$0 — u0q10 — uq20$ — u0q$
3 : The inscription is shortened on the left end by
p$0zu — 0q10zxu — 0$qozu — 0q$zu
and on the right end by
uz0p$ — urq100 — uqer$0 — urq$0

4 : A left move is given by
UZPTV — UQZYV
and a right move by

UPTZV — UYqzU.

Theorem 1: Any Turing machine can be simulated by a Circular Post
machine of variant 0.

Proof : A configuration $vpu$ of a Turing machine is represented by
pu$v on a circular tape.
Adding a 0 at the left is simulated by (u denoting u with 0 replaced
by 0)
p$u — $qiu — q1%u — Oqei — 204 — 0q30% — 03q40a —
0%0q5u — q5030u — q$0u
using the instructions
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p$ — éql B B

@iz —aq (2#0,2#8) | @10 = 0q1 | a1$ — 0qy
2z — xqz (z # 0) q20 — 0q30

q30 — $q40

q40 — Oqs B )

Q5T — 2q5 (2 #0,2#0) | gs0 —>q q50 — 0qs

Adding a 0 at the right by (@ denoting u with 0 replaced by 0)
p$u — Oqiu — q102 — 0qoi — q20u — 0q30u — 0$qui —
q40%u — 0qS$u
using the instructions

p$ — (_)(11

iz —xqy (#0,2#0) | @10 = 0q1 | 410 — 0qy
g2z — zq2 (z # 0) q20 — 0q30

q30 — Squ

Qr —qs (2 #0,2#0) | q40 —0qs | qu0 — 0q

For erasing 0 at the left or right end it may be assumed that 0 has
been written there just before.
Erasing 0 at the left is simulated by
p$0u — 0q10u — 083qou — q20%u — q$u
using instructions

p$ - 6011
q:10 — $q2 B )
@z — gz (r#0) | g0 —q

Erasing 0 at the right by
p$u0 — $q1v0zw0 — $vq10zwW0 — $v0qerw0 — $v0zq3wW0 —
$vq30zw0d — $00qrzwd — -+ — $uq10 — q$ud — $qud —
$uqs0 — qu
using instructions
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q$ — Sai

qir — zqq (¢ #0) | q10 — 0q2
Qr — zq3 (T # @ Qﬁ — $qq
asz — zqs (z #0) | q30 — Oq
quz — xqq (z #0) | qu0 — q

Moving right is simulated by

Pru — yqu
using instruction

Moving left by
1. length 1:
pr — Iq — qx
2. length 2:
PLz — YyqiZ — q2yz — Yq3Z — qa¥z — yqz
3. length 3:
PTsz — §Jq15z — Y5Qoz — q3y5z — YQq45z — Ysqz
4. length 4:
prstz — yqistz — ysqatz — YStqsz — qsysStz — yqsstz —
ysqitz — §stqez — qsistz — yqustz — ystqz

5. length > 4:
pxsturz — gyqisturz — ysqoturz — ystqsurz — .- —
ystruqsz — qsysturz — yqssturz — ysquturz — - -- — ysturqsz —

- — ystuqrz — ysturqsz — qsysturz — yqasturz — ystuqqrz —
ystuqz

using instructions

Pz — yqi
qQiT — Tq2 qiT — xq
Q2 — Tq3 Q2T — Iq3

Q3T — Tqs5 | 93T — Tq4 | 3T — Ty
QT — TQq | Q4T — Tq | Q4T — Tq
Q5T — Tqs5 | 5T — Tq1 | 57 — Tq5
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a

Theorem 2: For any CPMi (i = 2, 3, 4) there exists an equivalent
CPMi with 2 states (excluding the halting state).
Proof : We use a method as in [11, 2]. Let the states of the simulated
CPMO be {1,---,n}.

An instruction px — q is simulated by

length 1 :

1(;) — (2)2 —1
length > 2 :
1@ (2su— ()1 = 10— ()20 -

(Z)D1w = - = 1) (Qu = 1()u

using instructions

1(2) — (2)2 Z(Z:) —1

Is —s1 25 — ()1

1(?) - (5)2 (1<i<q|2()— (i-is-l)]‘ (0<i<gq)
1(3) —1

An instruction px — yq is simulated by

length 1 :
1) = (2= 1(7)
length > 2 :
1) — ()2su— () () lu— -~ 1O Eu— (7)2()u —
(2 ()L = = 1(G) (Qu — yL(g)u

using instructions

1() — (9)2 2(%) — ()1

1s —s1 25 — (8)1

1) = (22 (1<i<q) |2() = ()1 (0<i<q)
1(%) — gyl
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An instruction Pz — yq0 is simulated by i
1 = @~ OO~ (G~ (L2 -
(L)1 = - = 1) (u = y1(u
using instructions

1(;) — (5)10
10 — ()1

and then as above (0 is the new blank).

An instruction pr — yzq is simulated by
length 1: i

1) = y(Q)2 = @1Q) — - = Q1E) — 1()2
length > 2 :

C1Gsu = y(Q2su = y(Q) Q) 1w = y1(Q) Qu — v(,5)2@)u —

y(2) (e — - S ) Ju— yz1(g)u
using instruction

1(1’;) — y(‘;)2 and then as above.

An instruction px — zxq is simulated similarly by
length 1 : i )
1(,) = 1(5) = 1) (7)) — 22(7) = 22() = §1() = - —

. q
xl(q)
length > 2 : i
l(z)su — (Zx)lsu - e = 1( Nsu — (;) (Z;)lsu —

1(;)(q)su — 22( “su — z( ") 2s5u — z(q)( Jlu — -+ — le(g)u

using instructions

TR 7
sz) — (2) (qu)l 2('2;) — (2)2 and then as above.
1(y) — =2
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a

Theorem 3: For every CPMi (i = 0, 1, 2, 3, /) there exists an
equivalent CPMi with 2 symbols.
Proof : Let the alphabet be {s1---,s,,}. Let k = |loga(m)]| + 2

The symbols s; are encoded by 1bing_1(i) where bing_1(i) is the
binary encoding of i in k& — 1 digits. Note that 0 is encoded by 1071,
and that 0¥ will be used for special information. Let z be encoded by
Tl Tk Then

pr1 - apu — 0p(z1)T2 - Tpu — - -
- — Ok_lf)(xl Ce X 1)TRU — Okf)l(a:)u

using instructions

ps1 — 0p(s1)
P(s1-8i)sit1 — 0p(s1---sit1) (2<i<k)
p(s1---Sg—1)s — Op1(s1 -+ 5k)

Instructions
pi(z)s — spa2(z) (s #0)
pi(z)t — tpi+1(x) (2<i<k)
pr(2)t — tp1(2)

give 0Fp1(x)u — --- — p1(x)0Fu.

An instruction pxr — q is simulated by
p1(2)0Fu — p0Ftu — -+ — Pp0u — q
using instructions

p1(7)0 — p2
Pi0 —pir1  (2<i<k)
pr0 — q

An instruction pxr — yq is simulated by
p1(2)0fu — yipa(2)0Flu — oo = Y-y Pr(2)0u —
Y1 Yrqu
using instructions
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p1(x)0 — y1p2(x)
Pi(z)0 — yipir1(z) (2<i<k)
Pr(7)0 — yrq

To simulate instructions with insertion we use instructions

pi(z)0 — 0p;(z)0

or

]31(.1‘)0 — 00]52(.1‘)
pi(z)0 — 00p;41(x)
Pr(2)0 — 00p; ()

together with

pi(z)s — sp2(x) (s #0)
pi(z)t = tpiyi(z) (2<i<k)
f)k(x)t — tf)l (.73)

giving p1(2)0Fu — 0F0Fp (z)u — p1(x)0F0Fu .
Instructions pxr — yzq, px — yxq are simulated by using instruc-
tions (replacing z by z for the second case)

1(7)0 — y1Pa()
i(2)0 — yiPit1(x)
k()0 — yrP1() giving  p1(2)0F0Fu — y1 - ypz1 - zequ
i(2)0 — ziPiy1(x)
k()0 — 2xq

T T T T T

Instructions p0 — yq0, px — xq0, pr — yq0 are simulated by
using instructions (only given for the last case)

44



Small Universal Circular Post Machines

f)l(a:)() — Of)l (l’) f)Z(SL’)O — Of)i+1(l‘) (2 << ]f)

pPr(x)0 — 0p1(z) p1(x)s — spa(z) (s #0)

p1(2)0 — 1p2(z) pi(x)t — thit1(z) (2<i<k)
Pr(2)t — tp1()

This gives
p1(2)0*10F 1o .

Finally, using instructions

p1(2)00Fu — 0Fpi(2)0Fu — 0105 'py(2)u —

P1(x)0 — y1p2(x)
pi(2)0 — yipit1(x)
Pr(7)0 — yrq

(2<i<k)

gives

P1(2)0"10 Ty — yy -+ ypql05~tu,

|

The following CPMO0(6,2) simulates the still unsolved problem
stated by Emil Post in 1921 [7, 5] to decide whether the iteration of
the 3-tag system 0 — 00, I — IT0I on a word w € {0, I} either ends
on one of {0,1,00,01,10,II}, enters a loop, or diverges.

0 I
1] 2 141
2103 03
301 01
4 15
5|06 06
6|11 I1

blank : T

a

The next Machine CPMO0(5,3) simulates another unsolved (?) prob-
lem, namely the Collatz or (3n+ 1) problem. This is to decide whether

the procedure

n—gifn=2m,n—3n+1ifn=2m+1
always enters the loop (1,4,2,1) (this is the conjecture), enters

another loop or diverges.
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Po| Po Opu
Poo | Opoo  1pio  cpo blank : ¢
Po1 1p00 0p11 1POOC
P | Ipoo  Op11 1pooc
P11 | Opo1  1pin Opoic

An integer n is encoded in binary by nq - - - ngc with ng # 0, and the
initial configuration is pgni - --ngc. In case n = 2m + 1 the machine
simulates the addition 2n +n + 1 with the index 7 of p;; denoting the
symbol last read, and j the carrier.

a

3 Universal Circular Post Machines

In this part we present some small universal machines of variant 0, with
the halting state not included but represented by H in the program.

The machines are constructed by simulation of tag systems. From
[4] it is known that 2-tag systems suffice, and that halting occurs
only if a special symbol sy is encountered. Let the alphabet be
¥ ={s1, ", Snt1} with sy = s,41. A symbol s; is encoded in unary
form by some number N;, together with a separator. In a 2-tag in-
struction s; — «; with a; = a41 -+ - Qi (i) the symbols a;; are encoded
in the same way, with other separators.

In the tables an entry y stands for an instruction px — yp, and an
entry q for an instruction px — q.
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UPMO0(13,4)
I c b a
1/ 2 6 H
2|1 c a3 a4
3|15 ¢1 b
¢ N1 =2, Ngy1 = N +my + 1
4 c a3 a
(1<k<n)
5| 1 6 b a3
6l 6 7 bl blank : a
Encoding of symbol s;: IVic
711 c a8 .
Encoding of «; :
81 c9 ¢ a0 a N, N
I%ip ... pIVim() hb
9/ 1 ¢ b 1I8a g tors « b. beb
0lIA ¢ bB eparators : b, bc
Al c b c8a
B| I C b cCa
C I b5 b

The initial configuration is

boI™N12h - - bINim b - - bbINr b - - BTN bbb TV eI Noc - - - TN e,

In the first stage IV is read, N, b’s are changed into a’s, the I’s in
the middle - into ¢’s, and IV eINsc is erased, giving

aachla. . .achm(l)aa. . .aaINle. . b[Nrm('r)bb .

o oI Nemm) bhheb8 TVt - - - T Nw e

In the second stage, starting with 8, the part IN"1p. .. INrmbb is
copied to the end of INt¢.-- [Nvc as [Nric. .. [N e,

In the third stage, starting with B, the instruction part of the tape
is restored, and a new cycle may start.

The machine stops if in the first stage 4 encounters bcb.
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UPMO(11,5)
I ¢ a b d
112 3 a7 b9 d4
2|1 I
¢ 3 d N1 =1, Ngy1 = Ng +my + 1

3/3 4 a b d1 (1<k<n)

4|1 ¢ I8 c¢1 d5 -
blank : d

5 H c4 a b deé . N,
Encoding of symbol s;: I™ic

6| 1 ¢ I1d .
Encoding of «; :
a™ith - - - batim() bb

8|1 ¢ c4d Separator : d

9 b do eparator :

0| I ¢ b3 cAd

Ala b b3 dA

The initial configuration is

dba™N11b - - baNmbb - - bbaNrib - - - balNrm bbd1 TN eI Nsc - - - cTNw e
In the first stage IV is read, N, b’s are changed into ¢’s, the a’s in
the middle - into I’s, and IV cINsc is erased, giving

chNllc. .. CINlm(l)CC. . Ccaerb. . baNrm(r)bb. ..

oo baNremm) bbdaI Nt e - - - TNV e

In the second stage, starting with 4, the part a™"1b- - aNrmbb is
copied to the end of INt¢. .- [Nve ag [Nric. .. c[Nrme e,

In the third stage, starting with A, the instruction part of the tape
is restored, and a new cycle may start.

The machine stops if in the first stage 4 encounters d.
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UPMO(8,6)
I ¢ a b d e

Ny =1

112 3 6 b7 )

; Nit1 =N +my +1

2 1 C 1 c3 e
(1<k<n)

3/3 4 a b d1

4 |1 15 1 H blank : e

) ° ¢ i . TN;

5/1 ¢ a b d Ide Encoding of symbol s;:I"ic
Encoding of ay:

6/ I ¢ a b d cde N NoE
a 7«1b. . ba zm(z)bb

Tl b d - c8e Separators : e, d

8l a b a b dl e p te,

The initial configuration is

eba™1h - - baNmph - bbaN1 b - - ba Ve pbd LIV I Ns e - - eI Nv e

In the first stage IV is read, N, b’s are changed into ¢’s, the a’s in
the middle - into I'’s, and IV cIVsc is erased, giving

ecIMic. .. cINimce. - cca¥rib - - baNrmmIbb - -

oo baNem bbdaI Nt - - eI Nv e,

In the second stage, starting with 4, the part a™¥1b- .- aNrm)bb is
copied to the end of INt¢. - [Nve ag [Nric. .. c[Nrme e,

In the third stage, starting with 8, the instruction part of the tape
is restored, and a new cycle may start.

The machine stops if in the first stage 4 encounters d.
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UPMO(7,7)
Ny =1

I ¢ a b d h f ’

112 3 a6 b7 h3 Ckat = N et
<

2|1 ¢ f h3 hof Sa;kkiln)
33 4 a b dl b a Encodin of symbol s;:
4|1 ¢ f5 h1 H h f INie SO )
5/I ¢ a b d I4h Encoding of o
6/ I ¢ a b d c4h aNitp .. .baNimZi‘) bb
71T ¢ a b d clh

Separators : h, d

The initial configuration is

hba™M11b - - - ba™N 1@ bh - - bbaN1b - - - baNrm e bbd 1 TN eI Noc - - eI e

In the first stage IV is read, N, b’s are changed into h’s, the a’s in
the middle - into f’s, and INrcINsc is erased, giving

hhfNih . R Mm@ R - hha™Nb - baNrm e bh - - -
- balNeme bbdaI N e - - - eINve.

In the second stage, starting with 4, the part a™"1b- - aNrmbb is
copied to the end of INi¢. .- [Nwe ag [Nric. .. [N e,

In the third stage, starting with 1, the instruction part of the tape
is restored, and a new cycle may start.

The machine stops if in the first stage 4 encounters d.
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