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Reduction algorithms for solving large systems

of logical equations

A. Zakrevskij

Abstract

Large systems of logical equations are considered in this pa-
per, each depending on a restricted number of variables. A
method of reduction is suggested that reduces the number of roots
in separate equations, which in its turn saves time spent for find-
ing roots of the whole system. Three mechanisms of reduction
are proposed, each looking for some prohibited combinations of
variables in separate equations (combinations that do not satisfy
the equations). The first procedure looks for constants (prohib-
ited values of some variables, or 1-bans). The second one looks
in a similar way for prohibited combinations of values on pairs of
variables (2-bans) and finds all their logical consequences closing
the set of discovered 2-bans. The third analyses the equations by
pairs, finds r common variables for them, and checks one by one
all different combinations of their values looking for prohibited
ones (r-bans). The found bans are used for deleting some roots
in other equations. After this new bans could be found, so the
procedure of reduction has the chain nature. It greatly facilitates
solving large systems of logical equations. Sometimes it is enough
to find the only root of a system or prove its inconsistency.

1 Introduction

A lot of problems related to logical design, diagnostics (both in
medicine and engineering), pattern recognition, information security
and many others are reduced to formulating and solving large systems
of logical equations. This task is rather difficult because the considered
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systems could contain many equations and variables, so it is impossi-
ble to solve them using direct methods which are based on scanning
Boolean space of variables and checking its elements one by one.

However, as a rule the number of variables in separate equations is
greatly restricted, for example not exceeding 10. This allows to repre-
sent every equation by a short Boolean vector of its roots, providing a
compact description of the regarded system and efficient application of
vector logical operations.

The most interesting from practical point of view is the case of
systems having few roots or none at all. This situation is typical for
checking the system for satisfiability (a popular task!) and solving
some problems of diagnostics and recognition. The well known tree
searching technique could be used in this case, especially combined
with new means that powerfully reduce the area of search.

Three competing algorithms of that kind are suggested in this pa-
per.

2 Formulation of the problem

Every system of logical equations with Boolean variables is easily re-
duced to the form

F = (ϕ1(u1) = 1, ϕ2(u2) = 1, . . . , ϕm(um) = 1),

where ϕi(ui) are Boolean functions with arguments selected from the
set x = (x1, x2, . . . , xn) : ui ⊆ x, i = 1, 2, . . . , m. To solve sys-
tem F means to find its roots – combinations of values of variables
x1, x2, . . . , xn, which turn into 1 each function ϕi. It is necessary in
some cases to obtain all the roots, sometimes it is enough to find only
several roots or even arbitrary one of them, sometimes it is needed to
know if there exists some root, i. e. to solve the well-known satisfiabil-
ity problem.

Let us represent any Boolean function ϕi with k arguments (k =
|ui|) from the system F by a pair of Boolean vectors: 2k-component
vector vi of function values (using the conventional component order-
ing) and n-component vector ai of function arguments. For example,
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if x = (a, b, c, d, e, f, g, h), then the pair of vectors v3 = 01101010 and
a3 = 00101001 represents the function ϕ3(c, e, h) which takes value 1
on four combinations 001, 010, 100 and 110 of argument values and
takes value 0 on all others.

When n is small (equals 10, for example), representation of all
functions ϕi can be unified by introducing in each function missing
variables from x (as fictive ones) and correspondingly extending vectors
vi. After that the complete solution of the system is easily reached by
the componentwise conjunction of these extended vectors: all roots
of the system will be enumerated in the resulting vector v. But this
operation is practically impossible for large n – for example, the length
of vector v will exceed 1018 for n = 60.

New methods could be useful in that case, based on reduction pro-
cedures described below.

3 Method of spreading of constants

This method was proposed in [1, 2] and can be formalized as follows.
The rules of equivalence transformation of system F are introduced

below, where ϕj denotes an arbitrary function from F and xi – some
variable from x. These rules enable to simplify F with preserving the
set of its roots.

Assertion 1 If xiϕj = 0, the inequality (prohibition) xi 6= 1 could be
added to F , if x′iϕj = 0, then xi 6= 0 could be added.

Assertion 2 If F contains inequality xi 6= 1, then variable xi in ϕj

can be changed for 0 (for 1 in the case xi 6= 0).

Assertion 3 If system F contains both inequalities xi 6= 1 and xi 6= 0,
it is inconsistent (has no roots).

The first assertion can be used for finding constants in the system.
If the system is obviously consistent, xi = 0 follows from inequality
xi 6= 1 and xi = 1 – from xi 6= 0. The probability of finding some
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constants in the system grows with decreasing the number of variables
and roots in analyzed equations.

The second assertion could be used for spreading of constants. Re-
placing some variables by constants usually decreases the number of
roots in regarded equations which, in its turn, helps to discover new
constants. So, the process of constants spreading has the chain nature.
As a result, the dimension of processed equations is decreasing, some-
times down to zero – when all variables of the regarded equation receive
definite values. If function ϕj turns into 1, the corresponding equation
is deleted from the system; if ϕj turns into 0, it becomes evident that
the system is inconsistent.

Simple enough, this method turned out to be very efficient, being
applied to some problems of cryptography. A special problem of crypt-
analysis of the mechanical rotor encryption machine Hagelin M-209-B,
which was applied in several forms by Germans during the second world
war, was investigated in [3]. It was shown that its cryptanalysis can be
reduced to solving a definite system of many logical equations (about
five hundred) each of which contains six Boolean variables, meanwhile
the general number of variables equals 131 – the set of their values
constitutes the sought-for key. To solve this system a method was
proposed in [3] based on using Reduced Ordered Binary Decision Dia-
grams (ROBDDs) [4] for representation of the regarded functions. Its
computer implementation on Pentium Pro 200 showed that under some
suppositions it enables to find the key in several minutes.

Application of the method of spreading of constants using vector
representation of the considered Boolean functions and taking into ac-
count the specific of the regarded system of logical equations was far
more efficient. It accelerates the search for the key more than in thou-
sand times: the run-time for the problem described above usually did
not exceed 0.1 second in a series of experiments using C++ and PC
Pentium 100 [5].
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4 Method of syllogisms

Let us regard equation ϕ(z1, z2, . . . , zk) = 1 with function ϕ taking
value 1 on s randomly selected inputs. When s is small, it is possible
to find some constant – a prohibition on a value of some variable (a ban
of rank 1, or 1-ban). But it is more probable to reveal a prohibition on
some combination of values of two variables (2-ban), which determines
the corresponding implicative regularity, or connection between these
variables. For example, connection “if a, then not b” prohibits combi-
nation of values a = 1, b = 1. It could be revealed in ϕ if abϕ = 0. For
convenience, represent this ban by product ab (having in mind equation
ab = 0).

In a similar way, 2-bans ab′, a′b, a′b′ are defined. They are in-
terpreted easily as general affirmation and general negation category
statements. By that besides three such statements of Aristotle syllogis-
tic (ab′ – all A are B, a′b – all B are A, ab – none of A is B) the fourth
is used: a′b′ – none of objects is A and is not B. Such a statement was
not considered by Aristotle, inasmuch as he did not regarded empty
classes [6].

The chances for revealing some bans of rank r (containing r vari-
ables) are big enough if the mathematical expectation M of the number
of such bans is not less than 1: M ≥ 1. It is calculated by formula
M = Cr

k2r(1 − 2−r)s [7], reduced down to k/2s−1 for 1-bans and to
2k(k − 1)(3/4)s for 2-bans. In correspondence with this formula the
condition M ≥ 1 is satisfied under some restrictions on numbers of vari-
ables (k) and especially of roots (s) in equation ϕ(z1, z2, . . . , zk) = 1,
and these restrictions are considerably weaker for 2-bans compared
with 1-bans. (It is assumed that roots are randomly placed.) For prac-
tically interesting values of k (from 5 to 10) they are represented by the
following table, calculated from the given formula. There are shown
maximal values of s satisfying condition M ≥ 1 for 1-bans (s1

max) and
2-bans (s2

max). The relative values of parameter s are given for 2-bans
by the last string: s2

max% = 100s2
max/2k).
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k 5 6 7 8 9 10
s1
max 3 3 3 4 4 4

s2
max 12 14 15 16 17 18

s2
max% 37 22 12 6 3 1,7

It follows from the table that when k is small implicative regularities
can be found even in the case of rather high percentage of roots in the
regarded equations.

4.1 Closing the system P

Suppose, that by examining equations of the system F one by one, we
have found a set P of 2-bans. Let us consider the task of closing it,
i. e. adding to it all other 2-bans which logically follow from P (so
called resolvents of P ). This task is equivalent to the polysyllogistic
problem. Denote the resulting closed set of 2-bans as Cl(P ). A method
to find it is suggested below. It differs from the well-known method
of resolutions [8] and its graphical version [9] by application of vector-
matrix operations which speed up the logical inference.

Let X1
t and X0

t be the sets of all literals that enter 2-bans contained
in F together with literal xt or x′t, correspondingly. We introduce op-
erator Clt of partial closing of set P in regard to variable xt, extending
this set by unifying it with direct product X1

t ×X0
t containing results

of all possible resolutions by this variable.

Assertion 4 Clt(P ) = P ∪X1
t ×X0

t ⊆ Cl(P ).

Assertion 5 Cl(P ) = Cl1Cl2 . . . Cln(P ).

In such a way, the set P can be closed by separate variables, one
by one.

The set P can be represented by a square Boolean matrix P of the
size 2n by 2n, with rows pt1,pt0 and columns pt1,pt0 corresponding
to literals xt, x

′
t, t = 1, 2, . . . , n. Elements of matrix P correspond to

pairs of literals, and non-diagonal elements having value 1 represent
discovered 2-bans. So, the totality of 1s in row pt1 (as well as in
column pt1) indicates set X1

t , and the totality of 1s in row pt0 (column
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pt0) indicates set X0
t . Using vector operations, we can construct the

matrix P+, presenting the result of closing operation: P+ = Cl(P ).
For example, if x = (a, b, c, d) and 2- bans ab′, ac, a′d′, bc′ are found

forming set P , then

aa’ bb’ cc’ dd’ aa’ bb’ cc’ dd’
00 01 10 00 a c0 c1 1b 0c a
00 00 00 01 a’ 00 00 00 01 a’
00 00 01 00 b c0 00 01 0c b

P = 10 00 00 00 b’ P+ = 10 00 00 0a b’
10 00 00 00 c 10 00 00 0a c
00 10 00 00 c’ b0 10 00 0b c’
00 00 00 00 d 00 00 00 00 d
01 00 00 00 d’ c1 ca ab 0c d’

– the bans-consequences are marked in matrix P+ by symbols of vari-
ables by which the corresponding resolutions were executed.

The closed set Cl(P ) could be found also by the increment algo-
rithm of expansion of P : every time when a new 2-ban p is added by
a special operation ins(p, P ) all resolvents are included in P too. In
that case after each step the set P will remain closed: P = Cl(P ).

Operation ins(p, P ) is defined as follows.

Assertion 6 If P = Cl(P ), than Cl(P ∪ {p}) = P ∪D, where

D = ({x} ∪X0)× ({y} ∪ Y 0), if p = xy,

D = ({x} ∪X0)× ({y′} ∪ Y 1), if p = xy′,

D = ({x′} ∪X1)× ({y} ∪ Y 0), if p = x′y,

D = ({x′} ∪X1)× ({y′} ∪ Y 1), if p = x′y′.

4.2 Finding all prime bans

Consider now the problem of finding all prime bans (which do not follow
from one another) deduced from system P . It is known that no set of
2-bans can produce any bans of higher rank. But it can produce some
1-bans, prohibiting definite values of separate variables.
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Assertion 7 All 1-bans deduced from set P are represented by 1-
elements of the main diagonal of matrix P+.

In the regarded example 1-bans a and d′ are presented in such a
way.

Assertion 8 If the pair of 1-bans x and x′ is found for some variable
x, the system F is inconsistent.

Note that inconsistency of F follows from inconsistency of P , but
not vice versa.

4.3 The algorithm of reduction by syllogisms

The suggested method deals with a set of logical equations F , empty
at the beginning. It examines the equations in cyclic order, reduces
the set of roots of the current equation fj = 1 by considering bans
enumerated in P (prohibited roots are deleted) and looks there for
new 2-bans not existing in P . These bans are added to P , at the same
time operation of closing P is performed. By that some variables can
receive unique values - 1s appear on the main diagonal of matrix P (1-
bans are found). The procedure comes to the end when inconsistency
is revealed (0-ban is found represented by a pair of 1s on the main
diagonal of P) or when processing m equations one by one turns out
to be unsuccessful – in that case we have as a result a reduced system
of equations equivalent to the initial one.

5 Method of local reduction

First suggested in [10] this method has the local nature. That means
that the possibility of reduction is looked for when examining various
pairs of functions ϕi(ui) and ϕj(uj) with intersecting sets of arguments:
ui,j = ui ∩ uj 6= ∅.

Let us introduce some denotations. Consider characteristic set Mi

of function ϕi(ui) in the space of arguments from the set ui, and let a
be its arbitrary element: a ∈ Mi. The latter is a k-component Boolean
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vector, where k is the number of arguments of function ϕi(ui): k = |ui|.
Let v be an arbitrary subset from ui (v ⊆ ui) and a/v – the projection
of element a onto v, i.e. the vector composed of those components of
vector a which correspond to variables included in set v.

The set of all different projections of elements from Mi onto v is
named the projection of set Mi onto v and designated Mi/v. Let Mi,j

be the intersection of sets Mi/ui,j and Mj/ui,j , and Mi/j – the set of
all such elements from Mi which projections onto ui,j belong to the set
Mi,j .

For example, if ui = (a, b, c, d, e), uj = (c, d, e, f, g, h), Mi =
(01101, 11010, 10011) and Mj = (101110, 001101, 010010), then ui,j =
uj,i = (c, d, e), Mi,j = Mj,i = (101, 010), Mi/j = (01101, 11010) and
Mj/i = (101110, 010010).

Adhering to conventional designations, introduce the operation
Mi := Mi/j of changing Mi for Mi/j .

Assertion 9 For any i, j = 1, 2, . . . , m operation Mi := Mi/j is an
equivalent transformation of system F , preserving the set of its roots.

Note that application of this operation to the shown above example
reduces each set Mi and Mj by one element.

Let us tell that operation Mi := Mi/j is applicable to an ordered pair
of functions (ϕi, ϕj) if Mi 6= Mi/j . The probability of its applicability
rises with increasing of the cardinality |ui,j | of set ui,j and goes down
when |ui,j | decreases. For instance, it is rather high when |Mj | < 2s,
where s = |ui,j |.

Consider now the procedure of sequential execution of this opera-
tion on pairs where it can be applied. It could terminate with reducing
some of the sets Mi down to the empty set, which will mean that sys-
tem F is inconsistent, or some set of reduced functions will be found
where the given operation cannot be applied to any pair. Let us call
this procedure the local reduction of system F .
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5.1 Example

Consider a system F consisting of three equations ϕ1(a, b, c, d) = 1,
ϕ2(c, d, e, f) = 1 and ϕ3(e, f, g, h) = 1 represented by two Boolean
matrices: the matrix of arguments A defining the distribution of ar-
guments over the functions, and the matrix of functions F where each
function is defined by the corresponding row of its values at inputs
(combinations of argument values). Note that inputs are ordered from
left to right by the traditional binary code – for instance, input 1001
corresponds to the ninth component of the string (the numbering begins
with zero). These inputs are presented by columns of the matrix of con-
stants C, their components are numbered from left to right: c1c2c3c4.
Each row of C presents a simplest function which coincides with one
of the arguments.

For instance, function ϕ1 takes value 1 at inputs 0010, 0101 and
1001 – combinations of values of arguments a, b, c, d.

abcdefgh
0010 0100 0100 0000 ϕ1 11110000

F = 1100 0000 1001 0110 ϕ2 A = 00111100
0000 0010 1001 0010 ϕ3 00001111

0000 0000 1111 1111 c1

C = 0000 1111 0000 1111 c2

0011 0011 0011 0011 c3

0101 0101 0101 0101 c4

5.2 Algorithm

Let us demonstrate the algorithm of local reduction on the given above
example of system F . Regard in succession pair of functions, beginning
with (ϕ1, ϕ2). Using operation of componentwise conjunction of corre-
sponding rows of matrix A, we find for this pair common arguments
c and d. Going through all combinations of values of these variables,
we examine defined by them intervals in the space of arguments of
function ϕ1 (this space is presented by vector ϕ1) and find between
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them intervals free of values 1 of this function. Then we delete all 1s
in corresponding intervals of vector ϕ2.

Vector representation of intervals and componentwise logical op-
erations are used during this procedure. For example, considering
combination 00 of values of variables c and d and executing opera-
tion of conjunction of inverses of vectors c3 and c4, we construct vector
1000 1000 1000 1000 defining the proper interval in the space of
variables a, b, c, d. Its conjunction with vector ϕ1 does not contain
ones, therefore equation ϕ1 = 1 has no roots in this interval. The
corresponding interval in the space of arguments of function ϕ2 is rep-
resented by vector 1111 0000 0000 0000, inasmuch as variables c and
d take now left positions. All ones contained in this interval are deleted
from vector ϕ2, so the latter receives the value 0000 0000 1001 0110.

All former operations could be presented in a more compact form,
by the formula

c′d′ϕ1 = 0 → ϕ2 := 0000 0000 1001 0110.

The next operations are presented similarly:

cdϕ1 = 0 → ϕ2 := 0000 0000 1001 0000,

c′dϕ2 = 0 → ϕ1 := 0010 0000 0000 0000,

e′fϕ2 = 0 → ϕ3 := 0000 0000 1001 0010,

ef ′ϕ2 = 0 → ϕ3 := 0000 0000 0000 0010,

e′f ′ϕ3 = 0 → ϕ2 := 0000 0000 0001 0000.

As a result, the initial system of Boolean functions is reduced to
the following one:

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ϕ1

F = 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ϕ2,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ϕ3

from where the unique root of the system is easily obtained: 00101110.
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6 Conclusion

Solving large systems of logical equations is a hard combinatorial prob-
lem that has a lot of useful applications. To facilitate it three al-
gorithms for reducing the number of roots in separate equations are
proposed. As experiments show, these algorithms enable to solve large
systems of equations containing together up to hundred variables but
with restricted number of arguments in each of them. Combining the
suggested algorithms with tree searching technique looks rather per-
spective.
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