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A set-theoretic approach to linguistic feature
structures and unification algorithms (I)

N. Curteanu P.-G. Holban

Abstract

The paper proposes formal inductive definitions for linguis-
tic feature structures (FSs) taking values within a class of value
types or sorts: single, disjunctive, (ordered) lists, multisets (or
bags), po-multisets (multisets embedded into a partially ordered
set), and indexed (re-entrance) values. The linguistic realization
(semantics) of the considered sorts is proposed. The FSs having
these multi-sort values are organized as (rooted) directed acyclic
graphs. The concrete model of the FSs we had in mind for our
set-theoretic definitions are the FSs used within the well-known
HPSG linguistic theory. Set-theoretic general definitions for the
proposed multi-sort FSs are defined. These constructive defini-
tions start from atomic values and build recurrently multi-sorted
values and structures, providing naturally a fixed-point semantics
of the obtained FSs as a counterpart to the large class of logical
semantics models on FSs. The linguistic unification algorithm
based on tableau-subsumption is outlined. The Prolog code of
the unification algorithm is provided and results of running it on
some of the main multi-sort FSs is enclosed in the appendices.
We consider the proposed formal approach to FS definitions and
unification as necessary steps to set-theoretical implementations
of natural language processing systems.

1 Introduction

The notion of linguistic feature represents a central concept in many
contemporary linguistic theories or linguistic tools. We simply remind
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of GPSG (Generalized Phrase Structure Grammar) model developed by
G. Gazdar et al. [17], [18], [19], LFG (Lezical-Functional Grammars)
introduced by J. Bresnan and R. Kaplan [2], [23], logic grammars de-
veloped by A. Colmerauer [8], [9], V. Dahl and P. Saint-Dizier [15], [16],
[30], functional unification grammars introduced by M. Kay [25], [26],
HPSG (Head-driven Phrase Structure Grammar) theory developed by
C. Pollard and 1. Sag [27], [28], etc. Feature structures (F'Ss), conceived
as data types of linguistic features, are the essential declarative object
for all these theories when they are viewed as unification-based for-
malisms (despite appearances, even in Chomsky’s syntactic theories [4],
[5], [6], [7] )- S. Shieber’s PATR-II [32] was actually the first unification-
based environment using explicitly linguistic data types based on FSs
and their unification algorithm(s) to solve the parsing process. FS-
based extensions to other linguistic theories, formalisms or strategies
are currently common phenomena: e.g., N. Chomsky’s GB (Govern-
ment and Binding) and MinP (Minimalist Program) [4], [7], C. Pollard
& 1. Sag’s HPSG [27], [28], A. Joshi’'s TAG (Tree Adjoining Grammar)
[1], etc., to which we could add the N. Curteanu’s S-C-D (Segmentation-
Cohesion-Dependency) linguistic strategy [11], [12], relying mainly on
Augmented X-bar Schemes as basic (constructive) syntactic structures,
and on functional (relational) marker classes along with their hierar-
chies.

As we have shown in [14], the semantics of the parsing process is de-
scribed in the literature mainly by three important approaches: parsing
as model-theoretic interpretation, parsing as automated deduction, and
parsing as operational semantics of abstract machines. E.g., in pars-
ing as model-theoretic (dynamic) interpretation [3], FSs are integrated
in a set-theoretically oriented formal language, called GEL (General-
ized Ensemble Language), where grammatical or phrase structure rules
become propositions in a dynamic semantics of GEL. Parsing a natu-
ral language (NL) phrase or sentence means evaluating recursively the
corresponding GEL propositions to the minimal changes in the models
making them true.

Inspired by [3] and our previous results [10], the goals of the present
paper are: (1) to take into account the usual linguistic data types

117



N. Curteanu, P.-G. Holban

(e.g., those in HPSG) as sorts and to (re)define their set-theoretically
oriented linguistic realization (semantics); (2) to define FSs in a set-
theoretic manner, such that particular cases of the general definitions
to fall on several important linguistic data types and theories (such as
FSs in HPSG); (3) to become transparent that behind logical opera-
tions applied to NL categories, both at the surface and deep levels of
NL representation structures, can be inserted a layer of set-theoretic
operations on FSs, very efficient computationally; and (4) to obtain
general and set-theoretical shapes of the algorithms involving linguis-
tic operations on FSs such as subsumption, unification, generalization
etc. which are essential to the NL parsing process.

2 Sorts and feature structures:
approaches and examples

Before coming to formal definitions, let us first consider some intuitive
examples that suggest the linguistic relevance of the following primi-
tive concepts: linguistic feature (LF), linguistic category (LC), feature
structure (FS), linguistic data types or sorts, etc. The following simple
LF belong to the finite set of features: N (noun), V (verb), Case, Bar
(the projection level in X-bar schemes), Gend (gender), Plu (plural),
CAT (category), Pers (person), Agr (agreement), etc. Simple LF can
take values from the specified sets:

Plu = {+,—}; Bar ={0,1,2}; Case = {nom,acc, gen, ...};
Pform = {by, to, for,...}; Gend = {masc, fem}; (1)
V={+,-}; N=+4,—; Pers = {1,2,3}; etc.

A LC is (e.g., in GPSG) a partial function defined on the set F' of
LFs, taking values in the set V of possible feature values. Thus, a LC
is a finite set, or bundle, of pairs:

D = {(f1,v1), (fo,v2), -, (fn, 0n)}- (2)

FS is a concept similar to that of the above LC, but a LF in FS
can take as value an atomic one or any other FS. In the definition
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of a FS there is important to emphasize that a FS is considered as a
mathematical function, i.e. a feature attribute takes a unique value, no
matter which type this value should be: single (i.e. atomic or another
F'S as) type value, disjunction-type value, list-type value, multiset-type
value, po-multiset type value, indexed (sharing-type) value, etc. Thus
the value assigned to a feature attribute must be wunique and must
belong to the corresponding set of feature attribute values. This is
what we called well-defined property of an attribute and, by extension,
of a whole F'S.

A FS, as considered in (2), may be written as matrices of the form:

[ f1:v1]
forv

D= . =[fi:v], 1 €{l+n}. (3)

_fn $Un |

Let us consider the following examples of matrix representations of
FSs:

number : sz’ngular]

t:
agreemen lperson: 3rd

. SN C))
number : singular
person : 3rd

subject : lagreement : [

As it can be observed in (4), for each element of the matrix there
exist a pair (f,v). A natural extension of FS (3) is to consider various
sorted-type values for the features of the structure, as in (5).

number : singular

person : 1st V (1) V [number : plural]

agreement : l

. - (5)
number : singular
person : 2nd

subject : [agreement (1) l
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General FSg, i.e., whose values can be other FSs, and their unifica-
tion algorithms from logic and linguistic points of view are discussed in
[26], [27], [28], [29], etc. A set-theoretic approach that formally defines
the F'Ss and their unification algorithms may be found in [10].

Since the HPSG theory [27], [28] is a classical example for a well
typed FSs, HPSG will be considered here as a typical reference of the
FSs we intend to define.

For the FS D = [f; : v;], ¢ € 1+ n, D is the name of the whole
FS, f; are its attributes (names), and v; are the corresponding values.
D is well-defined iff (if and only if) D is a finite function defined as
D(f;) = vi, i = 1 =+ n, with the values v; belonging to the value set of
the corresponding f;, no matter which kind of sorts are v;: single, list,
disjunctive (called V-set), multiset, po-multiset etc.

The value v; within a FS may be optionally labeled with an index
(n), written as a natural number (or another expression) in parentheses.
Thus the general form of a FS wvalue is (n)v;, a non-indexed value of
a FS being the case when the index is missing (or has a special value
with the same meaning).

Often, the particularly FS indexed value (m)[] ([] denoting the
empty FS) is reduced simply to the occurrence of the index itself, viz.
the expression of the F'S value is just (m). In a general F'S, for a certain
index (n), there exists at most one value (n)v;, with v; # []. However,
it is also possible that, inside a FS, one or several indices to be used
just in the form (n)[], or simply (n). The role of such a bare index
within a FS is that of a global variable, whose type (sort) and unique
instance depends on the context which that FS is processed in. Now,
the FSs met in the HPSG theory may be defined informally as follows:

e D can be the empty FS, denoted by [].

e Inthe FS D = [f : v], the value v may be an atomic one a, with a
being a constant, or another FS. Such a v is called single-sorted
value.

e A powerful constructor of FSs is the conjunction operator on FSs,
ie. if [fi :wi], i = 1,2,...,n, are FSs then D = [f1 : 1] A [f2 :
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va]A. . A[fn : vp] is a FS, written as the bundle of FSs in the form

(fl 1]
fa g

D= |~ |, similarly to (3), provided that f; = f; = i = j.
Lfn P Un

Any permutation of the contained pairs (f; : v;) in D gives an
“equivalent” or isomorphic FS for any linguistic operation on D.

e The logical connector of disjunction is another powerful construc-
tor of new values, called disjunctive FSs. The FS language in
HPSG (and in many other linguistic theory languages, based or
not on F'Ss) utilizes disjunctive FS values that we shall call V-sets,
e.g., (5), (8). We shall denote the disjunctive value v1 Vva V...V,
with the specific V-set notation Y{vy,va,...,v,}".

Since we are at this stage of obtaining new sorts on the basis of
logical connectives, let us specify that we shall not deal with negation
here. This topic was and still is hard worked, with essential results,
but we are interested here only in describing the “positive” sorts of
FS values. Anyway, for the logical connectives considered, conjunction
and disjunction (as well as for different kinds of negation), there exists
clear and sound set-theoretical semantics.

e In the FS D = [f : v], the value v may be an usual, ordered list,
denoted as HPSG [27], [28] v = (v1,v2, ..., vy), that we shall call
simply “list”, made up of atomic values or not. List-valued FSs
occur frequently in HPSG as values of the attributes SUBCAT,
QUANTS etc., e.g. (8).

e In the FS D = [f : v], the value v may be an unordered list
that in mathematics and/or computer science is called “multi-
set”, or “bag”. We shall use for a multiset (or bag) the notation
v =" {v,v9,...,0,}". A multiset is a common mathematical
set whose elements may (finitely times) be repeated. This sort is
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not properly met in HPSG [27], [28] but we need it from technical
reasons to define the next more complex sort of multiset with a
partial ordering relation.

In the FS D = [f : v], the value v may be a multiset whose
elements belong to a (larger) partially ordered set, (E, >par).
This sort is denoted by v =P {v,v9,...,v,} TP and called po-
multiset. There is no relationship between the existing or non-
existing of a linear precedence order among the elements of a
list and the partial ordering relation >y, to which the elements
v; (1 = 1+ n) belong eventually. The po-multiset corresponds
to what in HPSG is called “set description” and (unfortunately)
denoted by “{...}”. The HPSG “set descriptions” or “sets” are,
actually, po-multisets whose elements are FSs belonging to the
set F'S of all FSs, partially ordered by the subsumption relation.
Thus, in HPSG, the partial order >,..+ is identified with the
subsumption relation on FSs. E.g., TP{[], []} P is an HPSG FS,
according to the relation (90), [27, pp. 48], but, of course, not a
set in the mathematical sense, where the repetition of the same
element is not allowed. An illustrative example of what we called
a po-multiset (or “set description” in [27] ) is the following ([27],
p. 47, (88)):

+p { [MAKE TOYOTA} [MAKE DATSUN

+p
YEAR 1984 YEAR 1985 , [COLOR RED]} - (6)

As Pollard and Sag [27] remark, “there is no prohibition against set

(n.b.: our po-multiset) descriptions of the form {A,, ..., A, } where two
of the A; turn out to be descriptions of the same object.” The construc-
tion of a po-multiset is characterized by the following two properties
([27], pp- 47): (i) every object in a po-multiset is described by at least
one of the enclosed descriptions; and (ii) each description in the po-
multiset gives information about only one member of the set of objects
being described. Thus (6) gives information that the lot of cars contains
a Toyota, a Datsun, and a red car, i.e., at least two cars but no more
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than three cars. As usual, po-multiset valued attributes in HPSG FSs
(represented in HPSG with the notation of mathematical sets “{...}”)
we can mention RESTR (“sets”, actually po-multisets of restrictions),
INDICES (“sets”, actually po-multisets of indices), or the po-multiset
ADJ-DTRS of adjuncts involved by a predicative category, etc.

e With the above values defined, in the FS D = [f : v] the value v
may be made up of single, list, V-set, multiset, and po-multiset
sort values. Thus the types of F'S values are extended to the list
and po-multiset sorts, namely the value v may be what in HPSG

a: +p{v17 []77)1}+p

b: [c:{(va,[d: v3],v4)] |’

the value of the attribute c is the list (va,[d : v3],v4), while the

value of a is the po-multiset (or HPSG “set”) *P{uvy,[], vy }TP.

This point of our informal description of sorts is the strongest

extension of the expressive power of the F'S set FS, involving the

inductive definitions on FSs and the sort expressions we intro-
duced until now.

are called “lists” and “sets”. E.g. , in

In the HPSG theory occurs also various operations specific to the
defined sorts introduced by union and append functions.

e Another substantial way of extending FSs is to consider struc-
tures with sharing values as in [27], [28], [32], etc. FS sharing
assigns one and the same value to several features in the FS, and
can be expressed by labelling (indexing) the value of a LF and
referring it within two or several substructures of a FS. F'S shar-
ing (called also re-entrance) is important not only as a data type
representation technique, but it introduces more specific linguis-
tic properties (see FS subsumption examples 3.7, 3.10. Sharing
F'Ss corresponds to indezed FSs [32], [10]:

number : singular

agreement : (1) person : 3rd . (7)

subject :  [agreement : (1)]
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A FS can be represented naturally as a graph assigning nodes to
the FS attributes and arcs to the FS values. As it can be observed,
in each node of the graph that represents the F'S in (7) there exists
at least a pair (f,v) (see Fig. 1). In (4) the values considered are
single ones. However it is natural to consider any kind of sort values or
their combination for the features situated into the nodes of the FSs.
Introducing sharing to FSs is not only motivated by a more compact
representation obtained but also, and especially, by the possibilities
offered by F'S sharing mechanism to define new restrictions and more
precise descriptions of the involved linguistic objects.

In [13] we described the organization of a linguistic knowledge base
having FSs as basic elements and designed for the automatic analysis
and generation of Romanian. Here there is the FS corresponding to
the (Romanian) noun “cal”.

[PHON : cal T
CATM : substantiv 7
" TIP : comun
NR: sing
CAT GEN : M
PROPR: (1) | caz. AvN
ART : —
scat prorp
SYN : MAJ : N
HEAD : PRED: —
ACORD : (1) (8)
head
) . . PHON : pe
SUBCAT : <[SYN\CAT|CATM : articol]V I:SYN\CAT|CATM . prepozi;ie:|>
LEX : +
MARKED : — 4
sint
[ VAR : @

SEM :

REIN : CAL
ARG : z
rel

L sem 4
semn

RESTR : [

Having in mind these concrete and intuitive linguistic FSs one can
proceed to more formal definitions and algorithms. We shall analyse
the two main directions on which a FS like (2) can be extended: the
non-sharing but multi-sorted F'S values, and sharing (indexed) multi-
sorted FS values. The tableau-based subsumption will be specified for
the multi-sort non-indexed FSs, and since the algebraic properties of
these structures are the same, a general unification algorithm can be
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designed (for a thorough discussion and results on logic unification in
associative and commutative theories see, e.g., [21]). In what follows
we shall define the FS concept relying on the well-known notion of
(rooted) directed (acyclic) graph (DAG).

3 Subsumption and unification
on FSs as DAGs

This section is devoted to a closer and intuitive look at FSs, to their
basic FS operations and properties, involving F'S approaches which are
different from the set-theoretical ones.

Definifion 3.1 A (linguistic) feature structure (FS) is a labelled DAG:
(a) The labels on arcs are feature names (whose set is denoted by
F);
(b) The labels on nodes are feature values (whose set is denoted by

V).

Definifion 3.2 A well-defined FS s a FS for which the sets F' and V
are disjoint and any two distinct nodes have distinct labels.

Example 3.3 The feature matriz in (7) corresponds to the graphic
representation in Fig. 1, where the sets F' and V are:

F = {agreement, number, person, subject};
V = {ey, e1, €2, singular, third}.

Using the notations for FSs as in (2) we have:

dom(D) = {f1, f2, .-, fn},and val(D, f;) = v;. 9)

Example 3.4 The following matrices are not well-defined FSs:

c :. 2)d: 3)] |, (10)
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agreement

number
®

singular

subject agreement person

e; third

Figure 1.The representation of the FS in (7) as a DAG

since the matriz, or the corresponding graph contains cycles;

a:b
[b:c]’ (11)

since the same symbol labels both a feature name and an atomic value;
if b is a feature name then the first line is irrelevant, and if b is an
atomic value then the second line is inconsistent.

Let D denote a FS of the type (3), and let DAG(D) denote the
DAG associated to the F'S D.

Definifion 3.5 A path in D = Dy is an ordered sequence p = (f1, fo,
ey ficts fise ooy fmsv) where fi € dom(D) and Vi € {2,3,...,m} there
exists a F'S Dj such that D; = val(D;_1, fi—1), fi—1 € dom(D;_1) and
m 1s the length of the path p.

We shall denote v = val(D,p) for every p € Path(D) = {p|p is
a path in the FS D}. The subsumption relationship between FS is
recursively defined as follows:

Definifion 3.6 A FS D subsumes the FS D' iff:

(i) dom (D) C dom(D'), (C is the sign for the set inclusion);

(11) If p, ¢ € Path(D) and val(D,p) = val(D, q), then val(D',p) =
val(D',q); and

(i11) For any FS name f € dom(D), val(D, f) subsumes val(D', f).
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D subsumes D' is denoted by D>4,,D’. Whether the condition (i)
is replaced by “dom(D) C dom(D')”, where “C” is the sign for the set
“strict inclusion”, then the subsumption is strict, denoted by D>, D’.
The notation “=” refers to the possible equivalence between FSs gen-
erated by the commutativity property of the conjunction and/or dis-
junction constructors. According to the definition 3.6 we have:

Example 3.7

woreement - number : singular
g " | person : third Zsub
subject : l[agreement : []]
. number : singular
subject : agreement : person : third
- | - , (12)
Zsu . number : singular
agreement : person : third
number : singular
agreement : ;
person : third >
. number : singular sub
subject : agreement : person : third
_ number : singular
> b agreement : (1) {person : third ] (13)

subject :  [agreement : (1)]

Intuitively, D subsumes D' if D is more general than D' or, in other
words, D contains less linguistic information than D', or “D’ is more
informative than D” [27]. Subsumption is often defined as the dual
relation to extension between FSs, i.e., D' extends D, written D<g,,D’,
if D is at least as informative as D'. The subsumption relation is a
partial ordering on the set F'S of all F'Ss, being reflexive and transitive.
Its mazimum (top) element to subsumption in the set of all FSs is the
empty FS or [] (whose domain is empty), denoted by TOP. TOP was
also denoted by [] because it suggest the F'S with the empty content
and, according to the above definition, [] subsumes for any other FS.

Another important observation is that two FSs may be not com-
parable at subsumption, written #g,,. For instance, the following two
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FSs are not comparable, i.e. does hold:

|mnr: o sg | nr: pl
[agr ' [pers : thirdH 7sub lagr ' lpers : thirdH ' (14)

In order to have a minimum (or BOTTOM) element to subsump-
tion of all FSs there is introduced the FS denoted by L, such that the
following inequalities (subsumptions) hold for any FS D:

VD € FS, TOP (or []) >sup D >gup BOTTOM (or L). (15)

We introduce now the following equivalence relation between two
FSs, expressing the fact that they provide exactly the same linguistic
information in the set F'S of all FSs.

Definifion 3.8 Let Dy, Do € F'S. Then Dy =4 Do, i.e., are equiva-
lent to subsumption, iff D1 >4, D2 and Do >4 D1.

Convention 3.9 For linguistic reasons, we consider to hold: v =g
Rsub “{V}Y Rsub (V) Ngup T{v}T mgup TP{v}TP. This is important to
avoid the meaningless multiplication of embedded parentheses in multi-
sort construction when describing the same linguistic objects.

Example 3.10 The following FSs are equivalent:

number : singular

1 (1 .
agreement : (1) person : third =

sub
subject :  [agreement : (1)]

subject : (1) [agreement : (2)]
person : third ]

~sub agreement : (2) number : singular

The subsumption relation between the FSs D; and D5 represented
as DAGs may also be seen as the checking operation that DAG(D;)
is a subgraph of DAG(Ds). The equivalence relation =gy, can now
be rewritten as the isomorphism between the graphs DAG(D;) and
DAG(Dy).
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Definifion 3.11 Let D, Dy, Dy € F'S. D is an unifier for D1 and D2
iff D1 >gqp D and D2 > i1, D, denoted by D € uni(Dy, D3), the unifier
set of D1 and Do.

The definition says that D is a lower bound for D; and D9 at the
subsumption ordering.

Definifion 3.12 D" is the most general unifier (mgu) for Dy and Dy
iff:

(i.1) D € uni(Dy, D), and

(i.2) VD such that D € uni(Dy, Dy), then D" >qub D, @€, D" is the

maximal element among the (possibly) existing unifiers at subsumption
of D1 and Ds.

We denote by D= mgu(Dy,Dy) the most general unifier D of Dy
and Dy. The definition says that mgu of Dy and Do represents their
greatest lower bound (or glbg, 1) at the partial ordering >, 1. Thus:

mgu(D1,D2) = glbg,1, (D1, D2). (16)

As [27] notices, mgu(Dy,D2) is “the least informative F'S which is
at least as informative as D; and at least as informative as Do, ... but
nothing more”.

Remark 3.13 It is obvious that mgu(D,[]) = mgu([],D) = D, show-
ing that the TOP element (or the empty FS []) is also the neutral
element for the semi-lattice F'S of all FSs at the mgu operation.

Remark 3.14 [t is possible that two FSs are not comparable to each
other, thus, an unifier D does not exist in the definition 3.11 for the
FSs Dy and Dg. In this case, D1 and Dg are called non-unifiable, e.g.,
the FSs in (14). The BOTTOM element L is also used to denote the
“unifier” of two FSs whose unification fails and represents the inconsis-
tent information “resulted” from two non-unifiable F'Ss. L is the same
minimum element at the subsumption partial order on the set F'S of

all FSs.
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4 Unification algorithms for multi-sort valued
FSs

4.1 Sort semantics and constructive hierarchies

We shall begin by specifying the sorts, their semantics (linguistic re-
alization) and their hierarchy in defining the F'Ss (also corresponding
to HPSG theory). These sorts represent the types of values that FSs
can take. Subsequently, the usual operations on these sorts are intro-
duced. The main six sorts involved within the present approach are
the following:

(S1) The sort of single values, single-sort. The elements (values) of
this sort are atoms or other F'S denoted by (single) identifiers:
SUBCAT, CAZ, prepozitie, sint, sem, etc.

(S2) The sort that defines disjunctive values, V-set-sort, correspond-
ing to ordinary mathematical sets, and denoted by Y {vi,vo,...,
vn}Y. The meaning of the V-set V{vy,vo,...,v,}" is the disjunc-
tion v1 Voo V...V v,, the same as in HPSG.

(S3) The sort of usual (ordered) lists, list-sort. The lists are denoted
just as in HPSG, namely by (v, ve,...,v,), and have exactly the
same meaning.

(S4) The sort corresponding to the notion of multiset, or bag, or set
with repetition. The multiset-sort is denoted by T{vy,vo,...,
vp} 1 and corresponds to a common mathematical set whose el-
ements may (finitely times) be repeated (see section 2). An ex-
ample of multiset: T{a,b,c,a}’, which is the same object as
{a,a,b,c}t or T{a,b,a,c}T, etc., but distinct of T{a,b,c}T.
This sort may be not effectively relevant to HPSG but is use-
ful to express the linguistic realization of other sorts.

(S5) The sort of multiset with a partial ordering relation, or po-
multiset sort, denoted by TP{vy,vy,...,v,}P. The elements v;,
(i =1+ mn), of the po-multiset belong to a set (F, >part), where
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>part 18 a partial ordering relation. The po-multiset corresponds
to what in HPSG is called “set description”. The HPSG “set de-
scriptions” or “sets” are, actually, po-multisets whose elements
are FSs belonging to the set F'S of all FSs, partially ordered by
the subsumption relation. Thus, in HPSG, the partial order > .+
is identified by the subsumption relation on FSs in F'S. (6) is a

typical po-multiset ([27], pp. 47), with >,a=>41-

(S6) The last sort considered is that of indezed (shared, or re-entrance)
values, indexed-sort, where any (value of) FS may be labelled
with an expression called indexz. This is usually denoted by
(k)Dg(m), where the indez (k) is a natural number or a letter,
m = 1+ p, p is a natural number, and the indexed FS (k)Dy ()
is repeatedly met within a larger F'S D, provided that Dy ) # []
for at most one value of mn in the set {1+p}. Whether Dy,,,y = []
Vm € {1 + p}, then the indexed structures (k)[] play the role of
an uninstantiated variable within the larger F'S D. It is important
to remark the particular situation when Dy = [], in which case
the role of the index (k) is that of a specific variable.

Examples of FSs containing lists, po-multisets (HPSG “sets”), V-
sets (HPSG disjunctions), or indezed values are (5), (7), (8). As oper-
ations between the considered sorts may be taken append as the con-
catenation of the lists and po-multisets, and the usual set union for
V-sets:

If (v1,v9,...,0y) and (w1, ws, ..., wy,) are lists, then:
append({(v1,v9, ..., Um), (Wi, wa, ..., wy)) =
= (V1,02 « + + s Uy W1, Wy -+« W ).
Similarly, if T{vy,v9,..., v} and T{wy, we,...,w,}* are multi-
sets then:
append(+{v1,vg, ... ,vm}+,+ {wy,we,... ,wn}+) =
+{/U17/U23"'7,Umaw17w27"-7wn}+'

In particular, the same is true when multisets become po-multisets.

131



N. Curteanu, P.-G. Holban

If V{vi,v9,...,0p}" and V{w,wy,...,w,}" are V-sets then:
append(v{,vlu'v% v 7vm}v7 V{w17w27 e 7wn}v) =
=Y, v9,...,0m} UV {wy,we, ..., wy}" =
=Y, w,}Y,

where the sign “U” denotes the union operation between usual, math-
ematical sets. Thus the append operation between V-sets is not just a
concatenation but it also reduces the (eventual) multiple occurrences
of elements to single ones (as in common sets).

The problem of modelling the semantics of the considered FS sorts
is of special interest for our construction. Solving this problem in an
appropriate way reduces it to establishing a sound relationship be-
tween words and phrases of a NL (including, among them, the FS
value names) on one side, and the semantic individuals they intend to
describe, on the other side. The semantic individuals can be, in par-
ticular, linguistic notions, concrete forms of a morphologic paradigm,
etc.

Let WT be the set of the word tokens of a NL, WT™ the closure
of WT to concatenation. A semantic individual, or object, (whose
domain we avoid to specify) is described by a certain phrase, or phrase
set from WT™. Thus we consider that a semantic individual described
by a FS corresponds to an element of the set Pow-fin(WT™), denoting
the set of all finite subsets in W1™. This somewhat hidden relationship
between FSs and the semantic individuals they intend to describe can
be encoded by the so-called linguistic realization of a FS, i.e. a mapping
R defined inductively as follows:

Ry : FS — Pow-fin(WT*), (17)
holding:

R1(D) = {e € WT" |a |- D(f) = v,

for D = [f : v] € Pow-fin(WT*). (18)

In other words, the semantic individual(s) described by the F'S [f :
v] is encoded by the set of those phrases (in particular, words) for which
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the value v, or the path beginning with f(v) when v is a new FS, holds
( “E” representing the truth relation).

Definifion 4.1 Now Rp can be defined recursively on the considered
FS sorts.

(i) Rp(a) = {x € WTx | z |= a} if a is a (single-sorted) atom.

fi v
(i) When D = J2 vz is a (single-sorted) FS, then

fn vn
R.(D) :RL(;/l\_ [fi s vi]) =
={z e_WTn |z = '_/1\. D(fi) = v} =
={zeWT* | ‘7/1\_ Zzg; .|i v)} =
= 1—0 ) Re ([filjv;];,

for the (default) conjunction constructor of FSs, corresponding
actually to the FS unification process. The relation Ry extends
naturally from single-sort to the other more complex sorts.

(iii) For the (general) disjunction-sort:

RL("{D1,Da,....Dp}Y)=Re( \/ Di)= (J Ru(Di) =

i=1+n i=1+n

=Y {RL(D1),RL(D2),...,Rr(Dn)}" € Pow-fin(WT").

The FS disjunction corresponds to what in computational linguis-
tics is known to be the FS generalization. In particular, for the
sort-value disjunction we have:

(iiia) Rp([f : v1 Voa... Vo)) = Ro([f : Y{v1,v2,...,0,}"]) =
= Rr(D(f) = vi)).

i=1+n
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(ZU} RL(<D1, D2, . ,Dn>) =
= (Rr(D1),R1(D3),...,Rr(Dy)) € (Pow-fin(WT*))", for the
list-sort values. Furthermore, from linguistic considerations, we

impose Ry ((D)) = Rp(D).

(v) Re("{D1,D2,...,Dp}") =Rr( V (Diqys---»Dign)) =

pelly,
= Lﬂ (R(Dj1y,- - -»Din))), where p = (i(1),...,i(n)) is a per-
pelly
mutation taking all the values over the permutation set I, of n
elements.

(vi) Rp(tP{Dy, Dy, ..., Dy }TP) =
Ri( V. T{glb(P1),glb(Py),...,glb(Py)} 1) =

Ppys Py
B UPRL(+{glb(P1),glb(P2), oy glb(Pg) YY), where Py, Py, . .., Py
1geeesl ko

is a partition of the multiset *{D1, Do, ..., Dy} T, for which there
exists glb(P;),i € {1 <+ k}. The glb (greatest lower bound) is
the conjunction (thus FS unification) of those elements Dj, with

j € {1 +n}, in the above multiset that belong to the partition P;,
ie{l+k}.

The main dependencies between the introduced sorts as they result
from our definitions of the linguistic realization R, are given in Fig. 2.

The relationship between S-Sort (Source sort) and T-Sort (Target
sort) values has the following meaning: “any wvalue of T-Sort can be
effectively constructed, using the T-Sort specific operator applied on
the S-Sort values, but not the reverse”.

Though we informally presented above the indexed FSs, the formal
recurrent approach of FSs defined on directed acyclic graphs (DAGs)
will be the purpose of the forthcoming (Part II) paper. In the next
sections we restrict to FSs organized as directed trees (DTs), called
tree F'Ss (TFSs), and their natural extension to multi-sort valued TFSs
(MS-TFSs).
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. indexed . indexed

indexzed value

T-Sort value

. multiset . po-multiset

(bag) (HPGS “set”)

list value V-set
V-set V-set

(disjunction)

. list . multiset

Figure 2.Constructive dependencies between sorts

S-Sort value

single value

4.2 A set-theoretic approach to MS-TFSs

Let V' be a non-empty set and Pow(V) its power set, i.e. the set of all
subsets of V' or, equivalent, the set of characteristic functions defined
on V or, equivalent, the set of all unit functions partially defined on V.
The following definition is important for the set-theoretic approach we
proposed here.

Definifion 4.2 Let T C Pow(V') and F is a set of labels, being in
a one-to-one correspondence with T, written in what follows by the
notation T <> F. V is called the set of F'S values and F' is called the
set of F'S attributes defined on V.

Definifion 4.3 The one-to-one (bijective) mapping T <+ F will be de-
noted by ValAt : T — F, its (unique) inverse function being denoted
with AtVal : F — T, thus ValAt—! = AtVal.

The bijective function ValAt maps a set A € T C Pow(V) to a
unique label f, called the attribute assigned to the value A, ValAt(A) =
= f. The reverse is also true, AtVal(f) = A.

Definifion 4.4 Let V be a non-empty finite set of FS values, and F a
non-empty set of S attributes defined on V. Then a FS defined on V
can be generally introduced as being a subset D C F x V.
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Definifion 4.5 A FS D C F xV is well-defined on V iff the following
two conditions hold:

(4.55) soundness: (f,v) € D, then v €gort Val At(f), where “Egort” is
the specific sort membership relation.

(45U) uniqueness: (f,v), (f,w) € D, then v =gort w, where “=gort”
1s the sort-depending equality relation.

For the beginning we consider only FSs whose support are TFSs,
and whose values are single-sorted; this means that aFS attribute can
receive as its value only an atom or a (single) FS. For the sort of single
values, TFSs can be introduced set-theoretically as follows:

Definifion 4.6 Let Vy be a non-empty finite set of atomic single val-
ues, Pow(Vy) the set of all possible values for the 0-level attributes.
Then a non-empty set Ty C Pow(Vy) is called the set of effective values
for the 0-level attributes, while Fy <+ Ty C Pow(Vy) (as in definition
4.2) is said to be the set of single-valued effective attributes defined on
V.

(Io) An atomic single-valued TFS (or TFS of level 0) is any set TF Sy
well-defined on Vy, i.e. TFSy C Fy x Vo with (4.55) and (4.5U).
Let s(T'FSy) be the set of all possible, well-defined TFSs of level
0, i.e., sS(TFSy) = {D|D C Fy x Vo, and D is well-defined on Vy}.

(Iy) A single-valued TFS of level (kK + 1), & > 0, or a (k + 1)-level
TFS, is any well-defined TFSy on Vi, TFS, C Fy, x Vi, with:

(vi) Vi = Vik—1 Us(TFSk_1) is the set of all possible values for

TFSy, i.e. the set of all possible values until level (k + 1),
including it.
Pow(Vy) represents the set of all possible values for the k-
level attributes. Let T, C Pow(Vy) be the set of TFS effec-
tive values until level k, including it, such that Ty\Ty_1 # 0.
Then:
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(fx.) Fy with F,_1 C Fy <> Ty, C Pow(Vy) is the set of effective
attributes until level (k + 1), including it, defined on Vi
(as in definitions 4.2—4.3). The mechanism of extending the
attribute set Fy from the set Fy_1 is the following:

Let B € Tp\T},—1, AtVal(B) = f € Fy. Then there ezists
two situations:

(i) f € Fx\Fy_1, i.e., f is a new attribute in Fy, assigned
to a new FS walue set; or

(i) f € Fx N Fx_1 ; i.e., an already existing attribute in
Fy_1 receives in Fy, a new, extended value set, on the
level k. Namely, B is characterized by: 3A € Ty, such
that AtVal(A) = f and B D A.

(tfsg) s(TFSk) = {D|D C Fy x Vi,V = Vi1 Us(TFSk_1),
s(TFS_1) = F 1 =10, and D is well-defined on Vy }, Vk €

N, is called the set of all possible, well-defined TFSs until
level k.

Definifion 4.7 Now the set of all single-valued TFSs is defined as:

TFS(Vo) = |J s(TFSy) (19)
k>0

represents the set of all single-valued TFSs.

The natural extension of the definition 4.6 is to introduce multi-sort
valued TFSs (MS-TFSs) on the skeleton of a directed tree (DT). The
definitions are similar to the above ones. Examples of MS-TFSs are in

(5), (6), (8).

Convention 4.8 When an integer variable (subscript or superscript)
1 € N takes all the values 1,2, ... ,n, this is written by one of the follow-
ing notations: i =1-+mn or Vi € {1+n}. The existential corresponding
counterpart of this abbreviation is, of course, i € {1 +n}.
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Definifion 4.9 Let us consider the following notations:

Sort! =V
Sort? = {Y{v1,v2,...,0,}V|v; €V,i=1+n};
Sort3 = {{v1,v9,...,v,)|v; € V,i=1+n}; (20)

Sortt = {T{v,v2,...,v,} |v; € V,i=1+n};
Sortd = {TP{v1,v9,...,v,} Plv; € Vi =1+n}.

Definifion 4.10 The set W of multi-sort expressions defined on V' for
the sorts Sort', denoted W = ms(V), is introduced as being the closure
to sort composition for the sorts considered in (20), i.e., V.C W and
Vwy, wa, ..., wy, EW, then Y{wi,wa,...,wy} €W, (w1, wa,...,wy) €
e W, Huwy,wy,...,w,}T €W, and ™P{wy,wy,...,w,}TP € W.

The elements in W are sort-ezpressions of any depth on V. The
set W = ms(V) of multi-sort expressions defined on V' can also be seen
as the following union:

W = MSort* UM Sort?> U MSort> U M Sort* U M Sort®, (21)

where:
MSort' =V;
MSort? = {V{v1,v2,...,v,}V|v; € ms(V),i =1+ n};
MSort3 = {{vy,v2,...,v,)|v; € ms(V),i =1+n}; (22)

MSort* = {T{v1,v2,..., v, |v; € ms(V),i =1+ n};
MSort® = {TP{v1,v2,...,v,} Plv; € ms(V),i =1+ n}.

It is important to notice that by the present (or additional, if nec-
essary) convenient notations, M Sort', i =1+ 5, are pairwise disjoint.

Definifion 4.11 Similarly to the definition 4.2, let G be a set of
MS-TFS attributes defined on W, W = ms(V') as in definition 4.10,
i.e., there exists T C Pow(W) and T <« G. Following the defi-
nition 4.3, we have the one-to-one functions AtVal : G — T, and
ValAt : G — T, with ValAt = AtVal .
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With the notations in (21), (22) and definition 4.11, the notion of
well-definedness of MS-TFSs with values in the considered sorts is as
follows:

Definifion 4.12 A MS-TFSD C Gx W, W = ms(V), is well-defined
on V iff:

(4.125) soundness: (f,v) € D, then v € MSort' = v €', ValAt(f),
t = 1+5, with the membership relation €%, specific to the sorts
M Sort® in (22). In detail:

(soundy) v € MSort! = v € Val At(f);
(soundy) v € MSort? = v C Val At(f);
(sounds) v € MSort® = v € Val At(f);
(soundy) v € MSort* = v € ValAt(f);
(sounds) v € MSort® = v € Val At(f)

)

)

(4.12U) uniqueness: (f,v), (f,w) €D, thenv =%, w, i = 1 +5, with
the equality relation specific to the sorts M Sort® in (22). More
precisely:

(uniquey ) if v € M Sort' then w € M Sort', and v = w (equality
as identity relation);

(uniques) if v € M Sort? then w € MSort?, and v = w (as set
equality);

(uniques) if v € MSort® then w € MSort3, and v = w (as list
equality);

(uniquey) if v € MSort! then w € MSort*, and v = w (as
multiset equality);

(uniques) if v € MSort® then w € MSort®, and v = w (as
po-multiset equality).

Similarly to the definition 4.6, the MS-TFSs can be introduced as
follows:
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Definifion 4.13 Let Vj be a non-empty set of atomic single values,
and Wy = ms(Vy) the set of all possible atomic multi-sort values on
Vo, constructed similarly to the definitions 4.9—4.10 and relations (20)—
(22). Let Ty C Pow(Wy) be a non-empty set called the set of effective
values for the O-level attributes, while Gy <» Ty C Pow(Wy) (as in defi-
nition 4.11) is said to be the set of multi-sort valued effective attributes
defined on Wy. Then:

(Ip) An atomic multi-sort (valued) TFS (MS-TFS), or MS-TFS of
level 0, is any MS—TF Sy well-defined on Vg, i.e., MS—TFSy C
Go x Wy satisfying (4.125) and (4.12U). We denote by s(M S —
TFSy) the set of all possible, well-defined MS-TFSs of level 0,
i.e., S(MS —TFSy) = {DID C Gy x Wy, and D is well-defined
on W}

(It) A multi-sort valued MS-TFS of level k, k > 0, or a k-level
MS-TFS, is any well-defined MS —TFS, on Vi, MS —TFSy C
Gk X Wk with:

(vi) Vig = Vi1 Us(M S —TFSy,—1) the set of all possible values
for MS —TFS, .

Let Wy, be defined similarly to the definition 4.10 be the set
of all possible multi-sort values defined on Vj, until level k,
including it.

Pow(Wy,) represents the set of all possible multi-sort values
for the k-level attributes. Let T, C Pow(Wy) be the set of
MS-TFS effective values until level k, including it, such that
T\Tp—1 # 0. Then:

(9x) G with Gx_1 C Gy <> Ty, C Pow(Wy) is the set of effective
attributes until level k, including it, defined on Vi (as in
definition 4.11). The mechanism of extending the attribute
set Gy from the set Gi_y s the following:

Let B € Ty\T), 1, AtVal(B) = g € Gy. Then there ezists
two situations:

(i) g € Gx\Gg—1, i-e., g is a new attribute in Gy, assigned
to a new MS-TFS wvalue set; or
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(i) g € Gk N Gg_1 ; i.e., an already existing attribute in
G_1 receives in Gy a new, extended MS-TFS value set,
on the level k. Namely, B is characterized by: dA €
Ty 1 such that AtVal(A) =g and B D A.

(ms—tfsk) S(MS — TFSk) = {D|D C G x Wy, Wy, = ms(Vk),
Vi = Vi1 Us(MS—TFSk—1), s(MS—TFS—1)=G—-1=
0, and D is well-defined on Vi }, Vk € N, is called the set of
all possible, well-defined MS-TFSs until level k.

Now the set of all MS-TFSs is defined as:

MS-TFS(Vy) = | J s(MS — TFSy). (23)
k>0

4.3 Subsumption on MS-TFSs

In order to introduce multi-sort subsumption there are necessary some
preliminary definitions.

Definifion 4.14 If D € MS-TFS(V), then:
(i) dom(D) = {f|3(f,v) € D} is the domain of D.

if (f,v) €D

otherwise represents the value of f in the D,

(ii) val(D, f) = {E)]

where [] represents a special FS, called the empty FS, such that
1t subsumes for any other FS from the considered sorts.

If “>¢,p” denotes the subsumption relation between two F'Ss, then
we have:

Definifion 4.15 For any D € MS-TFS(V'), hold:

Let us denote with “>p,5,¢7 the partial order involved with the
elements of the po-multiset.
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Definifion 4.16 The rank of a multiset v = TP{vy,vq,...,v,} TP,
whose elements v; belong to a set partially ordered by the relation >payt,
s given by the following number:

rank(v) = min{k | 3P,,..., Py, a partition of v, such that (25)
Vi € {1+ k}, 3glbpart(Fi)}-
Of course, glbpart(P) means the greatest lower bound from the
elements of the set P, computed for the partial ordering >part- It
is also important to mention that the partition of a multiset v =
= TP{uy,v9,...,v,} TP is a set of disjoint multisets that “cover” v, i.e.,
whose multiset union is exactly v. The meaning of rank(v) for a mul-
tiset v = TP{vy,v9,..., v, } TP is that it represents the minimal number
of elements v;, ¢ = 1 +n, taken from the po-multiset v, such that they
are Zpart—independent or, in other words, zpart—incompamble.
Let us now reconsider the subsumption definition for MS-TFSs. In
this definition, the rank of a po-multiset is depending on the partial

ordering represented by subsumption itself, thus Zpart==gub-

Table 1.The tableau-based subsumption definition

w € MSort! w € MSort? w € MSort® |we L
w €
v 2gub W weV € MS-TFS(V) w = w = True
\% \%
w = [gj : 'wj] =Y{wi,..., wn Y = {wy, ..., wn })
jE{l+n}
v € MSort'in v=w False Vj€{l+n} n=1 True
nv v = wj v = wy
v € MSortIn Vie {1+ m} v =[] v =]
NMS-TFS(V) v =[] 3j € {1+n} or or True
v=[fi:v] fi=g; Vj€{l+n}, n=1,
1€ {1l +m} Vi 2oub Wi v > wj v >ouh W1
v € MSort Jie{l+m}|[3die{l+m} Vjie{l+n} 3ie {1+ m}
v = v = w Vi 2qub W Ji € {1+ m} v > w True
=V{v1,..., vm}Y Vi 2gph Wi
v € MSort® m=mn
v = m =1, m =1, Vj € {1+ n}, Vj € {1+ n}, True
=(v1,..., Um) v = w V1 Zouh W v > wj v > wy
v =1 False False False False True
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Definifion 4.17 Let D1,Ds € MS-TFS(V). Then Dy subsumes D,
written Dy Zsub Do if:

(i.1) dom(D1) C dom(D3), and

(i.2) ¥(f,v) € D1, and w = val(Dy, f), v subsumes w, written v >,
w if only one of the conditions in Table 1 hold.

4.4 The subsumption tableau (SubTab) on MS-TFSs

The FS (multi-sort expression) v subsumes the FS (multi-sort expres-
sion) w, denoted v >g,p w, if one (or several, in a recursive manner) of
the conditions in Table 1 hold.

The Remarks 4.18 that follow are consistent with the Table 1, rep-
resent the extension of the Table 1, and complete the tableau-based
subsumption definition for the sorts MSort! and MSort® (Remarks
4-8) accordingly to their linguistic realization semantics (see definition
4.1).

Remarks 4.18 1. The subsumption relation >}, generates on the
set MS-TFS(V') of multi-sorted FS expressions a lattice algebraic
structure.

2. [] (the empty FS) represents the mazimal element TOP to > 1,
in the MS-TFS(V') lattice.

3. L (the universal inconsistent F'S) represents the minimal element

BOTTOM to >3, in the MS-TFS(V') lattice.

4. If o =% {xy,..., 2, } T € MSort* then the multiset = is rewritten
as a disjunction of (ordered) lists of the form (Tyy, ..\ Tpm))
from M Sort3, for all the permutations of the multiset . elements.

5. If v =P {xy,...,2,}TP € MSort® then the po-multiset z is
rewritten as a disjunction of multisets of the form T{glb(Py),...,
glb(Pp)}yt from MSortt, for every partition Py,...,Py of the
elements of « for which there exists glb(P;), i € {1 + k}.

143



N. Curteanu, P.-G. Holban

6. The glb, i.e., greatest lower bound, over a set of elements is
computed by the recursive definition of subsumption and the de-
composition of the more complex sorts MSort* and M Sort> in
sitmpler ones.

7. v,w € MSort* are developed as disjunctions of lists (according
to Remark 4), then the corresponding rules in the SubTab Table
1 are applied.

8. v,w € MSort® are developed as disjunctions of multisets (bags)
(according to Remark 5), then the Remark 6 is applied.

Similarly to the definitions 3.8, 3.11, 3.12, on the class of sort-
expressions v,w € Vyp UMS-TFS(V})) one can introduce the following
subsumption-based equivalence relation:

Definifion 4.19 v ~g 1, w iff v > p w and w >g ) v-

Definifion 4.20 Let u,v,w € Vo UMS-TFS(Vy). Then u is the most
general unifier for v and w (whether it exists), denoted u = mgu(v,w),

iff u = glbgp, (v, w).

There exists a straight relationship between the linguistic realiza-
tion of a po-multiset and its rank. This can be illustrated on the
po-multiset in (6), (relation (88) in [27, pp. 47]).

+p +p
MAKE TOYOTA] [MAKE DATSUN
CARs = { [YEAR o ] , [YEAR DAL ] , [COLOR RED] } ) (26)

Let us compute the linguistic realization of the po-multiset CARs
in (26), identic to (6), with the elements of CARs belonging to the
set F'S of all FSs, partially ordered by the subsumption relation (i.e.,
>part = Zgub)- According to the rules (i)=(vi) in the definition 4.1, we
obtain:
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+p +p
MAKE TOYOTA MAKE DATSUN
RL(CARs) =RL < [YEAR 1984 ] > [YEAR 1985 ] ? [COLOR RED] } ) -

+ +
MAKE TOYOTA MAKE DATSUN
=Ry {glb([ AR 104 ]),glb( [YEAR Lo ]) ..... glb( COLOR RED]) } > v
* MAKE TOYOTA MAKE DATSUN]. |t
VRL {glb([YEAR 1984 } COLOR RED ) 91(] YEAR 1985 })} v
* MAKE DATSUN MAKE Tovora] | 7*
VRL {glb([YEAR 1985 ] , [COLOR RED ) glb([YEAR 1984 ])} v
* MAKE TOYOTA| [ MAKE DATSUN +
VRL {glb([YEAR 1984 } [YEAR 1985 } [COLOR RED] } =
+ MAKE TOYOTA MAKE DATSUN +
=R, { glb( [YEAR Lons ]),glb( [YEAR o83 ]) ..... glb( [COLOR RED]) } v
MAKE  TOYOTA MAKE DATSUN i
VRL glb(| YEAR 1984 ), glb( [YEAR ! ] ) v (27)
COLOR RED
MAKE DATSUN MAKE TOYOTA +
VR glb(| YEAR 1085 ) glb([YEAR o ]) -
COLOR RED
t MAKE TOYOTA MAKE DATSUN +
- { glb( [YEAR oot ]),glb( [YEAR Loss ] Yo glb([COLOR RED]) }
+ MAKE TOYOTA +
gib(| YEAR 1084 ), glb( [¥$§§ ?QASESUN])
COLOR RED

+ MAKE DATSUN +
{ ot [égﬁgR 5 ] o VAR ™) } }

The relationship between the linguistic realization of the po-multi-
set in (26) and its rank is the following: rank(CARs) represents the
minimal cardinality of the (multi)sets describing R;(CARs), thus
rank(CARs) = min{cardinality(A)|A € R.(CARs)} =

4.5 Unification on MS-TFSs

The unification algorithm for F'Ss in MS-TFS(V') reduces to mgu (thus
glb) computing (definition 4.20) and follows directly from the tableau-
based (Table 1) subsumption definition 4.17.

If Dy, Dy €ms(VoUMS-TFS(Vy)), then mgu(D1, Do) =mgu(Ds, D1)
and it can be effectively calculated by the (eventually recursive) appli-
cation of the rules (U1-U9):

145



N. Curteanu, P.-G. Holban

Ul.
U2.

Us3.

U4.
Us.

U6.

U7.

Us.

U9.

If D; =[], then mgu(Dy,Dy) = Dg ;
If Dy = 1, then mgu(Dy,Dy) = L;

D;, ifD; =Dy

If Dy € Vj then mgu(Dq,D9) = {J_ otherwise

If Dy € V, and Dy € ms(MS-TFS(V})), then mgu(D1,D9) = L;
If D1, Dy € ms(MS-TFS(V}), then

mgu(D1,Da) ={(f,v) € D1|f € dom(D1)\dom(D3)}U
U{(g,w) € Dg|g € dom(Dy)\dom(D;)}U
U{(f, mgu(v,w))|(f,v) € Dy and (f,w) € Da}.

If D1,Ds € MSOT‘t2,D1 =V {’Ul,...,’l)m}v,DQ =V {wl,... ,wn}v,
then

mgu(Dy,Dy) =
Y

=Y {mgu(vi,w1),...,mgu(vi,wy),...,mgu(vy,, w,)}" .

If D1,Dy € MSort®, Dy = (v1,...,vm), Do = {wy,...,w,), then
mgu(D1,Dq) = (mgu(vy,w1), ..., mgu(vmy, wnm)).

In all other cases, mgu(D;,Ds) is computed: either (a) by
complex sort decomposition (MSort*, MSort’) in disjunctions

(M Sort?) of lists (M Sort®), or (b) using the Convention 3.9: by

default, one considers v =/  {v}" ~gp (v) %;—ub {v}* %;F;b

{v}*P or (c) mgu(Dy,Ds) = L.

Simplification rule, applicable to any step of the mgu(Dq, D)
computation:

U9.1. Y{v,w}" =Y{v}V if v > p w;

U9.2. (vi,wy) = L if 3¢ € {1 +n} such that v; = L;

U9.3. If (f,L) € D, then D = L for any (sub)structure occur-
ring in mgu(Dy, Dy).
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If, after the application of these rules, one obtains mgu(D1,Ds) =

L, then the FSs Dy and D9 are considered not to have an unifier (thus
they are contradictory). Though L is considered to play the role of a
special symbol, actually Dq,Ds € { L} Ums(Vy UMS-TFS(Vg)).
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