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On approximate solution of non-elliptic singular

integral equation systems in Lebesgue spaces

T. Cibotaru

Abstract

We investigate in this paper problems of theoretical founda-
tion of collocations and mechanical quadratures methods for ap-
proximate solution of singular integral equation systems in the
case, when their symbols have on the integration contour a finite
set of integer degree zeroes.

We consider the case when equation digitalization points are
taken in such a way that each point of the contour can be included
in the set of points.

The proposed methods converge in Lebesgue spaces Lp,
1 < p < ∞.

1 Algorithms

Let us consider a system of singular integral equations (SIE)

(Mϕ)(t) ≡ C(t)ϕ(t) + D(t)(Sϕ)(t)+
+ 1

2π i

∫
Γ K(t, τ)ϕ(τ)dτ = f(t), t ∈ Γ,

(1)

where f(t) is a vector function of dimension m, C(t), D(t) and K(t, τ)
are matrix-valued functions of degree m, ϕ(t) is an unknown vector
function, and S is a singular operator with Cauchy kernel. Let us
assume that Γ is a simple closed smooth contour, and let the Riemann
function of this contour z = ψ(w) have a continuous by Hölder second
derivative ψ

′′
(w) ∈ Hν(Γ0), Γ0 = {w : |w| = 1}. The class of such

contours is denoted by C(2, ν) (see [1]).
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Let us produce a digitization of equation (1) at points

tj = ψ(w(θ)
j ), w

(θ)
j = exp( 2π i

2n+1 · j + θ · i),
θ ∈ [0; 2π], j = 0, 2n, i2 = −1.

(2)

We note that the presence of parameter θ in equation (2) make it
possible to take every preassigned point of the contour as a point of
digitization.

In comparison with the investigations made earlier, we have ex-
tended in this case possibilities for applications, as well as for selection
of the points of digitization.

We replace the unknown function ϕ(τ) in the digitizated equation
by its interpolate Lagrange polynomial

(Unϕ)(τ) =
∑2n

j=0 ϕj · lj(τ), τ ∈ Γ

lj(τ) =
∏2n

k=0,k 6=j
τ−tk
tj−tk

=
∑n

r=−n Λ(j)
r · τ r, j = 0, 2n.

(3)

As a result, we get the following system of linear algebraic equations
(SLAE):

C(tj)ϕ + D(tj) ·
∑2n

k=0 ϕk · [
∑n

r=0 Λ(k)
r · trj −

∑−1
r=−n Λ(k)

r · trj ]+
+

∑2n
k=0 ϕk

∑n
r=−n Λ(k)

r · 1
2π i

∫
Γ k(tj , τ) · τ rdτ = f(tj) j = 0, 2n

(4)

with respect to the unknowns ϕj = ϕ(tj), j = 0, 2n.
The relations (2)-(4) define the algorithm of collocation method to

solve SIE (1). We note that to calculate numbers Λ(k)
r k = 0, 2n, r =

−n, n introduced in (3) we can use the Vietta theorem.
If we substitute in SLAE (4) the contour integrals by some quadra-

ture formula, then we obtain the algorithm of quadratures method. We
can use the following interpolated quadrature formula:

1
2π i

∫

Γ
g(τ) · τ rdτ ∼= 1

2π i

∫

Γ
Un[τ · g(τ)] · τ r−1dτ ≡

2n∑

k=0

tk · g(tk) · Λ(k)
−r .

(5)
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Thus the algorithm of quadrature is defined by relations (2), (3) and
SLAE

C(tj)ϕj + D(tj) ·
∑2n

k=0{·[
∑n

r=0 Λ(k)
r · trj −

∑−1
r=−n Λ(k)

r · trj ]+
+

∑n
r=−n Λ(k)

r · tk ·K(tj , tk)Λ
(k)
−r}ϕk = f(tj) j = 0, 2n.

(6)

2 Theoretical foundation of the method

We shall get the theoretical foundation of proposed computational
schemes for nonelliptic system SIE, that is for SIE systems whose sym-
bols A(t) = C(t) + D(t) and B(t) = C(t) − D(t) have zeroes on the
contour Γ. Note that in the case of elliptic system SIE, the theoret-
ical foundation of these methods was obtained in [3]. For a standard
contour Γ = Γ0, the problems of foundation of these methods were
investigated in [5].

Let us assume that the function A(t) has a system of zeroes
{α1, α2, . . . , αr} of integer degrees {m1,m2, . . . , mr} and the func-
tion detB(t) has a system of zeroes {β1, β2, . . . , βs} of integer degrees
{m1,m2, . . . , ms}.

In this case the matrix-valued functions A(t) and B(t) permit the
following representation

A(t) = A1(t)D−(t)S−(t),
B(t) = B1(t)D+(t)S+(t).

(7)

Here D−(t) and D+(t) are diagonal matrix-valued functions of the
form

D−(t) = {
r∏

k=1

(t−1 − α−1
k )µ

(k)
j δjl}m

j,l=1,

D+(t) = {
r∏

k=1

(t− βs)
ν
(k)
j δjl}m

j,l=1,

µ
(k)
1 ≥ µ

(k)
2 ≥ . . . ≥ µ

(k)
m ≥ 0, k = 1, r and ν

(k)
1 ≥ ν

(k)
2 ≥ . . . ≥

ν
(k)
m , k = 1, s are integer numbers, S±(t) are polinomials with respect
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to t and t−1 matrixes with constant and non-zero determinant, and
A1(t), B1(t) are nonsingular matrix-valued functions.

Let us introduce the following notation

k = max{µ(1)
1 , . . . , µ

(r)
1 , ν

(1)
1 , . . . , ν

(s)
1 }. (8)

Theorem 1. Let the following conditions fulfill

1) the contour Γ belongs to the class C(2, ν);

2) the representations (7) are true, in which A1(t) and B1(t) are
nonsingular matrix-valued function of the class H

(k+1)
α,m×m(Γ), 0 <

α ≤ 1, and the number k is defined by formula (8);

3) the left partial indexes of matrix-valued function B−1
1 (t)A1(t) are

equal to zero;

4) the kernel of the system SIE (1) is contained in the class
C

(k)
m×m(Γ× Γ);

5) the homogeneous equations corresponding to SIE (1) have only
trivial solutions.

Then for all sufficiently large n and for any f ∈ C
(k)
m (Γ), SLAE (4)

has a unique solution ϕj , j = 0, 2n. The vector functions (3) converge
for n → ∞ by the norm of space Lp,m(Γ) to solution ϕ ∈ Lp,m(Γ).
Moreover, the following estimation holds

‖ϕ− Unϕ‖Lp = O(nσ(α)) + O(ω(f (k),
1
n

)) + O(ωt(K(k);
1
n

)) (9)

σ(α) = α if 0 < α < 1 and σ(1) = 1− ε, ε(> 0) is an arbitrary small
number.

Theorem 2. Let the conditions 1)-3) and 5) of the Theorem 1
fulfill, and let instead of condition 4) of the Theorem 1 the following
condition holds

4’) the kernel of SIE (1) belongs to H
(k)
α,m×m(Γ) with respect to τ and

C
(k)
m×m(Γ) with respect to t.

78



On approximate solution of non-elliptic . . .

Then the statements of Theorem 1 are valid, if we replace SLAE
(4) by SLAE (6) and add in the right-hand side of the estimation (9)
the term O(ωτ (K; 1

n))

3 The proof of Theorem 1

By conditions 2) and 3), the matrix-valued function B
(−1)
1 A1 admits

the left canonical factorization

B−1
1 (t) ·A1(t) = V+(t) · V−(t); (10)

V ±1
+ (t) ∈ PH

(k+1)
σ(α),m, V ±1

− (t) ∈ QH
(k+1)
σ(α),m⊕{const}, P = 1

2(I+S), Q =
I − P.

Denoting G = D−S−, G+ = D+S+ from the relation (7) and (10),
we get

M = AP + BQ + K = B1V+{(PV− + QV −1
+ )(PG− + QG+)+

QV−G−P + PV −1
+ G+Q + V −1

+ B−1
1 K};

To deduce this equality, it was taken into account that PV−GQ =
QV −1

+ G+P = 0.
Then SLAE of collocation method is equivalent to the following

operator equation

(Vn ≡)
Un[(PV− + QV −1

+ )(PG− + QG+) + K1 + K2]Unϕ = Unf,
(11)

where K1 = QV−G−P + PV −1
+ G+Q, K2 = V −1

+ B−1
1 K.

Next we shall prove that the operator Vn is inversible for sufficiently
large n. It is easy to verify that ImK1|Lp,m(Γ) ⊂ H

(k)
α,m(Γ) ∀g(t) ∈

Lp,m(Γ),
‖K1g‖H

(k)
α,m

≤ d1 · ‖g‖p. (12)

Moreover, ImK2|Lp,m(Γ) ⊂ C
(k)
m (Γ) and

∀g ∈ Lp,m(Γ), ‖K2g‖C
(k)
m (Γ)

≤ d2 · ‖g‖Lp,m . (13)
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Let us denote by Y the Banach space

Y = {g(t) ∈ Lp,m(Γ) : (Rg)(t) ∈ W (k)
p,m(Γ)},

where R = PG− + QG+,W
(k)
p,m = W is the Sobolev space of vector

functions g(t) ∈ Lp,m(Γ) having the generalized derivatives g(r)(t) ∈
Lp,m(Γ), r = 0, 1, . . . , k. The norm in W is defined by formula

‖g‖W =
k∑

r=0

‖g(r)‖Lp,m .

A space Y is the Banach space if we introduce the norm by the rule

|g| = ‖Rg‖W .

The operator PV− + QV −1
+ is inversible in W . Therefore the oper-

ator M0 = (PV− + QV −1
+ )R is inversible as an operator acting from Y

into W .
Let Ūn be the contraction of Un onto Y . It is clear that ImRŪn ⊂

W and for each function g(t) ∈ Y , we have

RŪng ∈ ImUn. (14)

Let us show now that the operator

UnM0Ūn = Un(PV− + QV −1
+ )RŪn

considered as the operator acting from ŪnY into UnW (= Zn) is in-
versible for sufficiently large n(≥ n0). Let us assume that V

(n)
− (t) and

V
(n)
+ (t) are polynomial matrix-valued functions of degree n in powers

of t and 1
t respectively of the best uniform approximation for matrix-

valued functions V−(t) and V −1
+ (t). Then we obtain by [2]

‖V− − V
(k)
− ‖c = O(

1
nσ(α)+k

) and ‖V −1
+ − V

(n)
+ ‖c = O(

1
nσ(α)+k

). (15)
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Taking into account the stability of the trivial particular indexes
[6], we conclude that beginning with numbers n for which hold the
inequalities

‖V −1
− (V− − V

(n)
− )‖c ≤ q1 < 1 and ‖V+(V −1

+ − V
(n)
+ )‖ ≤ q2 < 1, (16)

the left partial indexes of the matrix-valued functions V
(n)
− (t) and

V
(n)
+ (t) all are equal to zero and

detV
(n)
− (t) 6= 0, detV

(n)
+ (t) 6= 0, t ∈ Γ.

It is easy to deduce from this that the operator Rn = Un[(PV
(n)
− +

QV
(n)
+ )R]Ūn : ŪnY → Zn is inversible, and also R−1

n =
ŪnR−1[P (V (n)

− )−1 + Q(V (n)
+ )−1]Un.

The form of R−1 is brought in [5, page 269]. Estimate the norm
R−1

n : Zn → ŪnY . Let gn(t) ∈ Zn. Then

‖R−1
n gn‖ŪnY = |R−1

n gn| = ‖R ·R−1
n gn‖W =

= ‖P (V (n)
− )−1 + Q(V (n)

+ )−1‖W ≤

≤
k∑

j=0

{‖[P (V (n)
− )−1gn](j)‖Lp,m + ‖[Q(V (n)

+ )−1gn](j)‖Lp,m}.

Taking into consideration that P (V (n)
− )−1gn and Q(V (n)

+ )−1gn are
polynomials of the form

∑n
k=0 rk · tk and

∑−1
k=−n rk · tk respectively and

applying the analog of the Marcov inequality for the norm of derivative
of polynominal deduced in [4], we obtain

‖R−1
n gn‖ŪnY ‖ ≤

k∑

j=0

{cjn
j‖P (V (n)

− )−1gn‖Lp,m+

+djn
j‖Q(V (n)

+ )−1gn‖Lp,m} ≤ const · nk · ‖g‖Lp,m .

Hence
‖R−1

n ‖ŪnY→Zn
= O(nk) (17)
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Using relations (15), it is easy to find that

‖UnM0Ūn −Rn‖Ūn→Zn
= O(

1
nσ(α)

).

It follows from this and from (17) that for sufficiently large values
of n(≥ N1), namely for all n for which (16) is valid and

‖R−1
n · (UnM0Ūn −Rn)‖Zn ≤ q3 < 1,

the operator UnM0Ūn : ŪnY → Zn is inversible and

‖(VnM0V̄n)−1‖ = O(nk).

Now the inversibility of the operator Vn defined in (11) follows from
relations (12) and (13), and from the inversibility of the operator µ0 +
k1 + k2; moreover

‖Un(M0 + K1 + K2)Ūn‖ = O(nk), n ≥ (n1 ≥ N1). (18)

Hence the inversibility of SLAE (4) of colocations method is estab-
lished for all n ≥ n1(≥ N1). The estimation for the rate of convergence
(9) can be obtained by well-known method (see, e.g., [7]) using the
following equality from [4]:

∀g ∈ H(k)
α , ‖Ung − g‖Lp,m = O(

1
nk+α

),

which holds because of selection of the interpolation points and of
smoothness of the contour Γ : Γ ∈ C(2;µ). Theorem 1 is proved.

The proof of Theorem 2 is performed following the same scheme as
for Theorem 1, using the sharp estimation of quadrature formula (5)
obtained in monography [2]. Theorem 2 is proved.
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