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On approximate solution of non-elliptic singular
integral equation systems in Lebesgue spaces

T. Cibotaru

Abstract

We investigate in this paper problems of theoretical founda-
tion of collocations and mechanical quadratures methods for ap-
proximate solution of singular integral equation systems in the
case, when their symbols have on the integration contour a finite
set of integer degree zeroes.

We consider the case when equation digitalization points are
taken in such a way that each point of the contour can be included
in the set of points.

The proposed methods converge in Lebesgue spaces Ly,
1 <p<oo.

1 Algorithms
Let us consider a system of singular integral equations (SIE)

(Mep)(t) = C(t)p(t) + D(t)(Se)(t)+ (1)
ot [ K(t,T)p(T)dr = f(t), tE€T,

)

where f(t) is a vector function of dimension m, C(t), D(t) and K (¢, T)
are matrix-valued functions of degree m, ¢(t) is an unknown vector
function, and S is a singular operator with Cauchy kernel. Let us
assume that I' is a simple closed smooth contour, and let the Riemann
function of this contour z = 1(w) have a continuous by Hélder second
derivative ¥ (w) € H,(Ty), To = {w : |w| = 1}. The class of such
contours is denoted by C(2,v) (see [1]).
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Let us produce a digitization of equation (1) at points

tj = (), W’ =exp(2TL - j+6-1),

6 €0;2n], j=0,2n, i2=—1.

(2)

We note that the presence of parameter 6 in equation (2) make it
possible to take every preassigned point of the contour as a point of
digitization.

In comparison with the investigations made earlier, we have ex-
tended in this case possibilities for applications, as well as for selection
of the points of digitization.

We replace the unknown function ¢(7) in the digitizated equation
by its interpolate Lagrange polynomial

(Un@)(T) = X700 - 1j(T), T€T
MﬂZHhM#T“— n A9 =020,

ti—tg r=—n

3)

As a result, we get the following system of linear algebraic equations
(SLAE):

Clt;)e + Dlt) - S pr - [Srog AP - 4 = 2, A - 41+
+Zk O(kaT__”A(k 27rz’ka(tjvT)’TrdT:f(tj) Jj=0,2n

(4)

with respect to the unknowns ¢; = ¢(t;), j =0,2n.

The relations (2)-(4) define the algorithm of collocation method to
solve SIE (1). We note that to calculate numbers AP k=02n, r=
—n,n introduced in (3) we can use the Vietta theorem.

If we substitute in SLAE (4) the contour integrals by some quadra-
ture formula, then we obtain the algorithm of quadratures method. We
can use the following interpolated quadrature formula:

1 r ~ 1 P 1 )
—QWZ,/FQ(T) Thdr = 27Ti/I‘Un[T g(7)] dr = E tr - g(ty) -
(5)
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Thus the algorithm of quadrature is defined by relations (2), (3) and
SLAE

mn n k r — k r
Clty)e; + Dlty) - S o [ AW or — ot AR

k)

r AP K (g, ) AR o = £(8) 5 =0,2n (6)
+Zr:_n r ty (t]atk) — }Sok f(tj) J 07 n.

2 Theoretical foundation of the method

We shall get the theoretical foundation of proposed computational
schemes for nonelliptic system SIE, that is for SIE systems whose sym-
bols A(t) = C(t) + D(t) and B(t) = C(t) — D(t) have zeroes on the
contour I'. Note that in the case of elliptic system SIE, the theoret-
ical foundation of these methods was obtained in [3]. For a standard
contour I' = T'y, the problems of foundation of these methods were
investigated in [5].

Let us assume that the function A(t) has a system of zeroes
{a1,a9,...,a,} of integer degrees {mi,ma,...,m,} and the func-
tion det B(t) has a system of zeroes {01, (2, ..., s} of integer degrees
{my,ma,...,ms}.

In this case the matrix-valued functions A(t) and B(t) permit the
following representation

(7)

Here D_(t) and D, (t) are diagonal matrix-valued functions of the
form

oo RO)
D_(t)y={J[¢ " —ay")" 6u}fios,
k=1

Do(t) = {J[(t - 8" 63},
k=1

pF > B s> P >0, k=T and 4P > 0P > >

vm', k=1,s are integer numbers, Sy (t) are polinomials with respect
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to t and ¢t~ matrixes with constant and non-zero determinant, and
A1(t), Bi(t) are nonsingular matrix-valued functions.
Let us introduce the following notation

1 T s
k::rnax{,ug),...,ug),z/§1),...,V£)}. (8)
Theorem 1. Let the following conditions fulfill
1) the contour T' belongs to the class C(2,v);

2) the representations (7) are true, in which Ai(t) and Bi(t) are

nonsingular matriz-valued function of the class Hék:,;lx)m(lﬂ), 0<

a <1, and the number k is defined by formula (8);

3) the left partial indexes of matriz-valued function By *(t)A;(t) are
equal to zero;

4) the kernel of the system SIE (1) is contained in the class
c®) (I x T);

mxXm

5) the homogeneous equations corresponding to SIE (1) have only
trivial solutions.

Then for all sufficiently large n and for any f € Cfrf)(f‘), SLAFE (4)
has a unique solution @;, j =0,2n. The vector functions (3) converge
for n — oo by the norm of space Ly, (I') to solution ¢ € Ly, (T).
Moreover, the following estimation holds

L))+ ot (r®,

,—
n

I = Unpll, = O() + 0w (¥ Do
ocla)=aif0<a<lando(l)=1—¢, e(>0) is an arbitrary small
number.

Theorem 2. Let the conditions 1)-3) and 5) of the Theorem 1
fulfill, and let instead of condition 4) of the Theorem 1 the following
condition holds

1
n

4’) the kernel of SIE (1) belongs to Hﬂlxm(r) with respect to T and
c®) (I') with respect to t.

mxXm

78



On approximate solution of non-elliptic ...

Then the statements of Theorem 1 are valid, if we replace SLAE
(4) by SLAE (6) and add in the right-hand side of the estimation (9)
the term O(w™(K; 1))

3 The proof of Theorem 1

By conditions 2) and 3), the matrix-valued function Bi_l)Al admits
the left canonical factorization

Brl(1) - Avlt) = Vi (t) - Vo (0); (10)

k+1 k+1
}/fll(j) e PHUT VA1) € QHUTY @{const}, P=4(1+5), Q=

Denoting G = D_S_, G4 = DS from the relation (7) and (10),
we get

M = AP+ BQ+ K = BiV, {(PV_ + QV{ 1) (PG_ + QG )+
QV_G_P+ PV 'GLQ+V 'B'K};

To deduce this equality, it was taken into account that PV_G@Q =
QVI'GLP =0.

Then SLAE of collocation method is equivalent to the following
operator equation

(Vo =)

Ul(PV- + QViY(PG- + QG + Ky + KolUnp = Unf. )

where K1 = QV_G_P + PV['G,4Q, K,=V;'B{'K.

Next we shall prove that the operator V,, is inversible for sufficiently
large n. It is easy to verify that ImKi|, ) C H&@n(F) Vg(t) €
Lpm(T),

K1) 00, < - lgll- (12)

Moreover, ImKa|y, .y C Cﬁ'f)(r) and

Vg € Ly (L), [ K2gll ooy < d2 - 9L, - (13)
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Let us denote by Y the Banach space
Y = {g(t) € Lym(I) : (Rg)(t) € W (D)},

where R = PG_ + QG+, VV;SI;)1 = W is the Sobolev space of vector
functions g(t) € L, m,(T') having the generalized derivatives g™ (t) €
L,mT), »=0,1,...,k. The norm in W is defined by formula

k
lgllw =" 1191, -
r=0

A space Y is the Banach space if we introduce the norm by the rule

19l = | Rgllw

The operator PV_ + Qijl is inversible in W. Therefore the oper-
ator My = (PV_ + QV[ )R is inversible as an operator acting from Y’
into W.

Let U,, be the contraction of U, onto Y. It is clear that ImRU,, C
W and for each function g(t) € Y, we have

RU, g € ImU,. (14)
Let us show now that the operator
U,MoU,, = U,(PV_ + QV_"RU,

considered as the operator acting from U,Y into U,W (= Z,) is in-
versible for sufficiently large n(> ng). Let us assume that v (t) and
V_ﬁn) (t) are polynomial matrix-valued functions of degree n in powers
of t and % respectively of the best uniform approximation for matrix-
valued functions V_(¢) and V7! (¢). Then we obtain by [2]

1

) and [V =Vl = O(—cr). (15)

Vo —v®|. = o

no(a)+k
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Taking into account the stability of the trivial particular indexes
[6], we conclude that beginning with numbers n for which hold the
inequalities

WVAVe =V e S a1 < Land [Ve(Vi = Vi) < g2 <1, (16)

the left partial indexes of the matrix-valued functions 148 (t) and

V+(n) (t) all are equal to zero and
det V(1) #£0, det V() #£0, teT.

It is easy to deduce from this that the operator R, = Un[(PV_(n) +
QVin))R]Un . U,Y — Z, is inversible, and also R,' =
U, R PV 4 Q) U,

The form of R~! is brought in [5, page 269]. Estimate the norm
RY:Z, — U,Y. Let g,(t) € Z,. Then

IR gnllg,y = 1Ra gnl = | R - Ry gnllw =

— [PV 4 Q) Ty <
k
<SPV gD p, L+ 1RV gDz, 0 3
3=0

Taking into consideration that P(V_(n))*lgn and Q(Vfb))*lgn are
polynomials of the form > 7 7 - t* and Zﬁi,n i - tF respectively and
applying the analog of the Marcov inequality for the norm of derivative
of polynominal deduced in [4], we obtain

k
IR, gallg,y | < S e [PV ) gl +
j=0

| Q) gulle, o} < const - gl

Hence
IR, g,y —z, = O0nF) (17)
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Using relations (15), it is easy to find that

1
nU(a)

HUnMoUn - Rn”UnHZn = O( )

It follows from this and from (17) that for sufficiently large values
of n(> Nyp), namely for all n for which (16) is valid and

HRﬁl : (UnMOUn —Ry)lz, <q3<1,
the operator U, MU, : U,Y — Z, is inversible and
H(VnMOVn)_lH = O(nk)

Now the inversibility of the operator V;, defined in (11) follows from
relations (12) and (13), and from the inversibility of the operator pg +
k1 + ko; moreover

|Un (Mg + K1 4+ K2)Up || = O(nF), n> (n1 > Ny). (18)

Hence the inversibility of SLAE (4) of colocations method is estab-
lished for all n > nj(> Njp). The estimation for the rate of convergence
(9) can be obtained by well-known method (see, e.g., [7]) using the
following equality from [4]:

1

k _
Vg e HP, |Ung - 9Ly = O(W)a

which holds because of selection of the interpolation points and of
smoothness of the contour T' : T' € C'(2; ). Theorem 1 is proved.

The proof of Theorem 2 is performed following the same scheme as
for Theorem 1, using the sharp estimation of quadrature formula (5)
obtained in monography [2]. Theorem 2 is proved.
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