Computer Science Journal of Moldova, vol.8, no.3(24), 2000

A set-theoretic approach to linguistic feature
structures and unification algorithms (II)

N. Curteanu P.-G. Holban

Abstract

The paper proposes formal inductive definitions for linguis-
tic feature structures (FSs) taking values within a class of value
types or sorts: single, disjunctive, (ordered) lists, multisets (or
bags), po-multisets (multisets embedded into a partially ordered
set), and indexed (re-entrance) values. The linguistic realization
(semantics) of the considered sorts is proposed. The FSs having
these multi-sort values are organized as (rooted) directed acyclic
graphs. The concrete model of the FSs we had in mind for our
set-theoretic definitions are the FSs used within the well-known
HPSG linguistic theory. Set-theoretic general definitions for the
proposed multi-sort FSs are defined. These constructive defini-
tions start from atomic values and build recurrent multi-sorted
values and structures, providing naturally a fixed-point semantics
of the obtained FSs as a counterpart to the large class of logical
semantics models on FSs. The linguistic unification algorithm
based on tableau-subsumption is outlined. The Prolog code of
the unification algorithm is provided and results of running it on
some of the main multi-sort FSs is enclosed in the appendices.
We consider the proposed formal approach to FSs definitions and
unification as necessary steps to set-theoretical implementations
of natural language processing systems.

Let us specify from the beginning that the present article represents
the direct continuation (part II) of the paper with the same title ap-
peared in the previous number of this journal [34, pp. 116-149]. Thus,
all the relation, definition, remark, etc. numbers (having the first digit
less than 5) refer to the part I of this paper, which the present part 11
makes a single unit with.

(©2000 by N. Curteanu and P.-G. Holban

223

N. Curteanu, P.-G. Holban

5 Indexed (sharing) multi-sort

Another extension of the FS concept is offered by the very useful pos-
sibility to share feature values in distinct structures, obtaining indezed
FSs (IFSs). IFSs have as representation support the structure of a
directed graph (DG) or directed acyclic graph (DAG), the indexing
points in the IFSs being actually the nodes that share the same in-
formation for the arcs with distinct labels entering these same nodes.
IFSs are formally defined in what follows. Examples of IFSs are in
(?7), (?7), (??), (??7) and Example ??. We first introduce the notion
of IFS on DGs and then constrain DGs not to include cycles, obtaining
DAGs.

In order to define indexed FSs (see (S6) in section ?7?) there is
necessary to extend the five sorts considered in the definition ?? and
relations (?7-77) with the indezed multi-sort expressions belonging to
the following indezed sort.

SortS = {(v,m), (&, m)[v € V,m € N}

= (VU{&}) x N(, i.e. with & ¢ V) (28)

The symbol “&” is used to denote the presence of the sharing prop-
erty only for those nodes in the FSs having this quality, while “m”
provides the value of the node label, also called feature index. The
sharing nodes within a FS receive the same value of the node labels.

Definition 5.1 The set IW of indexed multi-sort exzpressions defined
on V for the sorts Sort', i = 1 + 6, denoted IW = ims(V), is in-
troduced as being the closure to sort composition for the sorts consid-
ered in (?7) together with the indexed sort in (28), i.e. V. C IW and
Ywi,wa,...,wy, € IW, then

{wy,ws, ..., w,}" € IW,
(w1, wa, ..., wy) € IW,
Huwy,wa, ..., w,} " € IW,
TPlwy, wa, ... wy Y TP € TW,

224

A set-theoretic approach to linguistic feature structures. . .

and (wi,m) € IW, or (&,m) € IW, with m € N\{0} and “&” as a
special (empty) character such that & ¢ V. The elements in IW are
called indexed multi-sort expressions of any depth on V.

The set IW = ims(V) of indexed multi-sort expressions defined on
V' can also be seen as the following union:

IW = IMSort' UIM Sort? U IM Sort3U

UIM Sort* U 1M Sort® U IM SortS, (29)
where:
IMSort' =V,
IMSort? =Y{vy,va,...,0,}" |v; €ims(V),i =1+n};
IMSort® = (v1,v9,...,v,)|v; € ims(V),i =1+n}; (30)
IMSort* = v, vg,..., 0.} |v; €ims(V),i =1+n};

IMSort® = tP(vy, vg, ..., v, } P Jv; € ims(V),i =1 +n});
IMSortS = {(v,m), (&, rmm)|v € ims(V), m € N, & € V'}.

To notice that IM Sort!,i = 1 = 6, are pairwise disjoint.
The new constructed set /W constitutes now the O-level set of val-
ues for the indexed (multi-sort) FSs (IFSs).

Definition 5.2 Similarly to the definition 77, let G be a set of IFS
attributes defined on W, IW = ims(V') as in definition 5.1, i.e., there
exists T C Pow(IW) and T <+ G. Following the definition 7?7, we have
the one-to-one functions AtVal : G — T, and ValAt : G — T, with
ValAt = AtVal™!.

With the notations in (29), (30) and definition 5.1, the notion of
well-definedness of IFSs with values in the considered sorts is as follows:

Definition 5.3 An IFS D C G x IW, IW = ims(V), is well-defined
on V iff:

(5.3S) soundness: (g, w)€ D, then
w € IMSort'V = w €', ValAt(g), i =1+ 6, (31)
with the membership relation €' ,,, specific to the sorts MSort’
in (30). In detail:

225

N. Curteanu, P.-G. Holban

(sound;) w € IMSort' = w € ValAt(g);
(soundy) w € IMSort' = w C ValAt(g);
(sounds) w € IMSort® = w € ValAt(g);
(soundy) w € IM Sort* = w € ValAt(g);
(sounds) w € IM Sort® = w € ValAt(g);

(sounds) (w,m) € IMSortS = w €, ValAt(g) or (w = &
and m > 0).

(5.88) uniqueness: (g,v),(g,w) € D, then v €%,,, w, =106, with
the equality relation specific to the sorts IM Sort' in (30). More
precisely:

(uniquey) if v € IM Sort! then w € IMSort', andv = w (equal-
ity as identity relation);

(uniques) if v € IM Sort? then w € IMSort?, and v = w (as
set equality);

(uniques) if v € IMSort® then w € IMSort®, and v = w (as
list equality);

(uniquey) if v € IM Sort* then w € IMSort?, and v = w (as
multiset equality);

(uniques) if v € IMSort® then w € IMSort®, and v = w (as
po-multiset equality);

(uniques) if v=(v1,m) € IM Sort® then w=(wy,n) € IMSort®,
vl =4y w1, 1 =1+ 6 (as multi-sort equality) and m = n
(as natural numbers).

Cousistent with the already established technique of F'S definitions
?? and ?7?, we can abbreviate the introduction of the well-defined in-
dexed FSs (IFSs) as follows:

Definition 5.4 Let Vi be a non-empty set of atomic single values,

and IWy = ims(Vy), the set of all possible atomic indexed (multi-sort)
values on Vjy , constructed similarly to the definition 5.1 and relations

226

A set-theoretic approach to linguistic feature structures. . .

(29)-(30). Let Ty C Pow(IWy) be a non-empty set called the set of
effective values for the 0-level attributes, while Gg <> Ty € Pow(IWj)
(as in definition 29) is said to be the set of indexed (multi-sort) valued
effective attributes defined on IWy. Then:

(Ip) An atomic indezed (multi-sort) valued FS (IFS) is any IFSy
IFSy well-defined on Vg , i.e. IFSy C GoxIWy satisfying (5.35)
and (5.3U). Accordingly,

s(IFSy) = {D|D C Gy x IWy, and D is well-defined on V,}.

(1) An indexed (multi-sort) valued IFS of level k, k > 0, is any
well-defined IF Sy on Vi, i.e., [IFSy C Gy x IWy, with:

(vg) Vi = Vi1 U s(IFSk_1) the set of all possible single-sort
values for IFSk.

Let IWy, = ims(Vy), defined similarly to the relation (29). Let
Ty, C Pow(IWy) be the set of IFS effective values until level £,
including it, such that Ty\Ty_1 # 0. Then:

(9x) G with Gy_1 C Gi < T, C Pow(IWy,) is the set of effec-
tive attributes until level k, including it, defined on Vi (as
in definition 5.2).

(ifsk) S(IFSk) = {D|D C G x IWy, IW, = ms(Vk), Vi =
Vi1 US(IFSg 1), sIFS_1) = G_1 = 0, and D is well-
defined on Vi },

Vk € N, s called the set of all possible, well-defined 1FSs until
level k.

Now the set of all IFSs is defined as:

IFS(Vo) = | J s(IFSy). (32)
k>0

To define the subsumption of indexed FSs we shall adopt a some-
what different strategy compared to non-indexed MS-TFSs, viz. to
work at the level of FS paths. This provides the possibility to make

227

N. Curteanu, P.-G. Holban

the distinction between cyclic and acyclic FSs, namely between FSs
defined on directed but general (including cyclic) graphs and FSs de-
fined on directed acyclic graphs (DAGs). To attend this purpose it is
necessary to define the nodes, the graph, and the paths associated to
an IFS.

Definition 5.5 If

v="{v1,v,...,0,} € IMSort?, or
v = (v1,v9,...,v,) € IMSort®, or
v="Huy,v9,...,0,}" € IMSort*, or
v =", v,...,0,} P € IMSort®,

then dim(v) = n is called the dimension of v, and v; = pr(i,v) is called
the i-projection of v (or projection of the i-component of v).

The graph associated to an IFS is defined as the set of 3-uples made
up of paths in the IFS, their final nodes, and the indices of these final
nodes.

Definition 5.6 Let V' be a set of atomic values and D € IFS(V).
Then:

Graph(D) = {({Start, 0),D,0) }U

U{(P,v,0) |3(Q,w,n) € Graph(D), (g9,v) € w,
vg IMSort, j =2+ 6,
P = append(Q, ((g,0))) }U

U{(P,v,m) | 3(Q,w,n) € Graph(D), (g,u) € w,
u € IMSort®, u = (v,m),
P = append(Q, ((g,m))) }U

U {(P,’l)i,O) | H(Q;w;n) € G’I“(Lph(D), (gav) € w,
w € IMSortl, j =2+ 5, (33)
v; = pr(i,w) € IMSortS,
P = append(Q, {(pr (i, w),0))),
i€ {l=+dim(w)}}u

U {(P7vi:m) | H(Qawan) € Graph(D), (g,’U) € w,
we IMSort!, j =2+ 5,
u; = pr(i,w) € IMSort, u; = (v;,m),
P = append(Q, ((pr(i, w),m))),
i€ {l+dim(w)}}

228

A set-theoretic approach to linguistic feature structures. . .

Definition 5.7 The path P = ((g1,41),- .., (gn,in)) in Graph(D) does
not contain cycles if Vp,q € {1+n} with p # q and ip,ig > 0 = iy # i4.

Definition 5.8 Let P = ((91,%1),---,(9gn,in)) be a path. Then
last(P) = (gn,in)-

Definition 5.9 D does not contain cycles if any path P in Graph(D)
does not.

Definition 5.10 The Graph(D) of a D € IFS(V) is well-defined if:
(1) D does not contain cycles; and
(2) ¥(P,v,m),(Q,w,n) € Graph(D), then n = m > 0 entails:

(i) v=w, orv==~&, orw=&, and

(i) v # & = v €, ValAt(last(P)), and
V(R,&,n) € Graph(D) = v €.,,,, ValAt(last(R)),
ie{l+5}.

Definition 5.11 D € IFS(V) is well-defined iff its Graph(D) is well-
defined and does not contain cycles.

Definition 5.12 The set of indexed (multi-sort) acyclic FSs (IAFSs)
defined on a set V of atomic values is introduced now as:

IAFS(V) = {D|D € IFS(V) and D is well-defined} (34)

In order to define the subsumption on indezed multi-sort expres-
sions and their corresponding acyclic feature structures (IAFSs) it is
necessary to introduce the restrictions of these indexed objects to their
corresponding non-indexed ones.

Definition 5.13 If v is an indexed multi-sort expression on VyU
UIAFS(Vp), i.e., v € ims(Vy UTAFS(Vp)), then the restriction of v to
its corresponding non-indexed multi-sort expression Res(v) € ms(VpU
UMS-TFS(Vy)) is inductively defined as follows:

229

N. Curteanu, P.-G. Holban

(res1) v € Vy = Res(v) = v;

(resl’) v ={(g91,v1)s .-, (gn,vn)} € IAFS(Vp) =
= Res(v) = {(g1, Res(v1)), - - ., (gn, Res(vp))};

(we notice that in (resl) and (resl’), v € IM Sort');
(res2) v = Y{vy,vy,...,0,}" € IMSort® =

= Res(v) = Y{Res(v1), Res(va), ..., Res(vp)}";
(res3) v = (vi,va,...,v,) € IMSort? =

= Res(v) = (Res(v1), Res(va), ..., Res(vy,));
(resf) v =Huy,vg,...,0,}" € IMSort* =

= Res(v) = H{Res(v1), Res(va), ..., Res(v,)} " ;
(res5) v = TP{v,vg, ... v, } TP € IMSort® =

= Res(v) = T*{Res(v;), Res(v2), ..., Res(vy)}P;
(res6) v = (w,n) € IMSort® =

= Res(v) = {Res(u), if (P, u,n) € Graph(D), with u # &;

[1; otherwise.

Definition 5.14 We introduce now the decomposition of an indexed
multi-sort as being a mapping Dec : ims(Vy UIAFS(Vp)) — ims(Vo U
IAFS(Vy)) defined inductively as follows:

(decl) v € Vy = Dec(v) = v;

(decl') v ={(g1,v1),---, (gn,vn)} € IAFS(Vp) =

= Dec(v) = {(g1, Dec(v1)), - - -, (gn, Dec(vn)) }
(We notice that in (decl) and (decl’), v € IM Sort');

(dec2) v =Y{v1,vy,...,0,}" € IMSort® =
= Dec(v) = Y{Dec(vy), Dec(va), ..., Dec(vy)}";

(dec3) v = (v1,v2,...,v,) € IMSort? =
= Dec(v) = (Dec(vy), Dec(va), ..., Dec(vy,));

(decd) v =Huy,vg,...,0,}" € IMSort* =
= Dec(v) = H{Dec(v1), Dec(vs), ..., Dec(vy)} " ;

230

A set-theoretic approach to linguistic feature structures. . .

(dec5) v ="tPvy,v9,...,0,} P € IMSort® =
= Dec(v) = TP{Dec(vy), Dec(v), . .., Dec(vy)} °;

(dec6) v = (w,n) € IMSortS = Dec(v) = (Dec(w),n).

Remark 5.15 According to the subsumption definition 7?7 we have (for
the corresponding embedded sorts): Yv € ms(VoUMS-TFS(Vg)), v =g
Dec(v). The same relationship is intended to hold for v € ims(Vy U
TAFS(Vp)).

We can give now the subsumption definition for indexed (multi-sort)
values and [AFSs.

Definition 5.16 Let v and w be indexed multi-sort expressions on
Vo UIAFS(Vy), i.e., v,w € ims(Vy UTAFS(Vy)). Then v subsumes w,
written v >g 1 w, iff:

(i) Res(v) >g,1, Res(w), according to the subsumption definition
?? for (non-indexed) multi-sort expressions (including Table 7?),
and

(i1) Y(P,r,n),(Q, s,n)€Graph(Dec(v)), then I(P',r',m), (Q’,s’,m) €
Graph(Dec(w)), and n >0 = m > 0.

According to the above definition (i), V(P,v,m) € Graph(Dec(v)),
with P = ((g1,41),---,(9n,%n)), then I(P', v, m’) € Graph(Dec(w))
with P' = ((g1,41),- .-, (gn,Jn))-

Definition 5.17 Let D, Dy, Dy € IAFS(V). Then D is an unifier
Jor D1 and D2 iff D1 > D and Dy >gp D, usually written D €
uni(D1,Dy), the unifier set for D1 and Dy .

Definition 5.18 D* is the most general unifier of D1, Dy € IAFS(V),
written D* = mgu(Dy, D), iff:

(i) 3D* € uni(Dy,Dy);

231

N. Curteanu, P.-G. Holban

(ii) VD € IAFS, and D € uni(Dy,D3), then D* >, D, d.e., D* =

glbsub(Dl’ D2).

Remark 5.19 As in the case of MS-TFS, the subsumption relation
for IAFS is a partial ordering, modulo a renaming relation on the set
of indices.

The unification algorithm for FSs in IAFS(V') reduces to mgu (thus
glb) computing (definition 5.18) and is based on the subsumption of
indexed multi-sort FSs (definition 5.16) which appeals unification al-
gorithm of FSs in MS-TFS(V'), together with acyclicity conditions for
the resulted FS. (See Appendices A and B.)

The acyclicity conditions on the final result are necessary since oth-
erwise from the unification of two IAFS (thus cycle-free) FSs one can
obtain a FS with cycles!

6 Logical vs. set-theoretical approaches to NL

6.1 Attribute-oriented vs. value-oriented semantics for
FSs

The classical approach to F'S semantics is the so-called logical seman-
tics proposed by [24]. In logical semantics there is defined “a domain of
logical formulas which describes feature structures”, made up of labels
(actually FS attributes) to which are assigned (new) formulas, (sets
of) label paths, conjunctions and disjunctions of formulas. In the ob-
tained FDL (Feature Description Logic) language, the emphasis falls
clearly on the attribute interpretation as predicates, resulting a lan-
guage whose formulas, corresponding to F'Ss (with disjunction), can be
completely specified by a set of finite automata. “An interesting result
is that conjunction can be used to describe unification. .. Unifying two
structures requires finding a structure which has all features of both
structures; the conjunction of two formulas describes the structures
which satisfy all conditions of both formulas” [24, p. 4]. The semantics
of the formulas in the FDL language is defined on the basis of deter-
ministic finite automata, and the propositional version of the proposed

232

A set-theoretic approach to linguistic feature structures. . .

logic calculus considers formulas defined on DAGs, a DAG being seen
as particular case of deterministic finite automaton.

Devoted to support the M. Kay’s Functional Unification Gram-
mar framework [26], or the PATR-II unification grammar formalisms
[32], this kind of semantics for FSs points out mainly the predicational
aspects of the FS attributes, the FS value coming as a less important
aspect. This is influenced, perhaps, by the theorem proving theory and
the logical unification algorithms but, at a serious, pragmatic analysis,
one can discover that the goals of a classical theorem prover and that
of a NL analyzer (parser or generator) are essentially divergent, despite
their remarkable resemblance and various attempts to achieve uniform
processing frameworks based on parameterized theorem provers [33].

For this logical semantics, “conjunction can be used to describe
unification” [24, p. 4] of the formulas corresponding to FSs, while
when we come into the structure of the F'D L formulas, “the unification
operator on trees is just set union...” [29, p. 4]. From the linguistic
and pragmatic points of view, the structure of the formula and the
values borne by it, illustrated by the relations between these values,
are characteristic to the objects (linguistic or not) we want to analyze,
whose semantics we introduced by means of the linguistic realization
map.

The set-theoretical semantics that we proposed starts from values,
from their shape and properties as data types, and constructs the FSs
that describe the involved (linguistic) objects. In our approach, the
conjunction is treated merely as a FS constructor that gather the
multi-sort FS values describing the involved objects, preserving still
its essential interpretation as FS unification. Within the various types
of NL analyzes we need lists of words, lists of linguistic feature val-
ues, etc., trees, sets of trees, multisets, po-multisets, etc. All these
multi-sort values for FSs result as objects of computational processes
(e.g., parsing, linguistic unification and/or generalization) that work
on formal grammars, automated lexicouns, etc. The proposed approach
to set-theoretical definitions of FSs and their multi-sort values shifts
the accent from attribute-oriented semantics of FSs towards a value-
oriented semantics, or from logical semantics to set-theoretical seman-

233

N. Curteanu, P.-G. Holban

tics of FSs. It is also important to notice that all our FS inductive,
set-theoretical definitions provide careful conditions to ensure the well-
definedness of FSs: soundness and uniqueness of FS attribute-value
definitions, and all the necessary conditions for FS interpretation as
graphs: well-definedness, acyclicity, restriction, decomposition etc.

6.2 Parsing and linguistic unification

The continuous increasing of the importance of lexical semantics in
the development of linguistic theories and NL processing systems is a
real fact connected directly to the NL representation as linguistic FSs
and their unification process. Describing the linguistic categories as
complex data types such as FSs entailed at least two consequences:
(a) substitution of a lot of phrase structure rules describing the lexical
information by their corresponding FSs, and (b) development of the
F'S unification processes till the somehow exaggerated (but interesting)
situation that the formal derivation of syntactic structures of NL, usu-
ally realized by the parsing process of linguistic categories described
through phrase structure grammars, can be simulated (or even only)
by unification of the corresponding FSs. Actually, the unification pro-
cesses simulate the derivation of FSs through their formal deduction
within logical axiomatic systems describing the syntactic and semantic
behaviour of FSs. Such a system is provided, e.g., by FDL (Feature
Description Logic) [24], [29], while a complete simulation of parsing
through logic deduction is proposed by the parametric utilization of a
theorem prover for both NL parsing and generation, such as in [33].

Perhaps the first balanced approach between unification of FSs rep-
resented as DAGs and parsing of the corresponding linguistic categories
which these FSs are labeled with is the unification-based environment
PATR-II [32] of conditional grammars. Another frequently met exam-
ple is represented by the so-called logic grammars, usually embedded
within a logic programming language (such as Prolog) which can simu-
late the parsing process through mechanical deduction written and run
into the language, e.g., [15], [16], [30].

The result of all these approaches is that NL lexicons and /or linguis-

234

A set-theoretic approach to linguistic feature structures. . .

tic knowledge bases used to represent the entries to the word description
became central elements for the NL parsing processes involved in the
automated NL analysis, generation, interpretation, translation, sum-
marization etc. For the concrete, real NL processing systems there is
always a trade-off between how much unification of the F'Ss represent-
ing the NL categories and phrases and how much parsing of the cor-
responding “backbone” of phrase structure grammars used to describe
their functioning, such that the system to have an optimal behaviour
computationally.

6.3 Comparison to similar work

The present paper is a result of several influences and stimuli: (1) the
proposed set-theoretical recurrent definitions stem in our first approach
[10]; (2) the formalizations in [3] inspired us to obtain a set-theoretical
semantics for multi-sort valued FSs, as an important step to a new
parsing paradigm in the HPSG context, based on computing recursively
the model-theoretic interpretations of HPSG grammar rules; (3) [22]
provided an axiomatic approach to the Schonfinkel-Bernays decidable
class of predicate formulas modelling the behaviour of set-type valued
FSs; (4) finally, despite the fact that our paper was already written
at that time (1999), we discovered [20] as being somehow the most
appropriate to our approach, and this constitutes both a satisfaction
and a confirmation for the validity of our options and results.

We outline briefly the main points representing the resemblance and
the differences between [20] and our present approach: (a) [20] is based
on [22] results concerning the decidable class of Schonfinkel-Bernays
predicate logic modelling the FS language, and extends this language
to the so-called “multi-collection” extended FSs to support the HPSG-
style of set and list constructions on F'Ss. The main goal is similar to
[3] and to ours: constrained-based parsing of HPSG. (b) As S. Heg-
ner [20] observes himself, “the only specialized constructions which are
considered are those based upon sets and lists. . . linear precedence con-
straints are not addressed.” In our approach, po-multisets are endowed
with the trace of the partial order provided on FSs by the subsumption

235

N. Curteanu, P.-G. Holban

relation, while the linear precedence of linguistic objects is encoded
within lists. Their closure to sort (type) composition, including the
other sorts, provide a better expressive power than [20] for HPSG con-
structions. (c) In our approach, the linguistic realization (semantics)
of the F'S “inner” conjunction is the unification of F'S values, while the
“outer” conjunction of FSs has the meaning of set-intersection. The
“inner”, value-level disjunction in FSs is encoded by the corresponding
mathematical set of linguistic objects, while the linguistic realization
of the “outer”, FS-level disjunction has the meaning of set-union. (d)
We did not address here negation, but this is really not a problem be-
cause its meaning, i.e., its set-theoretical linguistic realization of the
negated FSs can be represented adequately as the “complementary”
set (related to the lexicon involved) to the set of words on which the
FS does hold, viz. that set of words on which does hold the negation of
the FS. (e) Finally, in section ?? we expose a (non-connected) graph
representing the hierarchy of the introduced sorts. This constructive
hierarchy is essential for the proposed linguistic realization, thus for
the computation of linguistic object interpretation within the parsing
process.

7 Conclusions

Which is the reason behind the proposed set-theoretic approach to lin-
guistic unification, why would be valuable this trend within the current
context of computational linguistics and in which conditions or restric-
tions? We consider these questions to be answered and a critical and
constructive view on the set-theoretic approach to be most important.
The results contained here can represent a good step, but we already
have in mind improved alternatives to the problems such as indexed
multi-sort definitions, better settings for the set-theoretical semantics
on FSs and NL representation, FS basic definitions through recurrent
sets or comprised paths, subsumption, unification, generalization, etc.

The logical approaches to linguistic F'S semantics are clearly dom-
inant in the literature, starting with [29], [24], and this is natural be-
cause representing the morphologic, syntactic and semantic properties

236

A set-theoretic approach to linguistic feature structures. . .

of the NL components can be done by assigning and calling them with
the labels that correspond to their linguistic function names within
the F'S. Thus the various levels of encoding the linguistic information
within FSs are labeled by linguistically suggestive names and these la-
bels are used level-free within their 'S representation during unification
processes.

Defining FSs as recurrently embedded sets is not something new.
The major difficulty with set-theoretic definitions of F'Ss is their linguis-
tic relevance and handling. If this problem can be solved conveniently,
there are a lot of many other advantages, to mention only the unifor-
mity of representation (particularly on the lexical and morphological
levels), simplicity of algorithms, computational performance, clear the-
oretical semantics [3], an uniform approach to parsing and unification
(and, in general, to linguistic operations) as set-theoretical model check-
ing. Of course, the logical operations involved by the syntactic and/or
semantic representation and functioning of 'S NL should be simulated
by simple and computationally efficient set-theoretical operations.

As the strong points of the present paper we consider to be the
following ones:

1. Definitions of the set-theoretical sorts involved within HPSG the-
ory [27], [28], their linguistic realization (semantics) and their
complete hierarchy. A special attention deserves the sort of po-
multiset, corresponding to HPSG “set descriptions” of objects,
its linguistic realization (computation formula), and its rank.

2. Set-theoretical recurrent definitions of non-indexed and indexed
multi-sorted values for FSs, being carried out on basic data types
such as trees, (rooted) directed graphs, and (rooted) directed
acyclic graphs.

3. A tableau-based subsumption definition for the non-indexed mul-
ti-sort FS values, extended subsequently to indexed ones. For
indexed FSs we could not avoid the graph-based approach to
subsumption definition and unification.

4. The Prolog implementation of general unification algorithms for

237

N. Curteanu, P.-G. Holban

the considered FSs, together with running them on some simple
examples.

We do not believe in the existence of a general solution to the ex-
posed problems but only in partial and local solutions, depending on
the linguistic application. As a general strategy to an efficient set-
theoretical approach to FS definitions we think on the strong use of
linguistic data typing, as well as specific definitions of structures and
operations depending on the types involved. The background priority
of the set-theoretical operations over the logical ones inside FSs is ex-
pressed even by the first important approach to logical semantics of
F'Ss, namely the feature description logic FDL in [29]: “The unification
operator on trees is just set union, except that if a tree is obtained which
1s inconsistent, then unification is undefined”. In other words, unifica-
tion is actually just a set-conditional union. Thus the set-theoretical
approaches to FS semantics and NL computational processing, as well
as their periodic recurrence in time, e.g., [3], are natural phenomena.
But while the set-theoretical semantics approaches to FSs are already
known to be more simple and clear than the corresponding logical ones,
the present paper tries to meet the computationally increasing impor-
tance of the same trend of set-theoretical approaches to the forthcoming
implementations of NL processing systems.

References

[1] Anne Abeillé, Y. Schabes, A. Joshi: Using Lezicalized TAGs for
Machine Translation, Proceedings of COLING’90, Helsinki, Vol.
3, pp. 1-6, 1990.

[2] Joan Bresnan (Ed.): The Mental Representation of Grammatical
Relations, MIT Press, Cambridge, Mass, 1980.

[3] H. Bunt, Ko van der Sloot: Parsing as Dynamic Interpretation of
Feature Structures, in: Recent Advances of Parsing Technologies
(Bunt & Tomita, Eds.), Kluwer Academic Publishers, Dordrecht,
pp- 91.

[4] Noam Chomsky: Lectures on Government and Binding. The Pisa
Lectures, Foris Publications, Dordrecht, Holland, 1982.

238

A set-theoretic approach to linguistic feature structures. . .

[5]
[6]
7]
8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Noam Chomsky: Barriers, The MIT Press, Cambridge, Mas-
sachusetts, 1986.

Noam Chomsky: Knowledge of Language. Its Nature, Origin, and
Use. Holt, Rinehart & Winston, New York, 1984.

Noam Chomsky: The Minimalist Program, The MIT Press, Cam-
bridge, Massachusetts, 1996.

Alain Colmerauer: Metamorphosis Grammars, in: Natural Lan-
guage Communication with Computers, L. Bolc (Ed.), pp. 133~
189, Springer-Verlag, Berlin, Heidelberg, 1978.

Alain Colmerauer: Prolog and Infinite Trees, in: Logic Program-
ming, K.L. Clark, S.-A. Tarnlund (Eds.), pp. 4566, Academic
Press, New York, London, 1982.

N. Curteanu, G. Holban, A. Carausu: On the Linguistic Fea-
ture Structure Unification, Proceedings of the 2nd National Collo-
quium on Languages, Logic, and Mathematical Linguistics, Bragov
(Romania), june 1988, pp. 93-110 (in Romanian).

N. Curteanu: A Marker Hierarchy-based Approach Supporting the
S-C-D Parsing Strategy, Research Report, Institute of Technical
Cybernetics, Bratislava, 30 pp, 1990.

N. Curteanu: From Morphology to Discourse Through Marker
Structures in the S—-C-D Parsing Strategy. A Marker Hierarchy-
based Approach, Language and Cybernetics, Akademia Libroservo,
Prague, pp. 61.

N. Curteanu et al.: A Linguistic Knowledge Base for Romanian,
Language and Technology (D. Tufis, Ed.), The Editing House of
Romanian Academy, pp. 101-108, 1996 (in Romanian).

N. Curteanu, A. Todiragcu: Syntactic and Semantic Theories of
Natural Language. Denotational Semantics. Research Report, Res.
Inst. Comp. Sci., Romanian Academy, lasi Branch, 96 pp., Dec.
1998 (in Romanian).

Verénica Dahl, Patrick Saint-Dizier (Eds.): Natural Language Un-
derstanding and Logic Programming, North-Holland, Amsterdam
& New York, XI + 243 pp., 1985.

Verénica Dahl, Patrick Saint-Dizier: Constrained Discontinuous
Grammars — A Linguistically Motivated Tool for Processing Lan-
guage, INRIA, France, Research Report No. 573.

239

N. Curteanu, P.-G. Holban

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

Gerald Gazdar: Phrase Structure Grammars and Natural Lan-
guages, Proceedings of the Intern. Joint Conf. on Artif. Intell.,
A. Bundy (Ed.), IJCAI Public., pp. 556-565, 1983.

Gerald Gazdar, G.K. Pullum: Generalized Phrase Structure
Grammar: A Theoretical Synopsis, Cognitive Science Res. Paper
CSRP 007, University of Sussex, 51 pp., 1982.

G. Gazdar, E. Klein, G. Pullum, 1. Sag: Generalized Phrase
Structure Grammar, Harvard University Press, Cambridge, Mas-
sachusetts, 1985.

Stephen J. Hegner: A Family of Decidable Feature Logics which
Support HPSG-Style Set and List Constructions, in: (C. Retore;
Ed.) Logical Aspects of Computational Linguistics, LNCS 1328,
Springer.

Alexander Herold, Jorg Siekmann: Unification in Abelian Semi-
groups, Journal of Automatic Reasoning Vol. 3, pp. 247-283, 1987.
Mark Johnson: Computing with Features as Formulae, Computa-
tional Linguistics, Vol. 20, No. 1, March 1994.

Ronald Kaplan, Joan Bresnan: Lezical-Functional Grammar: A
Formal System for Grammatical Representation, in: [2], 1982.

R. Kasper, W. Rounds: A Logical Semantics for Feature Struc-
tures, Reprint from the Proceedings of the 24th ACL Meeting,
Columbia University, New York, 10 pp., June 1986.

Martin Kay: Unification Grammar, Xerox Palo Alto Res. Center,
Palo Alto, California, 1983.

Martin Kay: Parsing in Functional Unification Grammar. In (D.
Dowty et al.; Eds) it Natural Language Parsing, Cambridge Univ.
Press, Cambridge, England, 1985.

C. Pollard, 1. Sag: Information-based Syntaxr and Semantics,
CSLI, Stanford, California, 1987.

C. Pollard, 1. Sag: Head-Driven Phrase Structure Grammar, The
University of Chicago Press, Chicago & London, 1994.

W.C. Rounds, R. Kasper: A Complete Logical Calculus for Record
Structures Representing Linguistic Information, Res. Report, Uni-
versity of Michigan, Ann Arbor, 13 pp., March 1986.

240

A set-theoretic approach to linguistic feature structures. . .

[30]

[31]

[32]

[33]

[34]

Patrick Saint-Dizier: Context-Dependent Determiners in Logic
Programming: Semantic Representation and Properties, IRISA,
Rapport No. 2977, Rennes, France, 1986.

Peter Sells: Lectures on Contemporary Syntactic Theories, CSLI
Lecture Notes No. 3, Stanford University, California, 1985.
Stuart Shieber: An Introduction to Unification-Based Approaches
to Grammar, CLSI Lecture Notes No. 4, Stanford University, Cal-
ifornia, 1986.

Stuart Shieber: A Uniform Architecture for Parsing and Genera-
tion, Proceedings of COLING’88, Budapest, Vol. 2, pp. 614-619,
1988.

N. Curteanu, P.-G. Holban: A set-theoretic approach to linguistic
feature structures and unification algorithms (1), Computer Sci-
ence Journal of Moldova, Vol. 8, No. 2(23), 2000, pp. 116-149.

Neculai Curteanu, Paul-Gabriel Holban, Received April 15, 2000
Research Institute of Computer Science,

Romanian Academy, Iagi Branch

B-dul Carol I, No. 22A, 6600, Iasi, Roméania

e-mail: curteanu@iit.tuiasi.ro

Appendices

A

The Prolog Unification Algorithm

/*Unification algorithms for multi-sort expressions of F'.Ss. When the */

/* lists, U-sets (disjunction), multisets (bags), po-multisets are made up of a */
/* single element, they are represented as the single-sort of the element itself. */
?- op(500, xfx, ’:?), /* the feature structure (F'S) as the list [attribute : value] */
op(450, xfy, ’*’), /* index "value means the indexed FS : (n) FS */

op(400, xfy, /), /* U-set (disjunction of values) FS1 / FS2 /.../ FSn */

op(350, xfy, '#’), /* po-multiset as a U-set (disjunction) of multisets */

op(300, xfy, ’*’), /* multisets (bags) of FSs as U-set (disjunction) of lists */
op(250, xfy, '+’). /* (usual, ordered) list of FSs (list of FS values) */

/* Unification of multi-sort expressions of non-indexed FSs */

unify(Expr, Expr, Expr) :- |. /* identity of multi-sorted FS expressions */
unify(bottom, _, bottom) :- !. /* all the inconsistent multi-sorted FSs */

unify(_, bottom, bottom) :- !. /* as the special FS BOTTOM */

unify([], Expr, Expr) :- . /* the universal multi-sorted FS as the special */
unify(Expr, [], Expr) :- !. /* FS TOP (also the neutral FS to unification) */

/* Disjunction of FS values with ...a disjunction of FS values */

unify(Vall / RVall, Val2 / RVal2, LResult) :- !,

unify(Vall, Val2 / RVal2, Val), unify(RVall, Val2 / RVal2, RVal),

(Val = bottom, Result = RVal, !

; RVal = bottom, Result = Val, !

241

N. Curteanu, P.-G. Holban

; Result = Val / RVal), !, 1, iniarDisj(Result, LResult).
/* with any other FSs */
unify(Vall / Val2, Expr, Result) :- !, unify(Expr, Vall / Val2, Result).
/* FS (multi-sorted) expression with ...a disjunction of FS values */
unify(Expr, Vall / Val2, LResult) :- !,
unify(Expr, Vall, RVall), unify(Expr, Val2, RVal2),
(Rvall = bottom, Result = RVal2
; RVal2 = bottom, Result = RVall
; Result = RVall / RVal2), !, 1, iniarDisj(Result, LResult).
/* Proper FS with a proper FS */
unify([Atr : Vall | Restl], [AtrVal2 | Rest2], Result) :-
select(Atr : Val2, [AtrVal2 | Rest2], Rest3), unify(Vall, Val2, Val),
(Val = bottom, Result = bottom
; unify(Restl, Rest3, Rest),
(Rest = bottom, Result = bottom
; Result = [Atr : Val | Rest])), !.
unify([Atr : Val | Restl], [AtrVal | Rest2], Result) :-
unify(Restl, [AtrVal | Rest2], Rest),
(Rest = bottom, Result = bottom
; Result = [Atr : Val | Rest]), !.
/*. ...a po-multiset of F'S values */
unify([Atr : Val | Rest], POmultiset # RestPOmultiset, Result) :- !,
unify([Atr : Val | Rest], POmultiset, NewFS), unify(NewFS, RestPOmultiset, Result).
/* A list with a list of F'S values */
unify(Listl + RList1, List2 4+ RList2, Result) :- !, unify(List1, List2, List),
(List = bottom, Result = bottom, !
; unify (RList1, RList2, RList),
(RList = bottom, Result = bottom, !
; Result = (List 4+ RList))), !.
/* ...a multiset of FS values */
unify(Listl + RListl, Multiset2 * RMultiset2, Result) :- !,
permutMultiset(Multiset2 * RMultiset2, DList3), !,
unify(Listl + RList1l, DList3, Result).
* ...a po-multiset of FS values */
unify(List + Rest, POmultiset # RestPOmultiset, Result) :- !,
partMset(POmultiset # RestPOmultiset, DMultiset), !,
unify(List + Rest, DMultiset, Result), !.
/* A multiset of FS values with a list of FS values */
unify(Multiset * URest, List + ORest, Result) :- !,
unify(List + ORest, Multiset * URest, Result).
/* ...a multiset of FS values */
unify(Multisetl * Restl, Multiset2 * Rest2, Result) :- !,
permutMultiset(Multisetl * Restl, DList1), !,
permutMultiset(Multiset2 * Rest2, DList2), !,
unify(DList1, DList2, Result).
/* ...a po-multiset of FS values */
unify(Multiset * Rest, POmultiset # RestPOmultiset, Result) :- !,
partMset(POmultiset # RestPOmultiset, DMultiset), !,
unify(Multiset * Rest, DMultiset, Result), !.
/* A po-multiset with a po-multiset of FS values */
unify(POmultisetl # Restl, POmultiset2 # Rest2, Result) :- !,
partMset(POmultisetl # Restl, DMultisetl), !,
partMset(POmultiset2 # Rest2, DMultiset2), !,
unify(DMultisetl, DMultiset2, Result), !.
/* ...any other multi-sort expression oFS FS values */
unify (POmultiset # RestPOmultiset, Expr, Result) :- !,
unify(Expr, POmultiset # RestPOmultiset, Result).
/* Final clause */
unify(, -, bottom).
/* Utility functions for non-indexed multi-sort expressions of FSs */
liniarDisj((A / B) /(C / D),LA /LB / LC /LD): !,
liniarDisj(A, LA), 1, iniarDisj(B, LB), 1, iniarDisj(C, LC), 1, iniarDisj(D, LD).
liniarDisj((A / B) / C, LA /LB / LC) - !,
liniarDisj(A, LA), 1, iniarDisj(B, LB), 1, iniarDisj(C, LC).
liniarDisj(A, A).
select(Atr : Val, [], -) :- !, fail.
select(Atr : Val, [Atr : Val | Rest], Rest) :- |

242

A set-theoretic approach to linguistic feature structures. . .

select(Atr : Val, [Atrl : Vall | Restl], [Atrl : Vall | Rest]) :- select(Atr : Val, Restl, Rest).

permutation([], []).

permutation([X | Y], Z) :- permutation(Y, W), insert(X, W, Z).
insert(Y, Xz, Xyz) :- append(X, Z, Xz), append(X, [Y | Z], Xyz).
append([], X, X).

append([X | Y], Z, [X | W]) :- append(Y, Z, W).

permutMultiset(Multiset, DList) :- multisetList(Multiset, List),
bagof(PList, permutation(List, PList), LPList), list DList(LPList, DList).
multisetList(A * B, [A | LB]) :- !, multisetList(B, LB).
multisetList(A, [A]).

listList([A], A) :- L.

listList([A | B], A + OB) :- listList(B, OB).

listDList([A], OA) :- !, listList(A, OA).

listDList([A | B], OA / LOB) :- listList(A, OA), listDList(B, LOB).
init(-, 1, [0]) - !.

init([A | B], K, [A | C]) - K > 1, K1 is K - 1, init(B, K1, C).

max(-, 1, Max, Max) :- |

max([A | B], N, OldM, NewM) :- N > 1, N1 is N - 1,

(A > OldM, max(B, N1, A, NewM)

; max(B, N1, OldM, NewM)), !.

item([Item | _], 1, Item) :- !.

item([- | List], N, Item) :- N > 1, N1 is N - 1, item(List, N1, Item).
copySt([- | List], 1, ItemK, [ItemK | List]) :- !.

copySt([Item | List], N, ItemK, [Item | NewList]) :-

N > 1, N1 is N - 1, copySt(List, N1, ItemK, NewList).

succesor(St, K, Stl) :- max(St, K, 1, Max), Max1 is Max + 1, item(St, K, ItemK),
ItemK < Max1, ItemK < K, ItemK1 is ItemK + 1, copySt(St, K, ItemK1, Stl).
part(-, 0, -, []).

part(St, K, N, Part) :- K > 0,

(succesor(St, K, St1),

(K = N, Part = [Stl | NewPart], part(Stl, K, N, NewPart)

; K < N, K1 is K + 1, init(St1, K1, St2), part(St2, K1, N, Part))

; K1 is K - 1, part(St, K1, N, Part)).

sizeof([], 0).

sizeof([A | B], M) :- sizeof(B, N), M is N + 1.

poMultiset_list(A # B, [A | LB]) :- !, poMultiset list(B, LB).
poMultiset_list(A, [A]).

listMultiset([A], Multiset, [B], NewMultiset) :- !, item(Multiset, A, ItemU),
(var(ItemU), ItemU = B, NewMultiset = Multiset

; unify(ItemU, B, Result),

(Result = bottom, NewMultiset = bottom

; copySt(Multiset, A, Result, NewMultiset))), !.

listMultiset([A | Restl], Multiset, [B | Rest2], NewMultiset) :- item(Multiset, A, ItemU),

(var(ItemU), ItemU = B, listMultiset(Restl, Multiset, Rest2, NewMultiset)
; unify(ItemU, B, Result),

(Result = bottom, NewMultiset = bottom

; copySt(Multiset, A, Result, Multisetl),

listMultiset(Restl, Multisetl, Rest2, NewMultiset))), !.

listDlist([A], UA, List) :- !, listMultiset(A, _, List, UA).

listDlist([A | Rest], UA / URest, List) :-

listMultiset(A, _, List, UA), listDlist(Rest, URest, List).

listMultiset([A | []], A) :- !

listMultiset([A | B], A * C) :- listMultiset(B, C).

listDMultiset(bottom / A / Rest, DMultiset) :- !, listDMultiset(A / Rest, DMultiset).
listDMultiset(A / bottom / Rest, DMultiset) :- !, listDMultiset(A / Rest, DMultiset).

listDMultiset(A / B / Rest, UA / URest) :- !,

listMultiset(A, UA), listDMultiset(B / Rest, URest).

listDMultiset(bottom / bottom, bottom) :- !.

listDMultiset(bottom / A, DMultiset) :- !, listMultiset(A, DMultiset).
listDMultiset(A / bottom, DMultiset) :- !, listMultiset(A, DMultiset).
listDMultiset(A / B, UA / UB) :- listMultiset(A, UA), listMultiset(B, UB).

partMset(POmultiset, DMultiset) :- poMultiset_list(POmultiset, List), sizeof(List, N),

init([], 1, St), part(St, 1, N, LPart), listDlist(LPart, DList, List),
listDMultiset(DList, DMultiset).

/* Unification for multi-sort expressions of indexed FSs (Obs.: TOPis []) */
unify_i(Exprl, Expr2, Expr) :- reduce(Exprl, RedExprl, Index1),

reduce(Expr2, RedExpr2, Index2), unify(RedExprl, RedExpr2, RedExpr),

243

N. Curteanu, P.-G. Holban

Expr = RedExpr.

/* RedExpr has to be updated with the index specific information */

/* Utility functions for multi-sort, including indexed, FS expressions */

reduce(Expr, RedExpr, Clndex) :-

colect_index(Expr, [], Clndex), reduce_index(Expr, C, index, RedExpr).
colect_index([Atr : Val | Rest], OldIndex, NewIndex) :- !,

colect_index(Val, OldIndex, Index), colect-index(Rest, Index, NewIndex).
colect_index(List + ORest, OldIndex, Newlndex) :- !,

colect_index(List, OldIndex, Index), colect_index(ORest, Index, NewlIndex).
colect_index(Multiset * URest, OldIndex, NewIndex) :- !,

colect_index(Multiset, OldIndex, Index), colect_index(URest, Index, NewIndex).
colect_index(Val / Rest, OldIndex, Newlndex) :- !,

colect_index(Val, OldIndex, Index), colect_index(Rest, Index, Newlndex).
colect_index(POmultiset # Rest, OldIndex, NewIndex) :- !,

colect_index(POmultiset, OldIndex, Index), colect_index(Rest, Index, NewIndex).
colect_index(I °[], Index, Index) :- !

colect_index(I “Val, Index, [I "Val | NewINdex]) :- !,

colect_index(Val, Index, NewIndex).

colect_index(-, Index, Index).

reduce_index([Atr : Val | Rest], Index, [Atr : RedVal | RedRest]) :- !,
reduce_index(Val, Index, RedVal), reduce_index(Rest, Index, RedRest).
reduce_index(List + Rest, Index, RedList + RedRest) :- !,

reduce_index(List, Index, RedList), reduce_index(Rest, Index, RedRest).
reduce_index(Multiset * Rest, Index, RedMultiset * RedRest) :- !,

reduce_index(Multiset, Index, RedMultiset), reduce_index(Rest, Index, RedRest).
reduce_index(POmultiset # Rest, Index, RedPOmultiset # RedRest) :- !,
reduce_index(POmultiset, Index, RedPOmultiset),

reduce_index(Rest, Index, RedRest).

reduce_index(1 “[], Index, Val) :- !, {, ind_index(I, Index, Index, Val).
reduce_index(I “Val, Index, RedVal) :- !, reduce_index(Val, Index, RedVal).
reduce_index(Val, _, Val).

find_index(-, [], -, []) - .

find_index(I, [I "J “Val | Rest], Index, FVal) :- !, f, ind_index(J, Index, Index, FVal).
find_index(I, [I "Val | _], _, Val) :- .

find_index(I, [- | Rest], Index, Val) :- find_index(I, Rest, Index, Val).

B Examples

PROLOG test queries Program answers

7- tell("tt.txt’).

?- nl, write(’FS to FS’). FS to FS

?- A =[nr: sg, agr : [cas : nom]], A=[nr:sg,agr:[cas:nom]]
B = [agr: [cas : nom], gen : fem], B=[agr:[cas:nom],gen:fem]
unify(A, B, U), U=[nr:sg,agr:[cas:nom],gen:fem]

nl, write("A=’), write(A),
nl, write('B="), write(B),
nl, write('U="), write(U).

?- A =[nr: pl,agr: [cas : acc]], A=[nr:pl,agr:[cas:acc]]
B = [agr : [cas : dat], gen : masc], B=[agr:[cas:dat],gen:masc]
unify(A, B, U), U=bottom

nl, write("A=’), write(A),
nl, write('B="), write(B),
nl, write('U="), write(U).

?- nl, write(’FS to (FS) disjunction’). FS to (FS) disjunction
?- A =[nr: sg], A=[nr:sg]
B = ([gen : fem] / [cas : nom]), B=[gen:fem]/[cas:nom]
unify(A, B, U), U=[nr:sg,gen:fem]/[nr:sg,cas:nom]

nl, write("A=’), write(A),
nl, write('B="), write(B),
nl, write('U="), write(U).

?- A =[nr: pl], A=[nr:pl]
B =[gen: fem] /[nr: sg] /[cas : acc], B=[gen:fem]/[nr:sg]/[cas:acc]
unify(A, B, U), U=|[nr:pl,gen:fem]/[nr:pl,cas:acc]

244

A set-theoretic approach to linguistic feature structures. . .

nl, write("A=’), write(A),
nl, write('B="), write(B),
nl, write('U="), write(U).
?- A = [cas : nom],
B = [cas : acc] / [cas : dat],
unify(A, B, U),
nl, write("A=’), write(A),
nl, write('B="), write(B),
nl, write('U="), write(U).
?- nl, write(’ FS to po-multiset’).
?- A =[nr: sg],
B = [gen : fem] # [cas :
unify(A, B, U),
nl, write("A="), write(A),
nl, write('B="), write(B),
nl, write('U="), write(U).
?-A=[nr: pl,
B =[gen: fem] # [nr:
unify(A, B, U),
nl, write("A=’), write(A),
nl, write('B="), write(B),
nl, write('U="), write(U).
?7- nl, write(’list to list’).
?-A=([nr:sg]+|[cas:
B = ([nr:sg] +[]),
unify(A, B, U),
nl, write("A="), write(A),
nl, write('B="), write(B),
nl, write("U="), write(U).
?7- A = ([nr: pl] 4+ [gen : fem]),
B = (] + [gen : masc]),
unify(A, B, U),
nl, write("A="), write(A),
nl, write('B="), write(B),
nl, write("U="), write(U).
?- A = ([nr: pl] + [gen : fem]),
B = ([] + [cas : nom]),
unify(A, B, U),
nl, write("A="), write(A),
nl, write('B="), write(B),
nl, write("U="), write(U).
?- nl, write('list to multiset’).
?- A =[nr: pl] + [gen : fem],
B =[] * [cas : nom],
unify(A, B, U),
nl, write("A="), write(A),
nl, write('B="), write(B),
nl, write("U="), write(U).
?7- nl, write('multiset to multiset’).
?- A= ([nr: sg] *[cas: nom]),
B = ([*[nr: sg),
unify(A, B, U),
nl, write("A="), write(A),
nl, write('B="), write(B),
nl, write("U="), write(U).
?- A = ([nr: pl] * [gen : fem]),
B = ([] * [cas : nom]),
unify(A, B, U),
nl, write("A="), write(A),
nl, write('B="), write(B),
nl, write('U="), write(U).
?- A = ([nr: sg] *[cas: dat]),
B = ([cas : nom] * [cas : acc]),
unify(A, B, U),
nl, write("A=’), write(A),

nomy],

sg] # [cas : acc],

nom]),

A=[cas:nom)]
B=[cas:acc]/[cas:dat]
U=bottom

FS to po-multiset
A=[nr:sg]
B=[gen:fem]#[cas:nom]
U=[nr:sg,gen:fem,cas:nom]

A=[nr:pl]
B=[gen:fem]# [nr:sg]#[cas:acc]
U=bottom

list to list
A=[nr:sg] T {cas:nom]
B=[nr:sg] T{]
U=[nr:sg] T {cas:nom]

A=[nr:pl]t {gen:fem]
B=[]" {gen:masc]
U=bottom

A=[nr:pl] T {gen:fem]
B=[]* {cas:nom]
U=[nr:pl]t {gen:fem,cas:nom]

list to multiset

A=I[nr:pl]T{gen:fem)

B=[]*[cas:nom]

U=[nr:pl]t {gen:fem,cas:nom]/
[nr:pl,cas:nom] T {gen:fem]

multiset to multiset

A=[nr:sg]*[cas:nom]

B=[]*[nr:sg]

U=[nr:sg] T {cas:nom,nr:sg]/
[nr:sg]t {cas:nom]/
[cas:nom] T {nr:sg]/
[cas:nom,nr:sg] T {nr:sg]

A=[nr:pl]*[gen:fem]

B=[]*[cas:nom]

U=[nr:pl]t {gen:fem,cas:nom]/
[nr:pl,cas:nom]+{gen:fem]/
[gen:fem] T {nr:pl,casinom]/
[gen:fem,cas:nom] T {nr:pl]

A=[nr:sg]*[cas:dat]

B=[cas:nom]*[cas:acc]

U=bottom

245

N. Curteanu, P.-G. Holban

nl, write('B="), write(B),
nl, write('U="), write(U).
?- nl, write(’po-multiset to po-multiset’).

7-A=((m: t] # [m:d]),
B=(c:r]#[c:w]),
unify(A,B,U),

nl, write("A="), write(A),

nl, write("B="), write(B),

nl, write("U="), write(U).
?-A=([m:t]# [m:d]# [c: b)),

B=([c:rl # [c: wh,

nl, write("A="), write(A),

nl, write('B="), write(B),

unify(A, B, U),

nl, write("U="), write(U).
TA=((m:t]#F [m:d] #[c:

B = ([csdfilc: wl),

unify(A, B, U),

nl, write("A="), write(A),

nl, write('B="), write(B),

nl, write("U="), write(U).
?- nl, write('Indexed FS ...’).
?- A =[agr: [nr: sg, cas : nom],

subj : 2"[agr : [cas : nom,nr : sg]]],

B =[agr: 1727[], subj : [agr : 3"17[]]],

unifyi(A, B, U),

nl, write("A=’), write(A),

nl, write('B="), write(B),

nl, write('U="), write(U).
?-told.

wl),

po-multiset to po-multiset

A=[m:t]#[m:d]

B=[c:r]#[c:w]

U=[m:t,c:r] T {m:d,c:w]/[m:t,c:w] T {m:d,c:r]/
[m:d,c:r]+{m:t,c:w]/[m:d,c:w]+{m:t,c:r]

A=[m:t]#[m:d]#[c:b]
B=[c:r]#[c:w]
U=bottom

A=[m:t]#[m:d]#[c:w]

B=[c:r]#[c:w]

U=[c:r,m:d] T {ciw,m:t]/[c:w,m:t] T {cir,m:d]/
[eir,m:t] T {ciw,m:d]/[ciw,m:d] T {cir,m:t]

Indexed FS ...
A=[agr:[nr:sg,cas:nom],
subj:2" [agr:[cas:nom,nr:sg]]]
B=[agr:1"2"[],subj:[agr:3"1"[]]]
U=J[agr:[nr:sg,cas:nom],
subj:[agr:[cas:nom,nr:sg]]]

246

