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A package of algorithms to devise cellular
automata in the hyperbolic plane and related
questions

Maurice Margenstern

Abstract

We introduce in this paper a new technique to deal with cellu-
lar automata in the hyperbolic plane. The subject was introduced
in [7] which gave an important application of the new possibility
opened by the first part of that paper. At the same time, we
recall the results that were already obtained in previous papers.

Here we go further in these techniques that we opened, and
we give new ones that should give better tools to develop the
matter.

1 Introduction

Cellular automata have been studied for a long time, see [2, 3, 10],
and they are most often used and studied in three spatial contexts:
cellular automata displayed along a line, cellular automata in the plane,
cellular automata in the three-dimensional space. There are also a few
investigations in more general contexts, see for instance [13], where
they are studied on graphs, connected with Cayley groups.

About the spatial representations, we should add the precision that
in all cases, we are dealing with euclidean space. Indeed, that preci-
sion is so evident that it seems useless to remind this so obvious basis.

Take for instance cellular automata in the plane with von Neumann
neighbourhood. If a cell has coordinates (z,y) with z and y integers, its
neighbours are (z,y+1), (z,y—1), (z—1,y) and (z+1,y). This descrip-
tion is so simple that we forget the reason of so an elegant systems of
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coordinates, which extends without problem to the regular grids of the
euclidean plane. Indeed, the group of displacements of the euclidean
space possesses a normal subgroup, the group of translations and di-
latations. That property namely is at the very basis of such elegant
and simple coordinates.

The situation is completely different in the hyperbolic case, starting
from two dimensions. The problem of finding an easy way to locate
cells in that plane is not so trivial as it is in the euclidean case, be-
cause in the hyperbolic case, there are no equivalent to the euclidean
group of translations and dilatations, because the group of hyperbolic
displacements contain no nontrivial normal subgroup.

If the hyperbolic plane was considered in tiling problems, see [12],
the study of cellular automata in that context was initiated by the
technical report [6]. Later, two papers appeared, or will appear by the
same authors, [7, 8] and two new technical reports by the present author
are published, [4] and [5]. The present paper gives an account of [4] and
[5], that are devoted to the representation of the regular rectangular
pentagonal grid in the hyperbolic plane, that we call later the pentagrid.
Here, we give new algorithms to locate cells of a cellular automaton
grounded on the pentagrid. These new algorithms are simpler than
the algorithm provided in [6]. Indeed they are linear in the size of the
data.

As the basic features of what is needed of hyperbolic geometry
are given in [6, 8] and [4], we shall not remind them here but simply
remind the beginning of the proof of the existence of the pentagrid that
is given in the just quoted papers. This reminding is necessary in order
to understand the new tools that we indicate here.

2 Representations of the pentagrid

We remind that we take the Poincaré’s disk as a model of the hyperbolic
plane. The pentagrid is the tiling defined by the tessellation generated
in the hyperbolic space by the regular pentagon with right angles. It
is also called the regular rectangular pentagrid and we shall most often
say simply pentagrid. Figure 1, below, illustrates the aspect of that grid
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restricted to a quarter of the hyperbolic plane that we defined in [6] and
again in [4] to be the south-western quarter. It should be noticed that
the pentagrid is the simplest regular grid of the hyperbolic plane. The
triangular equilateral grid and the square grid of the euclidean plane
cannot be constructed here as they violate the law about the sum of
angles in a triangle which is always less than 7 in the hyperbolic plane.

The existence and uniqueness of the pentagrid is a well-known fact
of hyperbolic geometry. It was first proved by Henri Poincaré, [11], and
other proofs were given later, for example in [1] and [9]. In [6], another
proof is provided which gives rise to a feasible algorithm in order to
locate cells. Here, we improved such an algorithm by constructing a
new oune, based on another principle. This gives rise to a family of
algorithms, and we show that among them, there is a simplest one
from the point of view of computer science.

2.1 Construction of the Fibonacci tree

The independent proof of the existence of the pentagrid is established
in [6] by means of a bijection which is constructed between the tiling
of the south-western quarter of the hyperbolic plane, say O, with a
special infinite tree: the Fibonacci tree. Notice that Q is isometric to
any quarter of the hyperbolic plane.

Let Py be the regular rectangular pentagon contained in Q that has
one vertex on the center of the unit disk and two sides supported by
the sides of Q. Say that P, is the leading pentagon of Q.

Number the sides of Py clockwise by 1, 2, 3, 4 and 5 as indicated
below, on figure 1. As 1 is perpendicular to 2 and 5 and as 4 is
perpendicular to 3 and 5, 2 and 3 do not intersect 5. The complement
of Py in Q can be split into three regions as follows. Line 2 splits Q
into two components, say R; and R} with R} containing Fy. Line 3
splits R} into Ry and R, with R/, containing Py. Line 4 splits R into
Py and R3. This defines the initial part of a tree: Py is associated to
the root of the tree, and let us consider that the root has three sons,
ordered from left to right and respectively associated to R3, Re and R;.
We can denote it as indicated by figure 1. We shall say that the root
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1s a 3-node because it has three sons.

First step: regions Py, Ri, R2 and R3, where region Rs is
constituted of regions Pi, S1 and Soy;

Second step: regions R; and R» are split as the quarter (not
represented) while region R3 is plit into three parts: P, Si
and S» as indicated in the figure.

Figure 1. Splitting the quarter into four parts

R; and Ry are isometric images of Q by simple displacements: R;
is obtained from @ by the displacement along 1 that transforms 5
into 2. Similarly for Ry with the displacement along 4 that transforms
5 into 3. The same splitting into four parts can be repeated for these
regions. Their leading pentagons are also 3-nodes.

Now, let us see the status of region R3. It is plain that Rj3 is not
isometric to Q. Let P; be the reflection of Py through 4 with sides
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which are now numbered anticlockwise, so that the same number is
given to the edges supported by the same h-line. In order to avoid
possible confusion, we put the name of the considered pentagon as an
index, if needed. Say that Pj is the leading pentagon of R3. Notice that
R3U P, is transformed into a region S by the displacement along 5 that
transforms 1p, into 4p,, say A, see figure 1. Define S; and S as the
respective images of Ry and Rz by A. Then notice that S = Sy U P;.
Say that S7 and S5 are the sons of R3 and associate also these nodes
to their leading pentagon. We say that the node associated to R3 is a
2-node.

Oune can clearly see how me may proceed now. Define the following
two rules:

e a J-node has three sons: on left, a 2-node and, in the middle and
on right, in both cases, 3-nodes;

e a 2-node has 2 sons: on left a 2-node, on right a 3-node.

Those two rules, combined with the axiom which tells that the root is a
3-node, uniquely define a tree which we call Fibonacci tree, see figure 2,
below.

The properties of the Fibonacci tree are indicated in [6], [7] and [8],
and they are thoroughly proved in [4]. We shall not remind all of them
here, where our attention is focused on the location of the elements
of the pentagrid. These properties are used in order to establish the
following important result proved in [6], [7] and [8] that uses a cellular
automaton based on the pentagrid.

Theorem 1 (Margenstern-Morita) NP-problems can be solved in poly-
nomaial time in the space of cellular automata in the hyperbolic plane.
2.2 A new tool, using the Fibonacci tree

Starting from [4], a new way is defined to locate the cells which lie
in the quarter, by numbering the nodes of the tree with the help of
the positive numbers. We attach 1 to the root and then, the following
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Figure 2. The standard Fibonacci tree: above a node: its number;
below: its standard representation

numbers to its sons, going on on each level from left to right and one
level after another one, see Figure 2, above.

That numbering is fixed once for ever in the paper. We fix also
a representation of the numbers by means of the Fibonacci sequence,
{Fi}ien-

It is known that every positive number n is a sum of distinct Fi-
k

bonacci numbers: n = Z a;.F; with o € {0,1}. Such a representa-
i=1
tion defines a word «y ... «1 which is called a Fibonacci representation
of n.
It is knwon that such a representation is not unique, but it can be
made unique by adding a condition. Namely, we can assume that in
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the representation, there is no occurrence of the pattern 11: if ; = 1
in the above word, then i = k or a; 41 = 0. Following [4], we shall say
that this new representation is the standard one. In [4], we give a proof
of these well-known features.

From the standard representation, which can be easily computed
from the number itself, it is possible to find the information that we
need to locate the considered node in the tree: we can find its status,
i.e. whether it is a 2-node or a 3-node; the number of its father; the
path in the tree that leads from the root to that node; the numbers
attached to its neighbours. This is done in great detail in [4] for the
considered tree.

As we shall use another kind of Fibonacci trees, we shall not give
more details about those tools that the interested reader may find in
[4].

3 Constructing a continuum of Fibonacci trees

Now we show that there is indeed infinitely many ways to attach Fi-
bonacci trees to the restriction of the pentagrid in a quarter of the
hyperbolic plane.

3.1 A new Fibonacci tree

In order to see that, consider again figure 1. Indeed, that figure contains
all the information that is needed in order to state the rules that lead
to the tree represented in figure 2.

Indeed, we can split the quarter in another way, as shown by fig-
ure 3, below.

This defines a new splitting which differs from the one defined in
[6, 7, 8] and [4], only on the way with which the regions that are
isometric to a quarter are chosen.

At this point, we can notice that we can apply the arguments given
in [6, 8, 4] in order to prove the bijection between the new tree and
the tiling of the quarter. Indeed, when we consider diameter of regions

101



M.Margenstern

that tend to zero as the index of the step of splitting tends to infinity,
the estimated that we then established are still in force here.

Let us now focus on the trees that are obtained. The Fibonacci
tree defined in the first papers can be rewritten as indicated in figure 2
where the numbers of the nodes are also displayed with their standard
representation.

The new splitting that we define below gives rise to a new kind
of Fibonacci tree, where the rules for the nodes are different for the 3-
nodes. In the case of the Fibonacci tree, the rules can also be expressed
as follows: 2 — 23 and 3 — 233. In the case of this new tree, let us
call it central Fibonacci tree, the rules are: 2 — 23 and 3 — 323.

Region Rj3 cousists of P, S1 and S».

Figure 3. Splitting the quarter into four parts in another way
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As already indicated, the numbering of the nodes in the tree is
fixed and so, the standard representation fixes the chosen Fibonacci
representation. However, the algorithms which gives the status of a
node, the number of the father, the path from the root to the considered
node and the numbers of its neighbours will be different, see [5] for more
details.

3.2 Infinitely many Fibonacci trees

It is now clear, that there are still other possible kinds of Fibonacci
trees.

For a systematic study, one could proceed as follows. Using the
previous notations, all possible rules for 2-nodes are 2 —+ 23 and 2 —
32 whereas all possible rules for 3-nodes are 3 — 233, 3 — 323 and
3 — 332. Denote these rules by, respectively, 2L, 2R, 3L, 3M and 3R.
Also remind that the status of a 2-node is 2 and the status of a 3-node
is 3.

Definition 1 Call general Fibonacci tree, an infinite tree whose nodes
have either two sons or three sons and such that there is a mapping T
of the nodes into the set {2L,2R,3L,3M,3R} satisfying the following

property:
for all node v, 7(v) € {2L,2R} if and only if v is a 2-node.

Say then that T matches the status of each node and that T is a
Fibonacci assignment, short an assignment, over the tree.

Due to the application to the tiling of a quarter of the hyperbolic
plane by regular pentagons with right angles, we shall always assume
that the root of the tree is a 3-node.

There are infinitely many general Fibonacci trees. They can be all
constructed by a random algorithm using a dice! as follows:

e construct the root as a 3 node, which is at level 0;

"We use a cubic, hence euclidean, dice in a three-dimensional euclidean space
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e iteratively construct levels one after another:

for each node of the current level:

— throw the dice and let r be the result;
— for a 2-node apply rule 2L iff r < 4, otherwise 2R;

— for a 3-node apply rule 3L iff r < 3, else 3M if r < 5,
otherwise 3R.

As we have only permutations in the position of the 2-node among
the sons of a node, this does not change the number of nodes which
occur and, by induction on the level of the considered tree, it is easy
to see that the number of nodes in a considered level is always the
same for any general Fibonacci tree. Consequently, the numbering is
always the same and, hence the standard representation attached to
the numbers of the nodes only depends on the depth of the node in the
tree, and on its rank on its level.

We can now state the following result:

Theorem 2 There is a continuum of general Fibonacci trees and the
trees are determined by their assignment.

Among all possible assignments, we shall be also interested by the
fized ones: assign always the same 2-rule to 2-nodes and, similarly,
always the same 3-rule to 3-nodes. There are six of them, in particular
the Fibonacci tree, which corresponds to the assignment defined by
rules 2L and 3L, and the central Fibonacci tree, which is associated
to the assignment defined by rules 2L and 3M. From now on, call
standard the assignment attached to the Fibonacci tree.

3.3 The preferred son property

In order to simplify the writing, we identify a node with its number
and also with the standard representation of its number. We shall say
that the representation of node v ends in (3, in short that v ends in G,
where g € {0,1}*, if § is a suffix of the standard representation of the
number attached to node v.
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In [4], we noticed and proved the following property:

Proposition 1 Let v any node in the standard Fibonacci tree. Among
the sons of v there is exzactly one, say w, that ends in 00; moreover,
the standard representation of w is obtained by appending two 0’s to
the standard representation of v.

We called preferred son the son with such a representation.

That property plays an important réle in the algorithms that are
given in [4]. It has also an important part in the algorithms that we
introduce here, see [5].

The property of the preferred son is also true for the central Fi-
bonacci tree. However, it is not true for any generalised Fibonacci
tree. For instance, the tree built according to the rules 2R and 3R
does not possess that property. Also the tree built according to the
rules 2L and 3R does not satisfy that property. We refer the reader to
[5] for more details.

Accordingly, following [5], we introduce the present definition:

Definition 2 The continuator of the node numbered by p is the node
whose number v is such that its standard representation is obtained by
appending two 0’s to the standard representation of .

When the continuator of a node happens to figure among its souns,
the considered son will be called the preferred son of the node. If this
happens for all the nodes of the tree, we shall say that the tree possesses
the preferred son property.

In order to characterise the preferred son property, we first need to
study the relations between any assignment with the standard one.

Relations between an assignment and the standard one

Let v a node of level k+1 in the tree. We shall also identify v
with its rank among the nodes of the same level. Let o be a Fibonacci
assignment. For each node different from the root, we associate a
function f, such that f,(v) is the father, under that assignment, of the
node with v as a number. We also identify f,(v) with its rank on its
own level.
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We shall denote the standard assignment by o, and we shall see
that in some sense, it possesses some maximal property.

Now, we define the following function on the nodes of a tree. Denote
by wq(v) the number of the rightmost son of v under assignment c.
A same node may have different sons under different assignments. To
which extent can they be different? Not much as it is proved by the
following relations, see [5] for the proofs:

Proposition 2 For all k and v we have:

wo(v) < wa(v) (1)
fa(V) Sfa(’/)- (2)

Characterisation of the preferred son property

Call an assignment 00-assignment if and only if it possesses the
following property: wunder the assignment, each node has among its
sons exactly one son whose number ends in 00.

We have the following result:

Theorem 3 A generalised Fibonacci tree possesses the preferred son
property if and only if it is associated to a 00-assignment.

This property is proved in [5] with theorem 1 and its corollary.
In [5], other characterisations of the preferred son property are

proved. We indicate the following one:

Theorem 4 An assignment « is a 00-assignment if and only if any
node that ends in 10 is a son of a 3-node.

In [5], we proved also the following result about the existence of
trees with the preferred son property:

Theorem 5 There is a continuum of generalised Fibonacci trees with
the preferred son property.
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Fized assignments

Among the assignments, some of them are good candidates for a
convenient representation of the hyperbolic plane. In particular, fized
assignments are a priori to be first investigated.

However, as shown by the studies of [4, 5], fixed assignments do
not have better properties than the standard one. Worse: as already
noticed, two of them do not possess the preferred son property, see [5].

In connection with the 00-assignments, an ideal assignment would
be a fixed 00-assignment such that the 2-son of a node is exactly its
continuator. Unfortunately, there is no such fixed assignment. How-
ever, there is a 00-assignment such that the continuator of the nodes
are exactly the 2-nodes. The assignment is almost a fixed one: the rule
applied to the node depends on the ending of the node: 00, 01 or 10.
See [5] for an exact construction with its proof.

4 Tools for the pentagrid

However, there is an assignment which is very near to what would be
an ideal one.

4.1 The best assignment

We have seen that there is no fixed 00-assignment such that the 2-nodes
would be exactly the continuators. What would happen if we would
replace continuators by nodes that end in 017

It can be seen that the rules 2R and 3M almost give the answer.
Indeed, under that assignment, 2-nodes end in 01 except the nodes
that are on the rightmost ranch or that are direct sons of nodes on
that branch, see [5]. But now, a slight modification gives the answer:

Theorem 6 There is a single 00-assigment such that 2-nodes are ex-
actly the nodes ending in 01. The assignment consists in applying rule
3R to the root and then for all the other nodes, to apply rule 2R on the
2-nodes and rule 3M on the 3-nodes.
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From now on call 01-assignment the assignment constructed in the-
orem 6, which is illustrated on figure 4.

As it is proved in [5], the following properties hold:

e the sons of a 3-node end respectively in 00 for the leftmost one,
in 01 for the middle one and in 10 for the rightmost one;

e the sons of a 2-node end respectively in 00 and 01;

e the continuator of a node is always its leftmost son.
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Figure 4. The Fibonacci tree associated to the 0l-assignment
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4.2 The algorithms

It is now clear that the Ol-assigment is better fitted to our goals that
any other one that we constructed before. Indeed, the rules to deter-
mine the status of a node are extremely simple and this simplifies also
the rules for finding the path from the root to the node when we know
the number attached to a node.

However, there is a small price to pay: the rules that give the
reflections performed along a path are not exactly the same since the
paths themselves are different from the paths of the standard Fibonacci
tree. However, the new rules are not much more complex than the rules
used in the standard case. We give them here, for positive orientation:

e if the node is a 2-node with ¢ as the reflection leading to its father,
then reflection 142 leads to its left son which always end in 00,
and reflection i+3 leads to its 2-son;

e if the node is a 3-node that ends in 00 with reflection ¢ leading
to its father, i+2 leads to its leftmost son, its continuator, i+3
leads to its middle son, the 2-son, and i+4 leads to the rightmost
son, which ends in 10;

e if the node is a 3-node that ends in 10 with reflection ¢ leading to
its father, then i+1 leads to its leftmost son, its continuator, i+2
leads to its middle son, the 2-son, and i+3 leads to its rightmost
son, which ends in 10.

In all cases, replace + by — if the orientation of the node is nega-
tive. The proof is analoguous to the one given in [4] for the standard
situation.

For the completeness of this paper, now we indicate the algorithms
needed for constructions using the pentagrid. Their correctness is
straightforward from the proofs of theorem 6 and proceed by induc-
tion on the levels of the tree and on the rank for the level that follows
the current one.

First of all, we start with the status of a node, the status being
here with three values, detecting whether the node ends in 00, 01 or
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10, giving respectively values 0, 1 and 2: take a to be the last digit of
the stantdard representation of the node, b to be the penultimate digit,
the status is then a+2.b.

Finding the father is also easy: erase the last two digits of the
standard representation in order to have a representation of the father.

Algorithm to find the path

This algorithm needs an auxiliary one, which, to the path, asso-
ciates the reflection through which the node is transformed into its fa-
ther and conversely. This defines function Index_Father which is given
by the first set of instructions that we give below in figure 5. Notice
that in order to compute this function, the initialisation step proceeds
outside the loop since the root is applied an exceptional rule.

With the help of functions Index_Father and Fuather as well as Con-
tinuator which appends two 0’s to the standard representation of the
node and then returns the corresponding number via Value, it is easy to
find the neighbours of a node, as indicated on the right side of figure 5.

As indicated before, the proofs of the correctness of those algorithms
rely mainly on the proof of theorem 6 which gives a lot of properties of
the Ol-assignment that are used in order to obtain the most straight-
forward computation as possible.

A complexity estimation

As we say that the provided agorithms are simple, such a statement
must be proved by a complexity analysis:

Theorem 7 The algorithms given in this section are linear in log(n),
where n is the number of the considered node, both in time and in space.

The proof is straightforward from the examination of figure 5 where
the algorithms are displayed. It is easy to notice that the algorithm that
gives the standard reprsentation of 7 is linear in log(n). The algorithm
that gives the path from the number of the node is also linear in log(n)
as it is trivially linear in the length of the standard representation.
As the function Index_Father is a loop on the path and as the corpus
of the loop has a time complexity that is bounded by a constant, the
linearity is clear. As the computation of Father and Continuator are
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Algorithm for Indez_Father Algorithm for the neighbours
list is Path(node) status := Status(node)
ref == 4 — path.top fa := Father(node)
case path.top is i := Index_Father(node)
0 => status := 2 . q
1 => status := 0 o _ Szgn(n.ode)
2 => status = 1 co := Continuator (node)
esac o neigh(i) := fa
pop path; sign is 1, case status is
while path is not void 0 => neigh(i+s.2) := co
loop . neigh(i+s.3) 1= co+1
sign is — sign; o o
if status is 0 or 1 ?ngh(z_FSA) = cot+2
then ref := if status(‘fa—.l) =1
ref+sign.(2+path.top); then neigh(i+s.1) :=
else ref .= fa—1 o
ref+sign.(1+path.top); else neigh(i+s.1) :=
fi co—1
status := path.top i
pop path neigh(i+s.1) 1= co—1
pool => neigh(i+s.2) := co
Index_Father is ref neigh(i+s.3) := co+1

neigh(i+s.4) :== co+2
neigh(i+s.1) := co—1
2 => neigh(i+s.1) := co
neigh(i+s.2) := co+1
neigh(i+s.3) 1= co+2
(

neigh(i+s.4) = fa+1

esac

Notice that in the case of a node that ends in 00, the algorithm
for the neighbours distinguishes between the two possible cases
for the left brother of the father.

Figure 5. Algorithms to use the 0l-assignment

also linear in log(n), the computation of the neighbours has also a linear
complexity.
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For the whole plane

Notice that, for the sake of simplification, the latter algorithm uses a
special kind of ”+” operator. The addition is taken modulus 5 with also
the convention that remainder 0 is written 5. The ”—" operator, that
is used when the orientation of the node is negative, is also understood
in the same way, modulus 5 and with the same convention relative to
0. Details are left to the reader.

In order to represent the whole pentagrid with trees constructed
with the Ol-assignment, we proceed in the same way as it was done
in [4] for the standard Fionacci tree. We remind the reader that we
suggested in [4] to encode each quarter in a class of equal remainders
modulo 4. In order to define the quarters, one of the diameters is
called the vertical one, the other, the horizontal one. Then we may
decide, as in [4], that multiples of 4 are devoted to the south-western
quarter, that all remainders 1 go to the north-western one, that all
remainders 2 go to the north-eastern one and that all remainders 3 go
to the south-eastern one.

We have now to indicate how we may connect four trees associated
to the 0l-assignment.

The connection on the rightmost branch of the tree is made by 2-
nodes. For such nodes, there is a missing connection when we consider
the tree for the quarter. That connection can be used to connect, say,
the south-western tree with the south-eastern one. The connection
corresponding to i+4 (or 1—4 if the orientation is negative) is made
with the leftmost node of the south-eastern tree which is on the same
level. 'This is possible: leftmost nodes on a branch are 3-nodes that
end in 00 and applying the rule of the left brother of their father, we
connect their 441 (reps. i—1) arc with the rightmost node of the other
tree again on the same level: this corresponds to the fact that the
pentagons that lie along an extremal branch of a tree are reflected on
the other quarter through the same reflection that defines that border.
As the reflection is perpendicular to the line, an extremal node must
be connected to a node of the same level in the other tree, see also [5]
for a figure.

112



A package of algorithms to devise ...

A remark

We already noticed that the endings 00 and 01 in the standard rep-
resentation of the positive numbers occur quite often. We also already
noticed that on another hand, the ending 10 is a bit less frequent. As
we found 00-assignments for which the 2-nodes are exactly either all
the nodes in 00, or all the nodes in 01, the question arises whether it is
possible to find a 00-assignment with the same property for the nodes
in 107

The answer is no: assume that such an assignment exists. We know
that each node contains its continuator among its sons. If a 2-node ends
in 10, if its left son is its continuator, the right son cannot end in 10
and then no rule apply to this node. And this already happens for the
leftmost node of level 1 which is 10. Its left son is its continuator and
so the process cannot be continued.

5 Conclusion

And so, we have now at our disposal a lot of Fibonacci trees which all
allow to locate cells of the pentagrid acurately. Our analysis proved
that from the point of view of computer science, the better assignment
is probably the Ol-assignment.

This work is a direct continuation of [4] which opened a new way to
locate cells on the pentagrid. As the quoted report, the method deals
with a quarter of the hyperbolic plane.

A lots of questions remain open. We shall indicate two of them.

The first one concerns 00-assignments in general. We proved that
there is a continuum of them. However, this does not indicate in some
sense whether they are more numerous among all the assignments than
the non 00-ones? As an example, we know that among the six fixed
assignments, four ones are (00-assignments. Is it possible to say some-
thing more precise about such assignments than what was proved by
theorem 57 Is there a probability for an assignment to be a 00-one and
if the answer is yes, what is that probability?

Another question deals with with the other regular rectangular grids
of the hyperbolic plane. It was indicated in [7] that the same construc-
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tion based on the standard assignment can be generalised. Is it possible
to say something more precise? At the time when this report is under
printing, works are going on this second line by the author and Gencho
Skordev, as announced in [4]. They contain a generalisation which also
gives a new picture for the pentagrid. This will appear in a forthcoming
preprint paper in the University of Bremen.
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