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On Planar Mixed Hypergraphs *

Enzo Maria Li Marzi Maria Corinna Marino

Abstract

We consider the maximal planar graphs G, = (X,S), |X| = n,
and the set of the triangular faces 7 of G,.

In this paper, H7 is a mixed hypergraph, each element of 7
is both an edge and a co-edge as in the terminology introduced
by Voloshin.

We prove that the lower chromatic number of such hyper-
graphs is 2 and we determine the upper bound for the upper
chromatic number, that is reached by some classes of these hy-
pergraphs.

In 3. the chromatic spectrum is studied and it is proved that,
in some cases, it is not broken.

1 Introduction

V.Voloshin defined (1993) [5] the mixed hypergraphs and colourings of
such hypergraphs. A mixed hypergraph is a triple H = (X, &, A) where
X is a vertex set, A and £ are both edges set, the elements of £ are
called edge “or d-edge” and the elements of A are called anti-edge “or
c-edge”. If A = &£, then each subset is called bi-edge and H is called
bi-hypergraph.

Definition 1. [5] A strict k-colouring of a mized hypergraph H is a
colouring of the vertices of H, with colours {1,2,..,k}, in such a way
that the following conditions hold:

1 each anti-edge has at least two vertices of the same colour;
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2 no edge s monochromatic;
3 the number of the used colours is exactly k;

4 all vertices are coloured.

Definition 2. [5] The largest (smallest) k for which exists a strict
colouring of H is called upper (lower) chromatic number, denoted x(H)

(x(H)).

Definition 3. [5/ A mized hypergraph H is called wuncolourable if it
admits no strict colouring. Its chromatic numbers x and x are both

defined 0.

We say that two strict k-colourings of H are different if there exist
two vertices of H which have the same colour for one of these colourings
and different colours for the other. Any strict k-colouring induces a
partition {Xi,.., Xx}, whose elements are called colour classes. Two
different strict colourings induce different partitions of X'. We associate
with the hypergraph H the vector R(H) = (r1,79,...,7) € R", 1; =
r;(H) is the number of strict i-colourings of the hypergraph H. We call
R(H) the chromatic spectrum; hence

R(H) = (0,..,0,7y,...,%,0,...,0).

We say that the chromatic spectrum is broken if there exists A € N,
such that x(H) < A < x(#) and r) = 0. Recently it was demonstrated
that the chromatic spectrum could be broken [3].

Definition 4. A type of colouring with k colours on n vertices is a
vector (s1,89,...,55) € N¥ C RF; with s; < s;41 and s; # 0 for any

ie{l,2.,k—1}, si+sa+ ...+ sk =n.

A strict k-colouring of a mixed hypergraph H, of order n, belongs
to the type (s1,s9, ..., sg) if the colour classes have cardinality s;, 7=
1,2,.., k.

We can give the lexicographic order between the types of colouring;:
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(8], 85,y s),) if 55 = s, for i € {1,2,...t}, t <k,
Sii1, and (1, €g,...,ep) < (81, 82,..., ) if b < k.

(51, 89y ceey Sk) S
and sgp1 <

We can indicate with t’; the type of colouring that occupies the
place p-th in the lexicographic order between the types with k colours.

A walk of a graph G is an alternating sequence of vertices and edges

of the graph G, beginning and ending with vertices, in which each edge
is incident with two vertices immediately preceding and following it. It
is a path if all the vertices are distinct, and it is a cycle if it is closed
and all the vertices are distinct. The degree of a vertex of a graph G is
the number of the edges incident with this vertex. A wheel is a graph
that consists of a cycle and a vertex x that is incident to all vertices
of the cycle. The vertex x is called the center of the wheel. A planar
graph G is a graph which can be drawn on the plane so that no two
edges intersect. A plane embedding of a planar graph G is a drawing
of G on the plane.
A maximal planar graph of order n, denoted G, = (X, S), is a planar
graph to which no edge can be added without losing planarity. It is
known that in a maximal planar graph every face is a triangle and
|S| = 3n — 6, and from the Euler’s formula it follows that the number
of the faces in a maximal planar graph is 2n — 4 [2].

We denote the neighbourhood of a vertex z by I'(z), i. e. the
set formed by all the vertices adjacent to x is defined by I'(z) =
{yed, {xy}esh

Let X = {z1,....., 2, } be a subset of X, the neighbourhood of X is
defined by

F(X) ZF(IL'l,.-,.Tr) = {y € Xuy ¢X : ELfI"Z €X7{xi7y} ES}

Let X be a subset of X, we denote with < X > the subgraph
induced by X in G,. < I'(X) > is the subgraph induced by the neigh-
bourhood of X. We denote with 7 the set of faces of G,,. From the
maximal planarity it follows that if we consider a set {z,y,2z} C X
of vertices mutually adjacent and we suppose the existence of another
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vertex u ¢ {x,y, z}, then there exists a vertex w ¢ {y, 2z} adjacent to z.
Therefore the maximal planarity implies that every vertex x of G, has
a degree d(z) > 3 [4], except the case n = 3. Given a plane embedding
of G, = (X,S), we add a new vertex x to the vertex set X of G,, and
we construct a maximal planar graph G,;. Every vertex of G, has
the same degree in G, 41, except the vertices of the triangle in which
z is added in the plane embedding. We counstruct a mixed hypergraph
H=(X,AE) where A =& =T, denoted by Hr.

In the following G,, is a maximal planar graph of order n and Hy
the mixed hypergraph defined as above.

Let Fq, ....... , Em, be the edges of a hypergraph H = (X, &), if |E;| =
t, for i = 1,....,m, we say that H is a t-uniform hypergraph [1]. Since
each edge of H is a 3-subset of X', we call it a 3-uniform bi-hypergraph,
and we observe that, in any strict colouring, each bi-edge has to be
coloured with two colours.

A bipartite graph G = (V,S) is a graph whose vertex set V can be
partitioned into two subsets V; and V, such that every edge of G joins
Vi with Vs, [2]

Any Hy is a planar hypergraph in accordance with the following
definition of Zykov [7].

Definition 5. [6, 7] Let H =(X, &) be a hypergraph. We define the
bipartite graph G = (X UE, S ) where the edge set S conserves the
incidence between the vertices of X and the edges of €. If G s
planar, we say that H 1is a planar hypergraph.

In [6] Voloshin first suggested to investigate colourings of planar
hypergraphs in context of mixed hypergraphs. In 2. we determine the
lower chromatic number and the upper bound for the upper chromatic
number, that is reached by some classes of these particular kinds of
hypergraphs.

In 3. we investigate on the chromatic spectrum and we prove that
in some cases it is continuous.
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2 Lower and upper chromatic numbers.

Theorem 6. Let G, = (X,S) be a mazimal planar graph of order
n, and Hy the mized hypergraph associated to G,. Then Hy is 2-
colourable.

Proof. 1t is trivial that the lower chromatic number of Hy can not
be less than 2. The four colour problem says that any planar graph
is  4-colourable, so we can colour G, with 4 colours labelled
04,14,24,34 as the classes of Z4. Then to colour G, we change
each class of Z, with the correspondent class of Zs; so the vertices of
G, are coloured with the colour 09 and 1y, so that any face is
coloured with 2 colours; it follows that every hypergraph Hy is
2-colourable. O

Lemma 7. Let G, = (X,S) be a mazximal planar graph of order n, Hr
the mized hypergraph associated to G, and we suppose that there exists
a strict k-colouring of Hy. Then the following assertions hold:

1. If Xj = {x} is a colour class ,then < I'(x) > has at least one
monochromatic cycle.

2. If Xj ={z,y} €S,z #y, I'x)\{y} #L'(y) \ {z}, is a colour
class, then < T'(z,y) > has at least one monochromatic cycle.

8. If Xj ={x,y} € S, © # vy, is a colour class, then < I'(x,y) >
has at least one monochromatic cycle.

4. If there exists a colour class X; = {z,y} € S, ¢ # y, and
I(z) \{y} = I'(y) \ {z}, then < I'(z,y) > is a monochromatic path,
k=2 and X =T (z,y) U{z} U{y}.

Proof. 1. For every z € X, d(z) > 3. We consider the wheel with
center z, then < I'(z) > has a cycle. This cycle is monochromatic
because there are no triangles 3-coloured.

2. We consider the vertices u,z € I'(y) \ {z}, u,z ¢ I'(z) \ {y}, the
wheel with center x and the wheel with center y as in figure 1 .

3. We consider the wheel with center z (or y) and the proof is the
same of 1.

4. The wheel with center x and the wheel with center y determine
a monochromatic path (figure 2).
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monochromatic cycle

Figure 1.

{ 71
4 3 3 3 i % «<Tenr
monochromatic path

Figure 2.

We consider a plane embedding of G,, and we suppose that there
exists a vertex z ¢ I'(z,y) U {z} U{y}. In this plane embedding z
is inside a triangle that has a vertex z (or y). Then z (or y) has
another adjacent vertex not considered in the wheel with center z (or
y). Therefore X =TI'(z,y) U{y} U{z} and k = 2. O

Suppose that Hy has a strict k-colouring, we say that a monochro-
matic cycle of G, is generated by a colour class X;, such that | X;| < 2,
if it is constructed as in the proof of the Lemma 7.

Lemma 8. Let Hy be the mized hypergraph associated to G,. Suppose
that there exists a strict k-colouring, k > 3, of Hy, then the following
assertions hold:
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1. Every colour class X;, |X;| < 2, generates at least one
monochromatic cycle of Gy,.

2. Let i, ¢ be respectively the number of colour classes Xj, | X;| <2,
and the number of monochromatic cycles of G, generated by them, then
(1—1) <cand (i —1) = c implies k = 3.

Proof. 1. Since k > 3, we can not have the hypothesis of the lemma 7
(part 4), then every colour class X, |X;| < 2, generates at least one
monochromatic cycle.

2. We suppose that Xi,....., X; are all the colour classes, such
that | X;| < 2,1 < j <14, and we suppose that Xi,...,X; (h < 1)
generate the monochromatic cycles ¢i,...,¢cp, (¢ # ¢5, V 1,8 < h,
r#s). If Xp+1 = {x} generates cycles that are already obtained from
X1,...,Xp, then < I'(z) >= ¢, (r < h) and there are no other vertices.
Thenk=3,c=1,(i—-1) =c

Figure 3.

If there is another vertex in G, it is inside a triangle of vertex x in
the plane embedding (figure 3). Then there is another vertex adjacent
to z, which is not in ¢, and < I'(z) ># ¢,. If Xp,41 = {z,y} € S, then
similarly k =3,¢c=1,1=2, (1 — 1) =c.

If Xpy1={z,y} ¢S, then <T'(z) >= ¢, (r < h) and there are no
other vertices. Therefore y ¢ X. O

Given a strict k-colouring of Hy, k > 3, we indicate with C, ¢ = |C|,
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the set of monochromatic cycles of G,, n > 3, generated by colour
classes of cardinality [ < 2.

We consider the colour classes of cardinality [ > 3. On the ver-
tices of each of these classes we construct the maximal planar graph
without the external triangle. We indicate with 77 the triangular
face set obtained. If the strict £ -colouring belongs to the type
t’; =(1,.,1,2,...,2,841, ..., Sk ), then from the Euler’s formula we have

T =255 s — 5k — ).
For k > 3, we define also AF =i — |T'| — 1. It is easy to observe
that [C] <|T'|+1,and ifi <k—1 |C| <|T7].

Lemma 9. Let t]’; be a type of colouring of Hy such that A]’; = 4—
|T'| — 1> 0, then there does not exist a strict k-colouring belonging to
k
th.
Proof. From the lemma 8, if (i —1) = ¢, then k =3,i =2, ¢ =1 and
i—|T'|—1=1—|T"1 <0. If i < ¢, because ¢ < |T'| + 1, we have
0<i—|T'|—1<c¢—|T'l =1, which is a contradiction.
O

Lemma 10.

a) If A]; > 0, then A? >0, for every j > p;
b) If A} > 0, then Af >0,Vk >\, Vp> 1.

Proof. a) If tk = (s1,..., s;), then

th, = (s,.,s), wheresj =s;+ 1,5, =5, —1, I<m
ands; = 55, Vyge{l,,l-11+1..m-1m+1,.k}.

By the definition of 7" it follows that Af > Ag > 0.
b) From a) it follows that A} >0,V j > 1.

From A} > 0 it follows that A?'H > 0 and then from a) A]’; > 0,
VE>XNVp>1. O
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Theorem 11. Let Hy be of order n, n > 3.

2
a) Ifn = 0(mod 3) then x(H7T) §?n -1

n—1

b) If n = 1(mod 3) then x(Hr1) <2(

¢) Ifn = 2(mod 3) then x(Hr) §2n3—1.

);

Proof. a) If X = 27", there is no colouring that belongs to the

type t? = (1,..,1, 7 +1). In fact A} =1 > 0 then, by the lemmas,
A’;>0,V k> X and Vp > 1.

b) If A =2t ¢} = (1,...,1, 22), then A} =2 >0 that implies
A’;>0, Vk > A and Vp > 1.

o) If =22 ¢t =(1,.,1, %), then A} =3 >0 that
implies Az >0,VE>A andVp>1. O

Theorem 12. Let Hy be of order n > 3:

a) If n = 0(mod 3) and there exist strict A-colourings with
2
A= ?n — 1, then these colourings belong to the types t{‘,t%‘.
b) If n = 1(mod 3) and there exist strict A-colourings with
-1
A = 2(n ), then these colourings belong to the type t}.
c) If n = 2(mod 3) and there exist strict A-colourings, with
2n —1
A= nT, then these colourings belong to the type ti\.

Proof. a) A} = =2 <0, Ay =0. If A} >0, (j > 2), from the
lemma 9 there is no strict A- colouring belonging to the type t;‘ and
from the lemma 10 there is no strict A-colouring belonging to the type
tz/}’ (p > j). Suppose A;‘ =0, (j > 2). For A\ > 3, from the lemma
8, it follows that ¢ < ¢. The monochromatic triangles, generate by the
type of colouring t;‘ are (i — 1), (1 — |T'| — 1 =0 ), then we have no
colourings of this type. If A = 3 there are monocoloured triangles in
‘H7, that exclud strict A-colorings belonging to the type t?.
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b) A} = -1<0, A)=1>0 then b) follows from the lemma 10.
¢) A} =0, Ay =2 >0 analogously O

Example 13. Let G192 be a maximal planar graph of order 12, and Hy
its associated mixed hypergraph.

From the theorem 11 x(H7) < 7 and from the theorem 12 if
xX(H7) = 7 then a strict 7-colouring belongs to the types t{, tI. In
fact t§ = (1,1,1,1,1,1,1,5), A = 1 > 0, then there are no strict
8-colourings.

t7 =(1,1,1,1,1,1,6), A = -2 < 0; tJ = (1,1,1,1,1,2,5), A = 0.
tL=(1,1,1,1,1,3,4), A = 0, from the lemma 8 i < ¢ and from A = 0
i =|T'|+1; but i = 5, |T'| = 4, then there is no strict 7-colourings of
this type.

t] = (1,1,1,1,2,2,4), A =2 and we exclude strict 7-colourings of
the types:

(1,1,1,1,2,2,4), oo (1,1,2,2,2,2,2).

t0 = (1,1,1,1,1,7), e 8 =1(1,1,2,3,4), A<O0.

t5 =(1,1,1,3,3,3), A =0, every colour class of cardinality 1 gen-
erates a monochromatic cycle ( a triangle ), then we have a 3-coloured
triangle. It follows that there is no strict 6-colouring of this type.

t5=(1,1,2,2,2,4), A > 1, then we exclude all the other types:

(1,1,2.2,2,4), oo ,(2,2,2,2,2,2).

0 =(1,1,1,1,8),......... 9, =(2,2,2,2,4), A <0.

t35 = (2,2,2,3,3), A = 0; from the lemma 8 it follows i < ¢, then
there is no strict 5-colouring of this type.

We exclude at last the type t7 = (1,11), because it determines
monocoloured triangles.

Let G, be a maximal planar graph of order m, we consider the
following constructions:

a. We contruct a maximal planar graph G,, n = 3m — 3 obtained
by G, adding a new vertex in every face of G,,, excluding in a face
in which we add two new vertices.

b. We construct the maximal planar graph G,, n = 3m — 2 adding
a new vertex in every face of G,,, excluding in a face where we add
three new vertices.
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c. We construct the maximal planar graph G,, n = 3m — 4, adding
a new vertex in every face of G,,.

Corollary 14. Let G,, be a maximal planar graph, G, a mazimal pla-
nar graph which follows by the constructions a,b,c and Hy its associ-
ated mized hypergraph. Then:

a) x(H1) = ?—17 if n=3m—3;
2(n—1

0 xr) = 2D ip—gm o

c) x(Hr) = 2n3—1’ if n=3m—4.

Proof. a) We colour all vertices of G, with the same colour «, the two
new vertices added in the same face of G, with the colour 8 and every
other vertex with colours different from « and § and different from
each other.

b) We colour all vertices of G,, with @ and we colour also with «
the vertex indicated in the figure 4.

Figure 4.

We colour all the other vertices with colours different from « and
different from each other.
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¢) We colour all vertices of G, with @ and the other vertices with

colours different from « and from each other.
O

3 Chromatic spectrum.

Theorem 15. If there exists a strict k-colouring of Hy, with k > 3,
such that at least a colour class has cardinality | < 2, then there exists
a strict (k — 1)-colouring of Hr.

Proof. Let X; be a colour class such that |X;| <2 and «, 3,7 colours
of the strict k-colouring. If X; = {z} (or X; = {z,y} € S) and
colour of X is «, colour of I'(X;) is 3, we recolour X; with the colour
7, eliminating in this way one colour. The case X; = {z,y} ¢ S is

resolved in the same way.
O

Corollary 16. If there exists a strict X-colouring such that (x — 1)
classes have cardinality | < 2, then the chromatic spectrum of Hy is
not broken.

Corollary 17. Let G,, be a mazimal planar graph and G, a maxi-
mal planar graph which follows by the constructions a,b,c. Then the
mized hypergraph Hy, associated to G, has the chromatic spectrum
not broken.

Proof. 1t follows from the corollary 16, if we consider the x(H7)-
colouring given in the proof of corollary 14.
]

Open problem:

Determine a lower bound for the upper chromatic number of the
mixed hypergraphs Hq, reached by elements of this class of hyper-
graphs.
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