
Computer Science Journal of Moldova, vol.8, no.1(22), 2000

On the computation of Hilbert series and

Poincaré series for algebras with infinite

Gröbner bases

Jonas Mȧnsson

Abstract

In this paper we present algorithms to compute finite state
automata which, given any rational language, recognize the lan-
guages of normal words and n-chains. We also show how these
automata can be used to compute the Hilbert series and Poincaré
series for any algebra with a rational set of leading words of its
minimal Gröbner basis.

1 Introduction

The computation of Hilbert series and Poincaré series for commutative
algebras is a well-studied problem and many efficient algorithms have
been developed. For noncommutative algebras the situation is substan-
tially different and the problem is in general very hard. First of all the
equality problem for words is generally not solvable. The unsolvability
shows already for relatively simple examples (see for instance [6]). In
addition, the rationality of Hilbert series is not guaranteed even for
finitely presented algebras (see [5]). Nevertheless, for many important
classes of algebras, there do exist algorithms for computing Hilbert se-
ries and Poincaré series, e.g algebras with finite Gröbner bases. In [7]
the notion of automaton algebras was introduced, with the property
of having a rational set of normal words. It turns out that this class
of algebras always admits rational Hilbert series. Moreover, provided
the set of normal words can be recognized by a finite state automa-
ton, there is an algorithm to compute it. The computation of Poincaré

c©2000 by J.Mansson

42

On the computation of Hilbert series . . .

series can be carried out by investigating an appropriate free resolu-
tion. In [1] Anick constructed such a resolution by means of so called
n-chains, a kind of generalized obstructions created from the leading
words of the corresponding Gröbner basis. By presenting the n-chains
as a graph the Poincaré series can be obtained in a similar way as for
Hilbert series.

For both these matters it is essential to in some way convert the
information given by the Gröbner basis to a rational expression for the
set of normal words and n-chains respectively. In case of finite Gröbner
bases this is possible. The details can be found in [7]. In this paper
we will describe algorithms for computing finite state automata recog-
nizing the set of normal words and n-chains, given an infinite Gröbner
basis with a rational set of leading words. In particular, the construc-
tion of the automaton for n-chains is an entirely new result, making
it possible to effectively compute the monomial Poincaré series for any
given automaton algebra. For normal words we also prove that the
provided algorithm is optimal in terms of time complexity. Some ex-
amples of how to use this technique for monomial subalgebras with a
rational set of generators will also be given. Finally some computa-
tional aspects of the computation of Hilbert series and Poincaré series
will be discussed.

2 Definitions and notions

By an alphabet X = {x1, x2, . . . , xm} we mean a finite set of letters.
We will always assume that the elements of X are graded, i.e there is
a mapping deg : X −→ Z+. For simplicity we will in all our examples
assume that deg x = 1 for all x ∈ X. A language L is a collection
of finite words of letters in X. The language of all words (including
the empty word 1) will be denoted by X∗. In algebraic notation this
corresponds to the free monoid generated by X. The grading on X
naturally extends to X∗. For any language L we denote by L∗ the set
of words consisting of all finite products of elements in L (including the
empty word 1).

For any field K we let K〈X〉 be the free associative algebra gener-

43

J.Mȧnsson

ated by X. From now on it is assumed that there is given an admissible
order on X∗, i.e a total order preserved under monoid multiplication:
f < g ⇒ hfk < hgk for all f, g, h, k ∈ X∗. In all our examples we will
use a so called degree-lexicographical order

f < g ⇔




deg f < deg g
or if deg f = deg g, f is smaller than g

lexicographically

Having introduced such an order we can to every element f ∈ K〈X〉
associate its leading word f̂ ∈ X∗. For any subset F ⊆ K〈X〉 we define
the language F̂ of leading words as F̂ = {f̂ |f ∈ F}. For any u, v ∈ X∗,
if u is a subword of v we say that u divides v and write u|v.

Definition 2.1 (Gröbner basis) Let I be a two-sided ideal in K〈X〉.
A subset G ⊆ I is a Gröbner basis for I if, for all f ∈ I, there exists
g ∈ G such that ĝ|f̂ .

We specially point out that such a basis always exists, e.g the ideal
itself. It is well-known that there exists a process to compute a Gröbner
basis starting from some finite set of relations (see e.g [9]). On the
other hand the result may be infinite, which creates problems in terms
of computer calculation. Later we will return to this problem and
suggest ways to overcome it in some cases.

A word u ∈ X∗ is called normal modulo an ideal I, if for every
v ∈ Ĝ, v 6 |u. In analogy with this definition we say that u ∈ X∗ is
normal with respect to a language L if, for every v ∈ L, v does not
divide u. A language L is called reduced if no word in L is a subword
of another. In particular a Gröbner basis G is minimal (i.e no smaller
subset is a Gröbner basis) if Ĝ is a reduced language. With every
language L we can associate its unique reduced language LR being the
largest subset of L the elements of which do not contain any other
subword in L.

In what follows we will also come across the notion of n-chains (and
their tails):

Definition 2.2 (n-chain) Let L be a reduced language. The notion
of n-chain is defined by induction on n. All x ∈ X are 0-chains and

44

On the computation of Hilbert series . . .

all coincide with their tails. An n-chain is a word f = gt where g is
an (n − 1)-chain and t a normal word such that, if r is the tail of g,
rt contains a unique element in L and this unique occurrence is the
ending of the word rt. The tail of f is defined to be t. The language
of n-chains is denoted Cn(L).

Note that from the definition it follows that no n-chain is a proper
subword of another n-chain.

3 Rational languages and automata

In this section we will provide algorithms for computing various lan-
guages connected with different structures of a given algebra. Our main
object of interest will be rational languages, i.e languages recognized
by finite state automata.

3.1 Deterministic and nondeterministic automata

We recall the definition of a finite state automaton.

Definition 3.1 A finite state automaton (FSA) M = {Q, X, q1, F}
consists of the following five objects:

• A finite, nonempty set Q. The elements of Q are called states;

• A finite, nonempty alphabet X.

• A unique state q1 ∈ Q called the initial state of M;

• For each x ∈ X a transition function Mx : Q −→ P(Q), where
P(Q) is the set of all subsets of Q;

• A nonempty subset F of Q. The elements of F are called terminal
states;

45

J.Mȧnsson

M is a deterministic finite state automaton (DFSA) if, for all q ∈ Q
and x ∈ X, Mx(q) never contains more than one element1. Otherwise
it is called nondeterministic (NDFSA).

Every FSA M can be represented by a graph G(M), the states being
the vertices and the transition functions Mx defining the edges. De-
pending on the situation we will alternately refer to M as its abstract
definition and alternately as its graph.

To represent the way in which a FSA operates for any given input we
extend the set of transition functions toMu : P(Q) −→ P(Q), u ∈ X∗.
This class of functions is defined recursively by




M1(r) = r r ∈ P(Q)
Mx(r) = ∪q∈rMx(q) x ∈ X, r ∈ P(Q)
Muv(r) = (Mv ◦Mu)(r) u, v ∈ X∗, r ∈ P(Q)

In other words, given a word u ∈ X∗ and a set of states r, Mu(r)
returns the subset of states reached from r by all possible combinations
of traversions induced by u= in the corresponding graph G(M). We
now define

u ∈ L(M) ⇔Mu(q1) ∩ F 6= ∅
and L(M) is referred to as the language recognized by M. For con-
venient reasons we will write any subset of Q consisting of a single
element without brackets.

According to the definition it may seem that the concept of non-
determinism is very powerful, but surprisingly it is not. The following
proposition is well-known in the theory of automata (see for instance
[3]). We have also included the proof in order to demonstrate the kind
of technique we will use later on.

Proposition 3.1 Let N be a NDFSA recognizing a language L. Then
there is an algorithm to compute a DFSA M recognizing the same
language.

1A more common definition of deterministic automata requires Mx(q) to contain
exactly one element. However, allowing empty transitions does not turn M into a
really nondeterministic machine, since any undefined transition can be considered
as a transition to a “garbage state”, i.e an additional nonterminal state which loops
to itself for all x ∈ X.

46

On the computation of Hilbert series . . .

Proof LetN = {Q,X, q1, F} and letM = {Q′, X, q′1, F
′} be the DFSA

defined by




Q′ = {q′r|r ∈ P(Q)}
initial state q′1 = q′q1

Mx(q′r) = q′Nx(r) r ∈ P(Q), x ∈ X

q′r ∈ F ′ ⇔ r ∩ F 6= ∅ r ∈ P(Q)

To prove that L(M) = L(N) is immediate from the construction of M

u ∈ L(M) ⇔ F ′ 3Mu(q′1) = Mu(q′q1
) = q′Nu(q1) ⇔

⇔ Nu(q1) ∩ F 6= ∅ ⇔ u ∈ L(N) ¤
Indexing the new states with P(Q), the time complexity is clearly

exponential in n. However, for the majority of natural instances we
will encounter the average complexity will be much lower. Later we
will focus on some strategies to improve the average complexity for
particular instances.

3.2 Computation of some important rational languages

Now we are ready to prove the following proposition:

Proposition 3.2 Given a DFSA M which recognizes the language L,
there is an algorithm to compute a DFSA which recognizes

a) the language of normal words with respect to L(M).
b) the monoid generated by L(M).
c) the reduced language L(M)R

d) the n-chains of L(M).

Proof a) In order to find an automaton for the language of normal
words we first create one for the complement language, i.e for the two-
sided monoid ideal generated by L(M). For this we modify M =
{Q,X, q1, F} into a NDFSA N = {Q,X, q1, F} by letting Nx(q) =
Mx(q) ∪ q for all q ∈ F ∪ q1 and x ∈ X. All other transitions remain

47

J.Mȧnsson

unchanged. To prove that L(N) is the complement language, first
assume u is not normal. Then there exists v ∈ L(M) such that u =
u1vu2 for some words u1, u2 ∈ X∗. Now since q1 ∈ Nu(q1) we get

F 3Mv(q1) ⊆ (Mv ◦ Nu1)(q1) ⊆ (Nv ◦ Nu1)(q1)

and consequently (Nv ◦Nu1)(q1)∩ F 6= ∅. From the construction of N
it is clear that for any r ∈ P(Q) with r ∩ F 6= ∅ and u ∈ X∗ we have
Nu(r) ∩ F 6= ∅. In particular

Nu(q1) ∩ F = (Nu2 ◦ (Nv ◦ Nu1))(q1) ∩ F 6= ∅
which means u ∈ L(N).

For the opposite inclusion let u ∈ L(N) and let v be a left subword
of u such that v ∈ L(N) and does not contain any non-trivial left
subword in L(N). We observe that Nv(q1) = ∪v=t′tMt(q1), so for at
least one right subword t of v we must have Mt(q1) ∈ F . This in turn
implies t ∈ L(M) and since t in particular is a subword of u, u is not
normal.

According to proposition 3.1 it is algorithmic to compute a DFSA
recognizing the same language. A DFSA for the language of nor-
mal words is now obtained by interchanging terminal and nonterminal
states.

b) We can safely assume that 1∈ L(M). Just like in a) we mod-
ify M = {Q,X, q1, F} into a NDFSA N = {Q, X, q1, F} by letting
Nx(q) = Mx(q) ∪ Mx(q1) for all q ∈ F and x ∈ X, leaving all
other transitions unchanged. It remains to prove L(N) = L(M)∗.
Let u ∈ L(M)∗ and let u = u1u2 · · ·un be some factorization with ele-
ments in L(M). We will prove u ∈ L(N) by induction on n. It is easily
seen that Nu1(q1) ∩ F 6= ∅, so assume Nu1u2···un−1(q1) ∩ F 6= ∅. ¿From
the construction of N we notice that Nun(q1) ⊆ (Nun ◦Nu1u2···un−1)(q1)
and thus

Mun(q1) ⊆ Nun(q1) ⊆ (Nun ◦ Nu1u2···un−1)(q1) = Nu1u2···un(q1)

Since un ∈ L(M)

∅ 6= Mun(q1) ∩ F ⊆ Nu1u2···un(q1) ∩ F

48

On the computation of Hilbert series . . .

We have proved Nu ∩ F 6= ∅, or equivalently u ∈ L(N).
For the opposite inclusion let u ∈ L(N). It is easy to realize that we

always can find a right subword v ∈ L(M) of u and we write u = wv for
some w ∈ X∗. Moreover, since the transition functions for M and N
only differ for terminal states, the definition of N enables us to choose
v so that either w ∈ L(N) or w = 1. If w == 1 we are done, otherwise
an inductive argument proves the claim. By proposition 3.1 there is a
DFSA recognizing the same language.

c) Consider M = {Q, X, q1, F}. Wishing to compute the corre-
sponding reduced language we can safely make the assumption that
Mx(q) = q for all q ∈ F and x ∈ X. We modify M into a NDFSA
N = {Q,X, q1, F} by letting Nx(q1) = Mx(q1) ∪ q1 for all x ∈ X,
leaving all other transitions unchanged. Let X = {x1, x2, . . . , xm} and
construct a DFSA M′ = {Q′, X, q′1, F

′} in the following way:




Q′ = q′1 ∪ (∪1≤i≤mQi), Qi = {qi
(q,r)|(q, r) ∈ Q× P(Q)}

initial state q′1
M′

xi
(q′1) = qi

(Mxi (q1),q1)

M′
x(qi

(q,r)) =
{

qi
(Mx(q),Nx(r)) if qi

(q,r) 6∈ F ′

∅ otherwise.
qi
(q,r) ∈ F ′ ⇔ q ∈ F

He we use the convention that in case one of the indices in qi
(q,r) is

empty, then qi
(q,r) = ∅. By construction L(M′) ⊆ L(M), and any

u ∈ L(M) belongs to L(M′) if and only if it does not contain a proper
left subword in L(M). Now we modify M′ into a new DFSA M′′ =
{Q′, X, q′1, F

′′} by letting F ′′ = F ′∩{qi
(q,r)|r∩F = ∅}. We want to prove

L(M′′) = L(M)R. Let u = xiv ∈ L(M)R ⊆ L(M′) for some xi ∈ X
so that M′

u(q′1) = qi
(q,r) ∈ F ′. Suppose r ∩ F 6= ∅. It is easily verified

that r = ∪v=t′tMt(q1), and thus t ∈ L(M) for some right subword t
of v, which contradicts u ∈ L(M)R. It only remains r ∩ F = ∅ and
consequently u ∈ L(M′′).

For the opposite inclusion let u ∈ L(M′′). Trivially u ∈ L(M)
since L(M′′) ⊆ L(M′) ⊆ L(M) so assume u 6∈ L(M)R. Then, either u

49

J.Mȧnsson

contains a proper left subword in L(M), or u = xiv for some letter xi

and v contains a subword in L(M). The first case is impossible since
it would imply u 6∈ L(M′). As for the second case we note that the
assumption Mx(q) = q for all q ∈ F implies that v contains a right
subword t ∈ L(M). If M′′

u(q′1) = qi
(q,r) a similar argument as before

yields r ∩ F 6= ∅, which contradicts u ∈ L(M′′).

d) According to c) there is an algorithm to compute a DFSA for
L(M)R, which means we can assume L(M) is reduced. The strat-
egy used here is in some way similar to the one in c). Indexing our new
automaton with the product set P(Q)×P(Q), we can keep track of all
beginnings of elements in L(M) in the current tail as well as recognize
new such elements starting in the previous tail.

First we modifyM = {Q,X, q1, F} into a NDFSAN = {Q,X, q1, F}
by letting Nx(q1) = Mx(q1) ∪ q1 for all x ∈ X, leaving all other tran-
sitions unchanged. Let M′ = {Q′, X, q′1, F

′} be the DFSA defined by





Q′ = {q′(r,s)|(r, s) ∈ P(Q)× P(Q)}
initial state q′1 = q′(q1,q1)

M′
x(q′(r,s)) = q′(r′,s′)
where (r′, s′) = (Mx(s \ q1),Nx(q1)) if q′(r,s) ∈ F ′

and (r′, s′) = (Mx(r),Nx(s)) otherwise.
q′(r,s) ∈ F ′ ⇔ r ∩ F 6= ∅

Just like in the proof of c), any empty index in qi
(r,s) implies qi

(r,s) = ∅.
Now L(M′) recognizes the language of n-chains of L(M) for all n ≥ 1.

To prove this let n ≥ 1. We prove that every n-chain belongs to
L(M′) by induction. All 1-chains trivially belong to L(M′) (recall that
L(M) is reduced) and we make the following induction assumption for
m < n:

• If u = vt is an m-chain for some (m− 1)-chain v with tail t then
u ∈ L(M′).

• In addition if M′
u(q′1) = q′(r,s) we have s = ∪t=t′′t′Mt′(q1).

50

On the computation of Hilbert series . . .

As for the second part of the assumption, notice that Mt′(q1) 6= q1

for all right subwords t′ except the empty word. This follows from
L(M) being reduced, since M cannot have any transitions to the
initial state. Also note that for m = 1 we actually have s =
Mu(q1)∪ (∪t=t′′t′Mt′(q1)), as a consequence of not including 0-chains.
However, this will not affect the validity of the proof, since Mu(q1) is a
terminal state and does not have any transitions leaving from it (L(M)
is reduced).

Let u be a n-chain (n ≥ 2) with u = vt1t2, such that v is a (n− 2)-
chain with tail t1 and vt1 an (n− 1)-chain with tail t2. By assumption
vt1 ∈ L(M′) and if M′

vt1(q
′
1) = q′(r,s) we have s = ∪t1=t′′t′Mt′(q1).

Assume g is the smallest nonempty left subword of t2 such that vt1g ∈
L(M′). Note that such a smallest word always exists. It means

M′
vt1g(q

′
1) = (M′

g ◦M′
vt1)(q

′
1) = M′

g(q
′
(r,s)) = q′(r′,s′)

with 



r′ = Mg ◦ (∪t1=t′′t′,t′′ 6=t1Mt′(q1)) =
= ∪t1=t′′t′,t′′ 6=t1Mt′g(q1)

s′ = ∪g=t′′t′Mt′(q1)

Since vt1g ∈ L(M′) we have r′ ∩ F 6= ∅ so t′g ∈ L(M) for some
nonempty right subword t′ of t1. If g is a proper left subword of t2
then t1t2 must contain at least two different elements in L(M), which
contradicts u being an n-chain. It remains g = t2 implying u ∈ L(M′),
and the second condition s′ = ∪t2=t′′t′Mt′(q1) is also satisfied. The
induction principle asserts that every n-chain belongs to L(M′).

For the opposite inclusion, suppose u ∈ L(M′). We want to prove
that u is a chain, i.e an n-chain for some n ≥ 1. Let u = t1t2 · · · tn be the
complete factorization of u in the sense that {t1t2 · · · tm|1 ≤ m ≤ n}
is the set of all left subwords of u which belong to L(M′). We use
induction on n. It is easy to realize u is a 1-chain for n = 1, so we
make the following induction assumption for m < n:

• The word t1t2 · · · tm is an m-chain with tail tm.

• If M′
t1t2···tm(q′1) = q′(r,s) then s = ∪tm=t′′t′Mt′(q1).

51

J.Mȧnsson

Also here we note that for m = 1 the first statement is not valid, since
t1 is not its own tail. As we will see this will not cause any problems
with the proof, since L(M) is reduced and thus t1 does not contain a
proper subword in L(M).

Let M′
t1t2···tn−1

(q′1) = q′(r,s). Then M′
t1t2···tn(q′1) =

= M′
tn(q′(r,s)) = q′(r′,s′), where

{
r′ = ∪tn−1=t′′t′,t′′ 6=tn−1Mt′tn(q1)
s′ = ∪tn=t′′t′Mt′(q1)

Now r′ ∩ F 6= ∅, so for at least one right subword t′ of tn−1 we have
t′tn ∈ L(M). Assume there is another word g ∈ L(M) dividing tn−1tn.
The case g|tn−1 is impossible since tn−1 is a tail of some chain, and so
is g|tn since t′tn ∈ L(M), which is a reduced language (notice that t′ is
nonempty). It remains the case where g intersects both tn−1 and tn. By
the construction of the factorization t1t2 · · · tn, g must be another right
subword of tn−1tn. But then g = t′tn since L(M) is reduced. Thus
t1t2 · · · tn is an n-chain with tail tn and in addition s′ = ∪tn=t′′t′Mt′(q1),
satisfying the second part of the induction assumption. By induction
u is an n-chain and we are done. ¤

Remark Let M be a DFSA for the n-chains of some reduced lan-
guage. The proof of proposition 3.2d reveals the following pleasant
property of L(M). Let u ∈ L(M) and let further u = t1t2 . . . tn be the
complete factorization of u as described before. Then u is an n-chain.
In this way we can keep track of the index of the chain by counting the
number of terminal states reached during the run of M.

3.3 Aspects on time complexity

As noted before the complexity for the algorithm in proposition 3.1 as
well as for the variants used in proposition 3.2 is exponential in the
input size. But in many cases we will have much lower average com-
plexity, taking advantage of special properties of the given input. All
of the algorithms in 3.2 can be improved considerably considering the
fact that all states not reachable from the initial state safely can be

52

On the computation of Hilbert series . . .

removed. This can be accomplished by constructing the new automa-
ton stepwise, using some kind of search of the corresponding graph,
e.g a depth-first search starting from the initial state. Any state not
reachable from the initial state will thus never be taken account of. As
concerns the automaton for the complement of normal words in b), we
might also use the fact that any transition from a terminal state must
map to another terminal state. Thus it is possible to backtrack as soon
as a terminal state is reached. Another way to keep complexity down
is to find equivalent automata of minimum size, i.e with a minimum
number of states. A polynomial algorithm for this can be found in [3].

Although the efficiency can be improved considerably in many cases
the following proposition prohibits general success.

Proposition 3.3 Given a DFSA M = {Q, X, q1, F} with |Q| = n
the time complexity for computing a DFSA for the language of normal
words with respect to L(M) is Θ(2n).

Proof Let M be defined by the following graph.

cg g g g g w.- -- -- -- -- -x1 x1

x2

x1

x2

x1

x2

x1

x2

x1

q1 q2 q3 qn−2 qn−1 qn

We compute a DFSA M′ = {Q′, X, q′1, F
′} which recognizes the set

of normal words using the algorithm in proposition 3.2. We maintain
the notions introduced in proposition 3.1. Let qi1 , qi2 , . . . qik (1 ≤ k ≤
n−1) be a sequence of states in Q such that 1 = i1 < i2 < · · · < ik < n.
Consider the word

u = x1x
ik−ik−1−1
2 x1x

ik−1−ik−2−1
2 · · ·x1x

i2−i1−1
2

It is clear that M′
u(q′1) = q′{qi1

,qi2
,...qik

} which means all 2n−2 terminal
states F ′ = {q′r ∈ Q′|q1 ∈ r, qn 6∈ r} are reachable from q′1.

Now suppose M′′ = {Q′′, X, q′′1 , F ′′} is another DFSA recognizing
the same language, and q′′ ∈ Q′′ a state reachable from q′′1 . Moreover,

53

J.Mȧnsson

let u1, u2 ∈ X∗ be normal words satisfying M′′
ui

(q′′1) = q′′ (1 ≤ i ≤ 2).
For M′ we have

M′
ui

(q′1) = q′ri
, ri = {qli1 , qli2 , . . . , qliki

}

with 1 = li1 < li2 < · · · < liki
< n, 1 ≤ i ≤ 2, 1 ≤ ki ≤ n− 1

We want to prove M′
u1

(q′1) = M′
u2

(q′1). Suppose not. By symmetry
we can safely assume r1 6⊆ r2, so for some j 6= 1, ql1j belongs to r1 but

not to r2. Consider the word v = x
n−l1j−1
2 x1. It follows that




M′

u1v(q
′
1) = q′{q1,ql11+1,ql12+(n−l1j),...,ql1(j−1)+(n−l1j),qn} 6∈ F ′

M′
u2v(q

′
1) = q′{q1,ql21+1,ql22+(n−l1j),...,ql2m+(n−l1j)} ∈ F ′

where l2m is the largest integer strictly less than l1j . But M′′
u1v(q

′′
1) =

M′′
u2v(q

′′
1) which contradicts L(M′) = L(M′′). Thus M′

u1
(q′1) =

M′
u2

(q′1). We have proved that for any normal words u1, u2 ∈ X∗

M′
u1

(q′1) 6= M′
u2

(q′1) ⇒M′′
u1

(q′′1) 6= M′′
u2

(q′′1)

This means |F ′′| ≥ |F ′| = 2n−2 so any DFSA recognizing the set of
normal words needs at least 2n−2 states. ¤

4 Hilbert series and Poincaré series

In this section we will provide general methods for computing Hilbert
series and Poincaré series by using the automata produced in the pre-
vious section. Most of the major ideas as regards the use of automata
to compute Hilbert series are already known, but presented in a some-
what more specialized context (see [8]). In addition to presenting a
unified theory, we will provide examples how to compute Hilbert series
for subalgebras generated by a rational language, as well as discuss
various implementational aspects.

54

On the computation of Hilbert series . . .

4.1 Hilbert series computation for rational languages

Assuming a somewhat more general approach, we extend the definition
of Hilbert series to an arbitrary language L.

Definition 4.1 Let L be a language. We define the Hilbert series of
L as the formal power series

HL(t) =
∑

u∈L
tdeg u

As mentioned earlier every DFSA M = {Q,X, q1, F} can be rep-
resented as a graph G(M). This can be used to effectively compute
the Hilbert series of L(M). Let Q = {q1, q2, . . . qn} and let D be the
n× n-matrix defined by

Dij =
∑

x∈X,Mx(qi)=qj

tdeg x

We say that D is the matrix associated with G(M). We also introduce
the n-sized vector

e = (φ(1), φ(2), . . . φ(n)), φ(i) =
{

1 if qi ∈ F
0 if qi 6∈ F

The following proposition can be found in [8] in a slightly different
form.

Proposition 4.1 Let M be a DFSA recognizing a language L, and
G(M) the corresponding graph. Then

HL(t) = (I −D)−1
1 eT

where I is the unit matrix and the lower index ’ 1’ denotes the first
row of the matrix. The upper index ’T ’ simply indicates e being the
transposed vector.

Proof It is easy to see that for any n, (Dn)1eT equals the Hilbert series
for all words in L(M) of length n. Thus

HL(t) = (
∑

n≥0

(Dn)1)eT = (
∑

n≥0

Dn)1eT = (I −D)−1
1 eT ¤

55

J.Mȧnsson

4.2 Finitely presented algebras

Let A = ⊕n≥0An be a graded algebra and HA(t) =∑
n≥0 dim(An)tn its Hilbert series. If A is a finitely presented alge-

bra, i.e A = K〈X〉/I for some finitely generated homogeneous ideal
I, one could expect the Hilbert series to be rational. That is surpris-
ingly not the case. For a counterexample see [5]. For algebras with a
rational language of normal words rationality is guaranteed. Hilbert
series computations for this class of algebras are done in [7]. However,
a complete algorithmic procedure is only described for algebras with
a finite Gröbner basis. Obviously a Gröbner basis with a rational set
of leading words also results in a rational set of normal words, and
experimental results indicate such bases are frequently occurring. We
provide an example:

Example 4.1 The algebra A = K〈x, y|x2 = xy〉 has, using deglex
order with x > y, a Gröbner basis G = {xynx = xyn+1|n ∈ N}. The set
Ĝ of leading words is rational and can be recognized by an appropriate
DFSA:

cg g w- -x x

y¤
£

¡
¢?

Remark In general infinite Gröbner bases create serious problems with
computer calculations. One possible way to get around this is discussed
in [8]. The main idea is to make the computer guess a ’rational’ Gröbner
basis based on the initial Gröbner basis computations, and then prove
its correctness using the diamond lemma [2]. A computer program for
this ’guessing’-procedure has been implemented by the same author.
Also this approach is based on the fact that many algebras seem to
admit a rational structure of their minimal Gröbner basis. It would be
interesting to be able to in some sense predict whether a given finitely
presented algebra admits a ’rational’ Gröbner basis or not. Obviously
this not a general property.

56

On the computation of Hilbert series . . .

Let I be a homogeneous two-sided ideal in K〈X〉 and let N be the
set of normal words modulo I. If KN denotes the K-linear span of N ,
it is easy to prove that the following direct sum of vector spaces hold
(see e.g [9]):

K〈X =〉 = KN ⊕ I

If we introduce a new operation on KN by letting s ∗ t = st, where
the bar denotes the projection on KN , KN is isomorphic to the factor
algebra A = K〈X〉/I. The advantage with this identification is the
possibility to compute the Hilbert series of A directly from N . In fact
we get

HA(t) = HN (t)

Thus, according to proposition 4.1, we can compute the Hilbert series
of A once we have a DFSA for its set of normal words.

Example 4.2 We continue with example 4.1. Using the algorithm in
3.2a, the initial ideal of A = K〈x, y|x2 = xy〉 can be represented by

cg g w- -

y

x x

y x

y

¤
£

¡
¢?

¤
£

¡
¢?

¤
£

¡
¢?

¤
£

¡
¢?

To obtain a deterministic automaton for the set of normal words,
we interchange terminal and nonterminal states (notice that all non-
terminal states in the new automaton safely can be removed)

sg w-x

y y¤
£

¡
¢?

¤
£

¡
¢?

yielding an associated matrix D =
(

t t
0 t

)
. According to proposition

4.1 we get

HA(t) = HN (t) = (I −D)−1
1 eT = (

1
1− t

,
t

(1− t)2
)
(

1
1

)
=

57

J.Mȧnsson

=
1

(1− t)2

By means of the techniques developed in this paper we can also
compute Hilbert series for monomial subalgebras of K〈X〉 generated
by a rational set of monomials. For subalgebras of K〈X〉 the ana-
logue of Gröbner bases is called SAGBI-bases (Subalgebra Analogue
of Gröbner Bases for Ideals). More about this concept can be found
in [4].

Corollary 4.1 For any subalgebra of K〈X〉 with a rational SAGBI-
basis, the Hilbert series is rational.

We illustrate with an example:

Example 4.3 Let A be the subalgebra generated by L =
{x2, x2y, yx2, y2+n|n ∈ N}.

cg

g

w

g

g

w

w

w- - -

- -?

?

x x y

x x
y

y

y
¤£ ¡¢-

¿From algorithm 3.2b we get that L∗ is recognized by (after mini-
mization)

sg g w

g g

- -¾
6

¾

6
HHHHHHHHj

x x
x

y

yy
x

x

¤
£

¡
¢?

We can now compute the Hilbert series with the aid of proposition
4.1.

HA(t) = HL∗(t) = (I −D)−1
1 eT =

t2 − t + 1
t5 + t4 − t3 − t2 − t + 1

58

On the computation of Hilbert series . . .

4.3 Poincaré series

The Poincaré series for algebras is defined in the following way:

Definition 4.2 (Poincaré series) The Poincaré series of a graded
algebra A is determined by

PA(t) =
∑

n≥0

dimK(TorA
n (K, K))tn

In order to get a good upper bound on the Poincaré series, we are also
interested in the following more general series:

Definition 4.3 (Double Poincaré series) The double Poincaré se-
ries of a graded algebra A is the following series in two variables:

PA(s, t) =
∑

i,n≥0

dimK(TorA
in(K, K))sitn

The Poincaré series reflects the homological properties of an algebra
A and carries a great amount of information. By considering a free
resolution of A, the double Poincaré series can be computed explicitly.
In particular, so called minimal resolutions are very important for this
matter. In [1] Anick constructed a resolution with modules generated
by the n-chains of A. The following is true for monomial algebras:

Proposition 4.2 Let A = K〈X|F 〉 be a monomial algebra. Then

PA(s, t) = 1 + HC0(t)s + HC1(t)s
2 + · · ·

where Ci denotes Ci(FR).

Note that F here can be any set of monomials, not necessarily finite or
rational. For a more detailed exposition on Anick’s resolution, see also
[9]. The proof of the following remarkable formula can also be found
there.

Proposition 4.3 Let A = K〈X〉/I be a finitely generated homoge-
neous algebra, and GR the reduced Gröbner basis for I. Then

HA(t) =
1

1−∑
i≥0(HC2i+1(ĜR)(t)−HC2i(ĜR)(t))

59

J.Mȧnsson

As we can see, the concept of n-chains can be used to compute both
Hilbert series and double Poincaré series. Taking advantage of the re-
mark following proposition 3.2 we can prove the following proposition:

Proposition 4.4 Let A = K〈X〉/I be a finitely generated homoge-
neous algebra and GR the reduced Gröbner basis for I. If M =
{Q,X, q1, F} is a DFSA for the language of n-chains of ĜR, then we
can construct an associated matrix D and a vector e such that

a) HA(t) = 1/(1−HX(t)− (I −D)−1
1 eT)

b) PÃ(s, t) = 1 + HX(t)s + s(I −D)−1
1 eT

where Ã = K〈X|ĜR〉, i.e the corresponding monomial algebra.

Proof
a) Assume Q = {q1, q2, . . . , qn}. We define the n× n-matrix D by

Dij =
∑

x∈X,Mx(qi)=qj

(−1)φ(j)tdeg x

and let e = (φ(1), φ(2), . . . , φ(n)). Recall that

φ(i) =
{

1 if qi ∈ F
0 if qi 6∈ F

Just like in the proof of proposition 4.1 we notice that (Dn)1eT equals
the Hilbert series of L(M), with one major exception. Since any n-
chain (n ≥ 1) corresponds to a traversion of G(M) passing n terminal
states, and thus changing sign the same number of times, we obtain
instead

(I −D)−1
1 eT =

∑

i≥1

(−1)iHCi(ĜR)(t)

Combining this and proposition 4.3 yields

HA(t) =
1

1−HX(t)− (I −D)1eT

60

On the computation of Hilbert series . . .

which was desired. Note that HC0(L)(t) = HX(t).

b) We define D by

Dij =
∑

x∈X,Mx(qi)=qj

sφ(j)tdeg x

and let e be as in a). Using proposition 4.2, a similar argument as in
a) implies

PÃ(s, t) = 1 + HX(t)s + s(I −D)−1
1 eT

and we are done. ¤

Proposition 3.2 and 4.4 now provide us with a new algorithmic pro-
cedure to compute monomial Poincaré series for any given automaton
algebra.

Example 4.4 We return to the algebra A = K〈x, y|x2 = xy〉. As was
seen in example 4.2 A has the reduced Gröbner basis G = {xynx =
xyn+1|n ∈ N} and thus a set of leading words Ĝ = {xynx|n ∈ N}.

cg g w- -x x

y¤
£

¡
¢?

Using the algorithm in proposition 3.2d we obtain the following
DFSA for the language of n-chains:

cg g w

g w

- -

?¾ -

¡
¡

¡¡ª

x x

y

x
y

y

x

y x

¤
£

¡
¢?

¤£ ¡¢- ¤£ ¡¢-

which after minimization is equivalent to

61

J.Mȧnsson

cg g w- -¾
x x

y

y

x¤
£

¡
¢?

¤
£

¡
¢?

By means of proposition 4.4 we obtain

HA(t) = 1/(1−HX(t)− (I −D)−1
1 eT) = 1/(1− 2t− (−t2)) =

= 1/(1− t)2

PÃ(s, t) = 1 + HX(t)s + s(I −D)−1
1 eT = 1 + 2st +

s2t2

1− (st + t)

References

[1] Anick, D. (1986): On the homology of associative algebras, Trans.
Am. Math. Soc. 296, No. 2, pp.641-659.

[2] Bergman, G. (1978): The diamond lemma for ring theory, Adv.
Math. 29, No. 2, pp.178-218.

[3] Drobot, V. (1989): Formal languages and automata theory, Com-
puter Science Press.

[4] Nordbeck, P. (1999): Canonical bases for subalgebras of factor
algebras, Comput. Sci. J. Mold. 7, pp.63-77.

[5] Shearer, J.B. (1980): A graded algebra with a non-rational Hilbert
series, J. Algebra 62, No. 1, pp.228-231.

[6] Tsejtin, G.S. (1958): Associative computations with unsolvable
equivalency problem, Tr. Mat. Inst. Steklova 52, pp.172-189.

[7] Ufnarovski, V.A. (1991): On the use of graphs for computing a ba-
sis, growth and Hilbert series of associative algebras, Math. USSR
Sbornik 68, No. 2, pp.417-428.

[8] Ufnarovski, V.A. (1993): Calculations of growth and Hilbert series
by computer, Lect. Notes Pure Appl. Math. 151, pp.247-256.

62

On the computation of Hilbert series . . .

[9] Ufnarovski, V.A. (1995): Combinatorial and asymptotic methods
of algebra, Algebra-VI (A.I. Kostrikin and I.R. Shafarevich, Eds),
Encyclopedia of Mathematical Sciences, Vol. 57, Springer, pp.5-
196.

Jonas Mȧnsson, Received April 3, 2000
Lund University,
Department of Mathematics
Sőlvegatan, 18,
Box 118, S–22100,
Lund, Sweden
e-mail: jonasm@maths.lth.se

63

