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convolution of criteria
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Abstract

An n–criteria problem with a finite set of vector valuations is
considered. An optimality principle of this problem is given by
an integer-valued parameter s, which is varied from 1 to n−1. At
that, the majority and Pareto optimality principles correspond to
the extreme values of the parameter. Sufficient conditions, under
which the problem of finding efficient valuations corresponding to
the parameter s is solvable by the linear convolution of criteria,
are indicated.

1 Basic definitions and lemma

As usually [1], let a vector function

y = (y1(x), y2(x), ..., yn(x)) : X → Rn, n ≥ 2,

be defined on a set of alternatives X.
When choosing an optimal alternative from the set X it is enough

to consider the set of feasible valuations

Y = {y ∈ Rn : y = y(x), x ∈ X}.
Here Rn is the n–dimentional criteria space. We consider a vector
problem

y → min
y∈Y
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and suppose Y to be a finite set containing |Y | ≥ 2 elements. This
problem is naturally called discrete.

A mechanism of choosing an optimal valuation is usually based on a
binary relation expressing “preference” of a valuation to another [1–6].
In its turn, any binary relation generates an optimality principle [6–8].

In this paper we continue our research of solvability conditions of
vector discrete problems of finding the Pareto set in the class of algo-
rithms involving linear convolution of criteria (see [9,10]). This time
we consider the case of the parametrization of an optimality principle.

For a vector z = (z1, z2, ..., zn) ∈ Rn we denote

(z)+ = |{i ∈ Nn : zi > 0}|,
(z)− = |{i ∈ Nn : zi < 0}|,

where Nn = {1, 2, ..., n}.
For any number s ∈ Nn−1 we define the binary relation

y′ ≺s y′′ ⇐⇒ s(y′ − y′′)+ < (y′ − y′′)−

in the criteria space Rn. By that, the valuation y′ is preferred to the
valuation y′′ by the binary relation ≺s if and only if the number of
criteria, by which y′ is “preferred” to y′′, is more than s times greater
than the number of criteria, by which y′′ is ”preferred” to y′.

For any subscript s ∈ Nn−1 we also introduce the set of s–efficient
valuations Cn

s (Y ) by setting

Cn
s (Y ) = {y ∈ Y : γs(y) = ∅},

where γs(y) = {y′ ∈ Y : y′ ≺s y}.
It is obvious that the set Cn

s (Y ) can be defined as follows:

y ∈ Cn
s (Y ) ⇐⇒ ∀y′ ∈ Y (s(y′ − y)+ ≥ (y′ − y)−). (1)

Therefore Cn
s (Y ) ⊆ Cn

k (Y ) for any 1 ≤ s < k ≤ n− 1.
It is clear that the set Cn

1 (Y ) coincides with the set of majority
efficient valuations defined in [4,11–13]:

Mn(Y ) = {y ∈ Y : µ(y) = ∅},
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where µ(y) = {y′ ∈ Y :
n∑

i=1
sign(yi− y′i) > 0}. The majority optimality

principle realizes the procedure of making decision by the majority of
voices.

It is easy to check that a valuation y is Pareto optimal if and only
if the inequality (y − y′)− ≥ 1 is true for any valuation y′ 6= y. Hence,
taking into account the obvious inequality (y−y′)+ ≤ n−1, we obtain
that the set Cn

n−1(Y ) is the Pareto set defined as follows:

Pn(Y ) = {y ∈ Y : π(y) = ∅},

where π(y) = {y′ ∈ Y : y − y′ ≥ 0, y 6= y′}.
Thus the following lemma is valid.
Lemma. For any number n ≥ 2 the relations

Mn(Y ) = Cn
1 (Y ) ⊆ Cn

2 (Y ) ⊆ ... ⊆ Cn
n−1(Y ) = Pn(Y )

hold.
From the lemma it follows that M2(Y ) = P 2(Y ).
So any parameter s ∈ Nn−1 defines the set of s–efficient valuations

of a n–criteria discrete problem.

2 Example

The following example shows that the sets Cn
1 (Y ), Cn

2 (Y ), ..., Cn
n−1(Y )

can be nonempty and distinct, i.e. any Cn
k (Y ) can be a proper subset

of the set Cn
k+1(Y ) for any number k ∈ Nn−2.

Example. Let Y = {y(1), y(2), ..., y(n−1)}, n ≥ 3, where

y(1) = (1, 0, 0, ..., 0)

y(i) = (0, 0, .., 0, n− i, n− i, ..., n− i︸ ︷︷ ︸
i times

) ∈ Rn, i = 2, 3, ..., n− 1;

i.e. the valuation y(i) is the (n − i)–th row of the following matrix of
the dimension (n− 1)× n:
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


0 1 1 1 ... 1 1 1
0 0 2 2 ... 2 2 2
0 0 0 3 ... 3 3 3

...
0 0 0 0 ... 0 n− 2 n− 2
1 0 0 0 ... 0 0 0




.

Let us show that the equality

Cn
s (Y ) = {y(1), y(2), ..., y(s)} (2)

holds for any s ∈ Nn−1, i.e.

∅ 6= Cn
1 (Y ) ⊂ Cn

2 (Y ) ⊂ ... ⊂ Cn
n−1(Y ).

We prove inequality (2) by induction.
First of all, equality (2) is evident for s = 1 since the relation

y(1) ≺1 y(i), i = 2, 3, ..., n− 1

is true.
So Cn

1 (Y ) = {y(1)}.
Further on, suppose that (2) is valid for s = k − 1. Then let us

show that

Cn
k (Y ) = {y(1), y(2), ..., y(k)} = Cn

k−1(Y ) ∪ {y(k)}.

On account of the lemma (Cn
k−1(Y ) ⊆ Cn

k (Y )) and definition (1),
it is sufficient to prove that the inequality

k(y(i) − y(k))+ ≥ (y(i) − y(k))− (3)

holds for any subscript i ∈ Nn−1.
Consider two cases.
Case 1. i > k. It is easy to see that

(y(i) − y(k))− = k, (y(i) − y(k))+ = i− k.
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Consequently, inequality (3) holds.
Case 2. i < k. If i = 1, then

(y(1) − y(k))− = k, (y(1) − y(k))+ = 1.

Thus inequality (3) is true.
If 1 < i < k, then it can be easily seen that

(y(i) − y(k))− = k − i, (y(i) − y(k))+ = i.

Consequently, inequality (3) is valid.

3 Solvability conditions

From now on put
Λn(Y ) =

⋃

λ∈Λn

Λn(Y, λ),

Λn(Y, λ) = arg min{
n∑

i=1

λiyi : y ∈ Y },

Λn = {λ ∈ Rn :
n∑

i=1

λi = 1, λi > 0, i ∈ Nn}.

The Pareto set Pn(Y ) is widely known [1] to contain the set Λn(Y ).
The problem of finding the Pareto set is said to be solvable in the class
of algorithms involving linear convolution of criteria if the inclusion

Pn(Y ) ⊆ Λn(Y )

holds. The interest to the problem of solvability (see for instance [14–
21]) can be explained by the fact that the inclusion above reveals the
possibility to use scalar optimization methods in vector optimization.

Now we formulate and prove a sufficient solvability condition of the
problem of finding the set Cn

s (Y ) of a vector discrete problem.
Set

Rn
+ = {y ∈ Y : yi ≥ 0, i ∈ Nn}.
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From now on, for any vector z = (z1, z2, ..., zn) ∈ Rn we denote

N+
n (z) = {i ∈ Nn : zi > 0},

N−
n (z) = {i ∈ Nn : zi < 0}.

N0
n(z) = {i ∈ Nn : zi = 0}.

Theorem. Let Y ⊂ Rn
+, 2 ≤ |Y | < ∞, s ∈ Nn−1 and the formula

∀i ∈ Nn (yi < y′i =⇒ (s + 1)yi ≤ y′i) (4)

holds for any valuations y = (y1, y2, ..., yn) ∈ Y and y′ = (y′1, y
′
2, ..., y

′
n) ∈

Y . Then for any i ∈ Ns the inclusion

Cn
i (Y ) ⊆ Λn(Y )

is true, i.e. the problem of finding the set of i–efficient solutions is
solvable in the class of algorithms involving linear convolution of crite-
ria

Proof. Let s ∈ Nn−1. According to the lemma, the theorem will be
proved if we show that

Cn
s (Y ) ⊆ Λn(Y ).

Let y = (y1, y2, ..., yn) ∈ Cn
s (Y ). Consider the vector λ with the

coordinates
λi =

L

ζi
, i ∈ Nn, (5)

where
L =

1
n∑

i=1
1/ζi

,

ζi =
{

yi if i ∈ N+
n (y),

γ/s if i 6∈ N+
n (y),

γ = min{y′i : y′ ∈ Y, i ∈ N+
n (y′)}. (6)

It is easy to check that λ ∈ Λn since the existence of γ is guaranteed
by the conditions |Y | ≥ 2 and Y ⊂ Rn

+.
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Let us show that the inequality

n∑

i=1

λiy
′
i ≥

n∑

i=1

λiyi (7)

holds for any y′ ∈ Y . To do this, we partition the set Y into two
disjoint subsets

Y1 = {y′ ∈ Y : ∀i ∈ Nn (yi ≤ y′i)},

Y2 = {y′ ∈ Y : ∃i ∈ Nn (yi > y′i)}.
It is easy to see that inequality (7) holds for any valuation y′ ∈ Y1.
Let y′ ∈ Y2. Then it is evident that N−

n (y′ − y) 6= ∅, and the set
N+

n (y′ − y) is nonempty since y ∈ Cn
s (Y ). Therefore

n∑

i=1

λi(y′i − yi) =
∑

i∈N−
n (y′−y)

λi(y′i − yi) +
∑

j∈N+
n (y′−y)

λj(y′j − yj). (8)

On account of (5), we have

∑

i∈N−
n (y′−y)

λi(y′i − yi) ≥ −
∑

i∈N−
n (y′−y)

λiyi = −L(y′ − y)−. (9)

Let us estimate the second summand of the right part of (8).
Let j ∈ N+

n (y′ − y). Then the following two cases are possible.
Case 1. j ∈ N+

n (y). By (4) we obtain y′j − yj ≥ syj . Taking into
account (1) and the obvious inequality (y′ − y)+ > 0, we deduce

λj(y′j − yj) ≥ λjsyj ≥ L
(y′ − y)−

(y′ − y)+
. (10)

Case 2. j 6∈ N+
n (y). Then j ∈ N0

n(y). By (1) we obtain

λj(y′j − yj) = λjy
′
j = Ls

y′j
γ
≥ L

y′j(y
′ − y)−

γ(y′ − y)+
. (11)
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As j ∈ N+
n (y′ − y) we have y′j > yj = 0. Consequently, by (6) the

inequality y′j ≥ γ holds. Thus, from (11) we obtain (10) once again.
Therefore ∑

j∈N+
n (y′−y)

λj(y′j − yj) ≥ L(y′ − y)−.

From this by (8) and (9) we have

n∑

i=1

λi(y′i − yi) ≥ 0.

Thereby the inequality (7) holds for any valuation y′ ∈ Y2.
Summarizing what has been already proved, we see that Cn

s (Y ) ⊆
Λn(Y ).

The theorem has been proved.
The following known results follow from the theorem.

Corollary 1 [9]. Let Y ⊂ Rn
+ and the formula

∀y, y′ ∈ Y ∀i ∈ Nn (yi < y′i =⇒ nyi ≥ y′i)

holds. Then Pn(Y ) ⊆ Λn(Y ).

Corollary 2 [10]. Let Y ⊂ Rn
+ and the formula

∀y, y′ ∈ Y ∀i ∈ Nn (yi < y′i =⇒ 2yi ≥ y′i)

be true. Then Mn(Y ) ⊆ Λn(Y ).
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