Computer Science Journal of Moldova, vol.8, no.2(23), 2000

Primal-Dual Method of Solving Convex
Quadratic Programming Problems

V. Moraru

Abstract

This paper presents a primal-dual method for solving quadratic
programming problems. The method is based on finding an exact
solution of a finite sequence of unconstrained quadratic prigraam-
ming problems and on finding an aproximative solution of con-
strained minimization problem with simple constraints. The sub-
problem with simple constraints is solved by the interior-reflective
Newton’s method [6].
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1 Introduction

The quadratic programming problems are very important for con-
strained optimization. Among the known methods of solving of a
general nonlinear programming problem, a special place is occupied
by Newton and quasi-Newton methods. They are based on sequential
quadratic programming [1-3]. In these methods, the optimal solution
is being determined as a consequence on an iterative process, during
which a quadratic programming problem is solved at each step. That
is why the efficiency of the methods of solving quadratic programming
problems based on sequential quadratic programming (SQP), depends
mainly on the efficiency of the algorithm of solving quadratic program-
ming subproblems.

There is a great number of algorithms of solving quadratic program-
ming problems. A relative complete bibliography of these methods can
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be found in [4]. In the case when we have a quadratic programming
problem with a big number of variables and constraints, it is necessary
to execute a relatively big number of arithmetical operations for the
solution of the problem. In such situations, it is more convenient to
solve a finite succession of quadratic programming problems without
any constrained or with simple bounds, instead of the solution of the
counsidered problem. Such a method is presented in this work.

We consider a quadratic programming problem written in the fol-
lowing form:

1
flz) = §CL‘THCL‘ + ¢gF'z — min (1.1)

subject to linear constraints Ax < b,

where H is a symmetric matrix, positive definite of the n xn dimension,
A is a m X n matrix, g,z and b are column vectors, g and z € R", and
b € R™. The symbol 7" denotes the operation of transposition.

It is well known (see for example [2,3,5] ) that the optimal solution
x,of the problem (1.1) is defined by the relation:

z, = —H AT\, +9). (1.2)
The Lagrange multipliers vector A, = (AL, A2,..., A™)T is the solution
of the dual problem:
1
o(A) = 5,\TD,\ + ¢I'A — min (1.3)

subject to X' > 0,i=1,2,...,m,

where D = AH 'AT ¢ =b+ AH g.

If the inverse matrix H was known, then the quadratic program-
ming problem (1.1) would be equivalent to the problem (1.3) which
has simple constraints. In [4], a method is proposed for the solution
of the problem (1.1), in which the inversion of matrices is avoided.
The method results from joining the solution of some systems of linear
equations with the same matrix H with the method of selecting the
active constraints.
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Below, another algorithm is proposed for the solution of the con-
sidered problem (1.1), in which the matrix inversion is also avoided.
Solving (m + 1) quadratic programming problems without constrains,
we obtain a quadratic programming problem with simple constraints
equivalent to the dual problem (1.3). These methods are described in
Section 2. In Section 3, an approximate method of the Newton’s type
for the solution of the quadratic programming problem with simple
constraints is described, which is an adaptation of the version pro-
posed by Coleman and Li in [6]. Finally, in Section 4, the extension to
Semidefinite Programming will be discussed.

Now we will briefly describe the notation used in this paper. All
vectors are column vectors. The superscript notation z! referes to an
element of the vector z. A subscript k is used to denote iteration
numbers. Superscript T denotes transposition. " denotes the space
of n-dimensional real column vectors. For symmetric matrix A we use
A > 0 to denote that A is positive semidefinite, and A > 0 to denote
that A is positive definite. We write A > B to denote that A — B = 0.
We use T'r (A) to denote trace of square matrix A, namely the sum of
the diagonal elements of A. Given two matrices A and B, we define
the inner product of A and B as (4,B) = Tr (A'B). wvec(4) is a
column vector whose entries come from a given matrix A by stacking
up columns of A.

2 Description and Motivation of the Method

We cousider the quadratic programming problem having the form (1.1).
The method proposed for the solving of this problem consists in the
following:

Step 1 The free minimum point zy of the quadratic function is
determined:

1
f(z) = §a:THa: +gTz. (2.1)
The calculation of the minimum zy implies the solving of the system
of linear equation: Hxz = —g; however, a method of unconstrained
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optimization such as that of conjugate directions can be used.
Step 2. The vector

T

S

T T T
d = Azy = (ay z9, a3 xg, . .., a5 Tp)

is being determined by the point zg, where az-T is the line 7 of the matrix
A. If d < b then z, = z( is the optimal solution and the problem (1.1)
is solved, otherwise it is passed on to the following step.

Step 3. The free minimum points z1, 3 ..., z,, of the respective
quadratic functions are calculated:

1
filz) = §xTHx —alz,i=1,2,...,m. (2.2)

This may by achieved by solving the linear equation systems: Hz; = a;,
1=1,2,...,m with the same matrix H, or by applying other methods
of unconstrained optimization.

Step 4. Using the solution obtained above, at step 3, we construct
the matrix W = (w;;) with the dimensions m x m. This matrix has
the elements w;; = aiij, 1<4,7 <m.

Step 5. The quadratic programming problem with simple con-
straints is solved:

min{p(}) = %ATW)\ +b—=d) A A>0}. (2.3)

Step 6. The optimum solution is found:

m
Ty = T — Z Mo, (2.4)
1=1
where A, = (AL A2 ... A™)T — is the optimum in (2.1).

The validity of this method is justified by the following theorems
and lemmas.

Lemma 1 2.1 Let the matriz W is symmetric and positive semidefi-
nite with the diagonal elements wy > 0,1 = 1,2,...m. If m < n and
the vectors ay,ag, ..., an, are linear independent then det (W) # 0 (the
inverse matriz W1 exzists) and the matriz W is positive definite.
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Proof. Therefore, we obtain

Y L R -1 I
wzj—aixj—a:iHa:]—a:jHa:z—ajH Hx,—ajx,—wﬂ,

for any 4, . Hence W1 = W.

If we denote X = [z, z9, ..., Tpp] - a matrix with its dimensions m x
m, with columns consisting the vectors =1, x2, ..., Z,,, then according to
what was written above we can write: W = XTHX. So W is a positive
semidefinite matrix with w; = x;[H x; > 0, because the matrix H is
definite positive as being.

If we have a system of linear independent vectors {a;}!=" then the
rank (X) = m and, as a consequence, rank (W) =m and W > 0. The
lemma is proved. l

Lemma 2 2.2 The quadratic programming problems (1.3) and (2.3)
are equivalent.

Proof. According to the proposed algorithm HX = A’ and so
W =XTHX = XTAT = AH 'AT.

We also notice that d = —AH ~!g (see step 1), so, as a consequence,
we have c = b+ AH 'g = b — d. The lemma is proved. B

Corollary 3 The quadratic programming problem (2.3) has an unique
optimal solution.

We notice that z, that has been calculated using formula (2.4)
coincides with the one that was calculated using formula (1.2). This
justifies the proposed algorithm. This result may be proved directly
and is formulated in the theorem that follows:

Theorem 4 2.1 Let x1,22,..., %y, be the points determined by m + 1
successive minimizations of the quadratic functions (2.1)-(2.2) and let
A« be the optimal solution of the quadratic programming problem with
simple constraints (2.83). Then x. determined from formula (2.4) is an
optimal solution of the quadratic programming problem (1.1).
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3 Solving a Quadratic Programming Problem
with Simple Bounds

In this part of the paper will be shown how a quadratic programming
problem of the following form can be solved:

1
p(A) = EATW)\ 4¢P\ — min
subject to A > 0,

where W is a positive semidefinite matrix of the dimension m x m, and
c € R™. A necessary and sufficient condition for A, to be the optimal
solution of the considered problem is the existence of u, € R™ so that
the Karush - Kuhn - Tucker conditions can be satisfied:

Vo(As) — ps =0, (3.1)

My, =0, (3.2)

A >0, s > 0. (3.3)

It follows from the above relations that if A\ > 0 then 6%()\’\2-*) =0,
and if AL = 0 then 8%(/\/\1-*) > 0. Taking these into consideration, we

can say that ), is a solution of the following system of equations and
inequalities:

(3.4)

00(N) _
i A ox =0,
AN>0,i=1,2,...,m.

But the system (3.4) can have solutions that do not satisfy relations

(3.1)-(3.3). For example, an alien solution is X =0 and aggj\) < 0 for

a certain 1 € {1,2,...,m}. As follows, we are going to use a procedure
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that has at its basis the idea from [6], to replace system (3.4) by another
suitable one, whose solving would lead to the optimal solution of the
given problem.

Let V (A) = diag (v1 (A),v2(A),...;um (X)) be a diagonal matrix
having the the diagonal elements defined as follows:

AN

e 0p(N)
1, if =57 <0.

v (A) =

{ (Ai)% if 9p(A) > 0,

Then the system (3.4), as it was shown in [6], can be reduced to the

following equivalent system:

V()2 Ve (A) =0,
No>0,i=1,2,...,m. (3:5)

As follows, we are going to apply formally Newton’s method for
solving the system of equation (3.5) . This requires Jacobian matrix:

() = [V Ve ()] -

e dmg(@v? ) 930 9 (A))

INL T 9Nz T T 9am
(92N Fp(N)  Ip(N)
><dwg< a0 o ) (3.6)
The vector function V (A\)? Vi (A) is continuous. We can notice that if
85—/(\;\) = 0 for a certain i € {1,2,...,m} then the function v? (\) is not
differentiable and we can not determine the Jacobian matrix (A). It
2
is suggested in this case in [6] to write artificially 81}5}\({\ ) = 0. For this,

we cousider a diagonal matrix

E () = diag (e () €2 (V) .., e (V)

o2
O

9p(N).
ONT

X

in which the diagonal elements represent the product
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390({\) if 390({\) >0
(\) = ox 0 TN ’
¢ () { 0, otherwise,

dp(N)
O

= 0 and the Jacobian matrix takes the following form:

for + = 1,2,...,m. In other words, if
()
AN

= 0 then we presume that

(N = [v (V)2 Ve (A)] SVOEW+EN.

Let Ay > 0 be the current approximation to the solution of problem
considered. Taking into consideration all written above, a Newton’s
step for solving system V (A\)? Vo (A) = 0 is defined as follows:

VP W EOD] (A=) = VWPV, 3D)

We denote X as the solution of the linear system (3.7). It is clear
that the calculation of )\, according to (3.7) is possible only when
matrix V (A\y)? W + E (\;) is nonsingular. Matrix W, by assumption,
is positive semidefinite. We obviously have

A (V M2W + E (,\)) 2=V WV N 2+ L EO) 2>

m
> Zei (M) (21)2 >0

i=1
for any z € R™ and any A > 0. This means that matrix V (\)?W +
E ()) is positive definite VA > 0 and, as a consequence, is nonsingular.
In this way a solution of system(3.7) is guaranteed to exist. Having this
solution, a new approximation A\gy41 = A + o (Xk — )\k) is calculated,
where step oy, is determined according to the following relation:

—\i . .
ar =minq 1, — k| X, =ML <0p.
X — AL

See [6] for details.
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4 Extension to Semidefinite Quadratic Pro-
gramming Problem

Semidefinite programming has applications in diverse domains. A sur-
vey of semidefinite optimization problem and of its applications in con-
vex constrained optimization, control theory and combinatorial opti-
mization is given in [7]. Most of the succes is related to the links
between the Lagrangian and semidefinite relaxation, as studies in [§].

The above method can be extended to the following semidefinite
quadratic programming problem:

1
f(z) = §:I:TH:I: + gl'z — min

n
subject to inAi > B, (4.1)
i=1
where A;, B are mxm symmetric matrices. The matrices A, Ao, ..., Ay

are further assumed to be linearly independent.
We define the Lagrangian for the problem (4.1):

L(z,A) = f(2) = (A, a'A; — B),
=1

where A is a m xm symmetric positive semidefinite matrix of ” Lagrange
multipliers”.

The point z, is an optimal solution for (5.1) if and only if there
exists a nonzero symmetric m X m matrix A, > 0 such that the pair
(x4, Ay) satisfies (see, e.g., [9])

VL (2, Ay) =0,
n .
(As, > 2t Ay — B) =0,

=1

YxtA; — B> 0.
=1
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~ n . ~

Let A(z) = Y 2'A; — B. Using the substitution A, = A2, where
i=1

A, is a symmetric positive semidefunite matrix, we can rewrite the op-

timality conditions as

Tr EK*Alx* 0
Heovg- | T A, AN, 0

r (A*AnA*>

N

Tr (X*Z(x*) 7\*) —0, A(z) 0.

For simplification, we use u (7\, A) to denote the vector
(rr (Ra,R) . 7r (Ra,) ....7v (R4,K))
By (4.2)

rom b (g u(Ra)).

The corresponding dual problem is

inf, (%xTHx +gla —Tr (INXZ (z) K)) — max } ‘ (4.3)

subject to A=AT

Using (4.2) and remembering that
~ . — A T (% _
(A,;x’A, B) [u (A,A)} H 'y (A,A)
—g'H (K,A) — (A, B),
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we show that the problem (4.3) can be represented in the following
way:

(R )] o (R A) - g i () +

+(A\,B) — ¢ H 'g — max

subject to A > 0, A=A".

By M we denote the matrix of the n x n? dimension:

[vec (Al)];
o | s
[vec (An)]"

We obtain u (K, A) = Mwvec(A). Thus we have reformulated the
dual problem (4.3) to the following problem:

—% [vec (A)]" MY H™ Mvec (M) +

+ [vec(B) + MTH&]TUec (A) —g"H g — max

subject to A > 0,A = A”".
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