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On the existence of orthogonal decompositions
of the simple Lie algebra of type Cj

A. Torstensson

Abstract

Orthogonal decompositions (OD:s) that are monomial have
been constructed for most simple Lie algebras but in some cases
the existence of an OD is still an open question. One such case is
Lie algebras of type C), where n is not a power of 2. In this paper
we prove that C3 has no monomial OD (containing the standard
Cartan subalgebra) by computational methods.

1 Orthogonal decompositions of simple Lie al-
gebras

The basic question, of which we will study a special case, is whether
all classical simple Lie algebras can be decomposed into a direct sum
of Cartan subalgebras which are orthogonal to each other in the sense
that the Killing form B(X,Y) = 0 if X and Y are elements from
different Cartan subalgebras occurring in the decomposition. Such a
direct sum is called an orthogonal decomposition (OD). This problem
has been studied for all simple Lie algebras over C, and OD:s have
been constructed in all cases except for A, when n + 1 is not a prime
power and C,, when n is not a power of 2. These constructions can
be found in [3]. In the latter cases the existence of an OD is an open
question. One result pointing to a negative answer is that As has no
OD of monomial type proven in [4]. The main result of this paper is
that C'3 has no monomial orthogonal decomposition either.
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2 Description of the problem in the C; situa-
tion

Let L be the Lie algebra of type C,, over C. It can be realized as the
2n x 2n matrices of the form

(4 2)

where A, B and C are n x n matrices and B and C are symmetric.
The multiplication in L is the usual bracket multiplication [X,Y] =
XY -YX.

In a semisimple Lie algebra a Cartan subalgebra can be character-
ized as a maximal toral subalgebra. Taking into consideration that a
toral algebra always is abelian we can also think of Cartan subalge-
bras as the maximal ones among the abelian subalgebras generated by
semisimple elements. (See [1].)

According to the well known Cartan-Chevelley theorem (see for
example [2]) any two Cartan subalgebras in a finite dimensional Lie
algebra over an algebraically closed field are conjugate under some
automorphism of the Lie algebra. Two consequences of this is that all
Cartan subalgebras have the same dimension and that the existence of
an OD implies the existence of an OD containing the standard Cartan
subalgebra, H, counsisting of all the diagonal matrices in L.

We now turn to the notion of orthogonality. The Killing form
B(X,Y) = trace(adXadY) is a symmetric, invariant bilinear form
on any Lie algebra. Another important property of the Killing form
(in charcteristic zero) is that it is nondegenerate if and only if the Lie
algebra is semisimple. (See [1].)

In a simple Lie algebra, L, over an algebraically closed field there is
only one symmetric, invariant bilinear form up to multiplication with
a constant from the underlying field. This can be seen in the following
way. Let f and g be two nondegenerate, invariant, bilinear forms on L.
For fixed X € L let S(Y) = ¢g(X,Y). Then since f is nondegenerate
we must have S(Y') = f(Z,Y) for some Z € L. We define the mapping
0 by (X) = Z. Then € is a linear mapping from L to L and it follows
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from the invariance of g that it commutes with adL. Hence, by Schurs
lemma, 6 is some multiple of the identity.

Especially we have B(X,Y) = ¢ trace(XY) on C3 where c is a
nonzero complex number. This means that X and Y are orthogonal if
and only if trace(XY) = 0.

Also note that from the fact that the Killing form is nondegenerate
on any Cartan subalgebra (see for example [1]) it follows that a sum of
orthogonal Cartan subalgebras always is direct.

Thus, in concrete terms, the problem of finding an orthogonal de-
composition of Cf is to find out if there exists 7 sets each containing
3 commuting, linearly independent, diagonalizable matrices in C5 such
that any matrices X,Y from different sets satisfy ¢trace(XY) = 0. The
simplest possible type of OD would be a partition of the basis matrices
obtained from the root space decomposition with respect to the stan-
dard Cartan subalgebra H. In [3] this turned out to be a successful
idea for the Lie algebras of types B, and D,,.

In our case, however, we need a partition into 7 sets with commuting
elements such that basis matrices from different sets are orthogonal.
This is clearly impossible, since there are nine pairs of non-orthogonal
basis matrices and from dimensional considerations we can see that
matrices from two different pairs never can be in the same set. This
forces us into having at least nine sets. We thus have to find a more
suitable basis for C3 to partition.

Anyhow, we can assume that one of the sets in the partition
is a basis for H, for example E; = diag(1,0,0,—1,0,0), Ey =
diag(0,1,0,0,—1,0), E3 = diag(0,0,1,0,0,—1). A matrix in C3 is
orthogonal to all three basis matrices, i. e. orthogonal to H, if and
ounly if it has zeroes on the diagonal. This is immediate since the trace
of the product of a matrix of type (1) and E; is two times the i:th
diagonal element of the submatrix A.

3 Monomial decompositions

A nonsingular matrix is called monomial if it can be written as a prod-
uct of a diagonal matrix and a permutation matrix. Consequently the
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diagonal matrix has no zeroes on the diagonal. An orthogonal decom-
position is called monomial if there exists a basis consisting of monomial
matrices for each Cartan subalgebra that occurs.

The known constructions of OD:s for Lie algebras of type A, and
C,, produce monomial decompositions so we will concentrate on the
existence of such an OD of (5. This means that we can choose basis
matrices in Hy, Ho, ..., Hg that are monomial, diagonalizable and have
no zeroes on the diagonal. The diagonlizability actually follows from
the fact that the matrix is monomial:

Proposition 1 A monomial matriz DP is diagonalizable. If D =
diag(dy,dsa, ...,dy) and (i P(i) --- P™(i)) occurs in the decomposition
of P into disjoint cycles then all m~+1 roots of N+ = didp(y - dpm;)
are eigenvalues of DP.

Proof: We show that DP is diagonalizable explicitly by con-
structing n linearly independent eigenvectors. We look at each cy-

cle (i P(i) --- P™(i)) (where we regard P as a permutation) sep-
arately. Let \ satisfy \™T! = didp(jy...dpm(;). Since all the d;:s
are nonzero we get an eigenvector, v = (vi,v9,...,v,) by putting

V; = 17UP(i) = d%_,...,’UPm(i) = W and all other VS equal
to zero. It is easy to see that all these vectors, arising from different
cycles and values of A, are linearly independent and hence constitute a

basis of eigenvectors. ¢

4 Possible monomial basis matrices

Our first goal is to find all permutations P such that DP may be
one of the matrices of a monomial basis for some Cartan subalgebra
orthogonal to H. It follows from orthogonality that the permutation
has no fixed point because all diagonal elements must be zero. Also,
since every H; consists of the matrices of the form A < 10) _OD ) A1
for some automorphism X — AXA~! of C3 H; must be closed under
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taking third powers, which excludes those matrices containing a three
cycle.
It remains to consider all permutation matrices, P, of the form

A B
(&)
with B and C symmetric and trace(P) = trace(P?) = 0. Let us calcu-
late the number of such matrices. We divide the problem into different
cases on basis of |A|, the total number of ones in the submatrix A.

If |A| = 0 we can choose B and C' as any symmetric permutation
matrices of size three. Because of the symmetry we must have one or
three elements on the diagonal, i. e. one or three fixed points. This
gives four different permutations resulting in 4 x 4 = 16 possible P.
(Both trace conditions are automatically satisfied here.)

The next case is |A| = 1. There are 6 such matrices A with no
diagonal entries. For each fixed A there are four ways of choosing B
and C and exactly one of them contains a three cycle: Let (7, ) be the
nonzero entry of A. Then (j + 3,7+ 3) is nonzero as well but all other
entries in the right lower block of P are zero. Now P is a permutation
matrix if and only if P with rows ¢ and j 4+ 3 and columns j and 7 + 3
removed is a permutation matrix. The new matrix, let us call it P,

has the structure
0 B
' 0

where B’ is B with row ¢ and column ¢ removed and C' is C with row
J and column j removed. In this situation the symmetry of B and C is
equivalent to that of B’ and C’. This gives us exactly two possibilities
for each of them resulting in 4 possible combinations. When do we
get a three cycle? If this happens P must be the product of two three
cycles since we have no fixed points. One of them (ijk) contains 7. In
how many ways can we choose k7 The conditions are that £k = 4,5,6
and k # 1+ 3 and k # j + 3. Since ¢ # j there is exactly one such k.
Thus, we have 6 cases with |A| = 1 each giving 3 matrices satisfying
all conditions.
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There are 9 ways to arrange two ones in A and each case determines
P uniquely since the matrices B’ and C’ that we get after removing the
already determined rows and columns are of size one. It is easy to see
that B’ and C' are originally diagonal elements of B and C so that P is
of the right form. We only have to check that we cannot have any three
cycle. If the nonzero entries of A are (i,7) and (k,[) two situations can
arise. If j = k then the only possible three cycle containing 4 is (ijl)
but since both [ and i are between 1 and 3 (I, %) must be equal to (i, 7)
or (k,l). In either case the three cycle degenerates into a transposition.
If j # k the third element in (ijs) must be between 4 and 6. Since
there is only one element in the submatrix B it must be diagonal, i.
e. s = j+ 3. By the same symmetry argument for C' we find that
1 = j contradicting the existence of a three cycle. Thus, all our 9
permutations are of the desired form.

If |A| = 3 there is no way to avoid a three cycle, since A must give
a permutation of {1,2,3} without any fixed point.

Altogether we have 43 matrices satisfying the three conditions we
have stated and they can easily be constructed from the discussion
above. A list of the permutations is given in the appendix.

5 Possible monomial Cartan subalgebras

In this section we investigate in which ways we can combine the per-
mutations from the previous section so that they are the permutation
factors of the basis matrices for a monomial Cartan subalgebra orthog-
onal to H. In other words we are looking for all maximal abelian subal-
gebras containing three linearly independent monomial matrices. One
method is to start with some monomial matrix and find all monomial
matrices it commutes with. The simplest case is when all eigenvalues
are different.

Proposition 2 Let M be an element in Cs with only simple eigenval-
ues. Then there is only one Cartan subalgebra containing M and it
consists of all odd polynomials in M.
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Proof:Let P denote the subalgebra of Cs consisting of matrices that
are polynomials in M,and C some Cartan subalgebra containing M.

C C P: Let B be an element in the Cartan subalgebra. Since M
and B commute we can choose a basis in which they are both diagonal.
It follows from the simplicity of M:s eigenvalues that I,M, M2, M3, ...
M? are linearly independent (Vandermonde’s determinant). Especially
M, M? and M?® are linearly independent diagonal elements of C3 and
hence any diagonal matrix in Cj, especially B, is a linear combination
of them.

P C C: Let D be an element in P. Then all elements in C' must
commute with D, which makes C @ AD an abelian subalgebra of Cs.
It follows from the maximality of C' as abelian subalgebra of C5 that
DeC.

The polynomials in M that are in C5 are exactly those contain-
ing only odd powers which can be seen in the following way. M,
being diagonalizable, is inside some Cartan subalgebra since it can
be extended to a maximal abelian subalgebra consisting of diago-
nalizable elements. There is some Cs-automorphism A +— X 1AX
diagonalizing M since all Cartan subalgebras are conjugate. Then
XIMX = diag(M1, X2, A3, —A1, =, —A3). Now, if p is any polyno-
mial,

p(M) = Xp(X ' MX)X ! =

= Xdiag(p(A1), p(A2),p(A3),p(—= A1), p(—A2),p(—A3)) X !

which is in C}3 if and only if

diag(p(A1),p(A2), p(A3), p(=A1), p(=A2), p(=A3))

is in C3. It is clear that the last matrix is in C3 exactly when p only
contains odd powers. ¢

It follows from proposition 1 that the theorem above is applicable
whenever P is a six cycle. This gives all the subalgebras of the kind
we are looking for containing a six cycle in some monomial basis. For
the rest of the section we will assume that none of the basis matrices
is a six cycle.
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Let us look at the product of two monomial matrices DP and D'P’.
The entry (i,7) in the product is 0 if P'(P(i)) # j and d,-d;,(i) other-
wise. The two matrices commute if and only if didlp(i)(SPI(P(i))’j =
d{idpl(i)ép(Pl(Z'))’j for all ¢,5. Now, since all diagonal elements are
nonzero, this implies that the two permutations P and P’ commute.
A first step is therefore to find out when two permutations of the kind
we are interested in commute.

Proposition 3 a) The permutations commuting with a siz cycle, P,
are the powers of P.

b) The permutations commuting with (a1a2)(asasasag) are all prod-
ucts ST where S € {id,(a1a2)} and T is a power of (azasasag).

¢) The permutations commuting with (ajag)(asay)(asag) are all
products ST where S € {id, (ai1a2), (azas), (asas), (a1a2)(azas),
(ara2)(asag), (asaq)(asas), (a1az)(asaq)(asas)} and T € {id,
(a1a3)(aza4), (a1a5)(azae), (asas)(asas), (a1asa3)(azaeas),
(arazas)(agaqap)}.

Proof: If we let Sg act on a given permutation with conjugation the
stabilizer consists of the permutations commuting with the given one
and the orbit consist of all permutations which have the same structure
(i e if we write the two permutations P and P’ as products of disjoint
cycles there is a one-to-one correspondence between the cycles in P and
P’ such that corresponding cycles have equal length). We know that
|stabilizer| = |group|/|orbit|. Hence, to find the number of commuting
permutations we only need to calculate the length of the corresponding
orbit. There are 5! six cycles in Sg so a cycle has 6!/5! = 6 commuting

elements. The length of the orbit in case (b) is < g ) 3! since after

choosing the transposition the remaining elements can form 3! different
four cycles. A similar argument in case (¢) shows that the orbit has
length 15. From this it follows that the number of permutations stated
in the theorem is correct. It is obvious that they do commute and
straightforward to check that they are all different. 4

Let us now return to the problem of finding monomial bases of Car-
tan subalgebras. The previous proposition gives complete information
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on the nescessary condition of commutativty of the permutations but
we still do not know when the corresponding monomial matrices can
be made both commuting and linearly independent. We first exhibit
the special case when the same permutation occurs more than once in
the same basis.

Before we can state the next proposition we will need the concept
of related cycles. Two cycles are related if, for some ¢ between 1 and 3,
one of them contains ¢+ and the other ¢ + 3 . This might not seem like
a natural relation, but the proof below will clarify its importance.

Proposition 4 The mazimum number of linearly independent com-
muting monomial matrices in C3 with the same permutation P is equal
to the number of unrelated cycles in P.

Proof: Let D = diag(dl, dQ, d3, d4, d5, dﬁ) and D' =
= diag(d},d,, dy, d)y, ds, di). The matrices DP and D'P commute if
and only if the quotients d;/d; are equal for all ¢ in the same cycle of
P. When DP is in C3 we also have some additional conditions on the
d;, namely
A. (DP)iy3j43=—(DP)j;, 1 <i4,5 <3
B. (DP);j+3 = (DP)jiy3, 1 <14,5 <3
C. (DP)iy3j = (DP)jy34, 1 <i,5 <3

Let us take a closer look at condition A. Assume that we can find ¢
and j such that P(j) =i. (Otherwise A is an empty condition.) Then
A says that d;13 = —d;j and d; 3 = —d;;. If i+ 3 and j (or equivalently
i and i + 3) are in the same cycle the conditions of commutativity are
not affected but if they are in different cycles the quotients d;/d; must
be equal for the two cycles. Considering B and C in the same way we
can formulate the conditions A-C in terms of cycles which must have
equal quotients as follows:
A. P(i) = j with j and 7 4 3 in different cycles
B. P(i) = j + 3 with j and j + 3 in different cycles
C. P(i 4+ 3) = j with j and j + 3 in different cycles

It is easy to see that if we fix 7 between 1 and 3 we either have j
and j+3 in the same cycle, in which case none of the conditions applies
or we have j and j + 3 in different cycles and then exactly one of the

24



On the existence of orthogonal decompositions . ..

conditions A and C are satisfied. This means that the cycles must have
equal quotient if and only if they are related in the sense defined above.

Given a number of matrices DP, D'P, D"P, ... that commute with
each other we want to find the maximal number of linearly independent
such matrices. This is equivalent to the vectors (dy,ds, ...,ds) being
linearly independent and by permuting indices we may assume that
all indices belonging to related cycles are consecutive. Let m be the
number of unrelated cycles and d(y), d(g), ... ,d) the subvectors of
(dy,dy, ...,dg) corresponding to the different classes of unrelated cycles.
Then d’(i) = ajdy, d’('z.) = ajd(;) and so on. Look at the matrix having
the vectors (dy,ds, ..., dg) as rows. The number of linearly independent
columns is obviously m. The statement follows since the rowrank and
columnrank of a matrix coincide. ¢

To complete our investigation we must find all commuting pairs of
monomial matrices with different permutations. The six cycle case is
already covered so we may look only at pairs of other permutations.
Seven of the permutations corresponding to the 43 matrices from the

previous section are products of three transpositions. They are given
by

(12)(36)(45), (13)(25)(46), (14)(23)(56), (14)(25)(36), (14)(26)(35),
(15)(24)(36), (16)(25)(34).

There are 12 permutations that are products of a four cycle and a
transposition:

(1254)(36), (1364)(25), (2365)(14), (2536)(14), (1425)(36), (1436)(25)

and third powers of these.

Using proposition 3 we can find the commuting pairs of permuta-
tions. In each case we create the corresponding monomial matrices and
solve for the diagonal elements under the condition of commutativity.
One finds that @ = (14)(25)(36) plays a special role. It commutes with
all monomial matrices of the first type. Any other monomial matrix
of the first type commutes only with ) and itself. A monomial ma-
trix DP where P is of the second kind commutes only with monomial
matrices with permutation P or P3.
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We can now describe all the possible choices of permutations
Py, P», P3 such that Dy Py, Dy Py, D3 P3 is a Cartan subalgebra for some
suitable choice of diagonal matrices.

Proposition 5 There are at most 37 ways to choose the three permuta-
tions Py, Py, Py such that there exists nondegenerate diagonal matrices
D1, Ds, D3 that makes < D1 Py, Do Py, D3P3 > a Cartan subalgebra of
Cs.

Proof: If one of the permutations, P, is a six cycle it follows from
proposition 2 that there is a unique way to choose the permutations
in the basis. It also follows that P and P° give the same choice of per-
mutations so our 24 six cycles gives us 12 types of Cartan subalgebras.

The remaining case is triples of permutations where none is a six
cycle. Using proposition 4 oune can see by inspection that we can have
at most two occurrences of the same permutation in a basis except for
(14)(25)(36) of which we can have three. From our investigation of
commutativity above it follows that the possibilities are the following:
Each of the permutations

(12)(36)(45), (13)(25)(46), (14)(23)(56)

(14)(26)(35), (15)(24)(36), (16)(25)(34)

can occur either once or twice in the basis and can only be combined
with (14)(25)(36). This gives us 13 subalgebras. For each P of the
four cycle type we have two possible triples: (P, P, P?) and (P, P3, P?)
resulting in 12 additional subalgebras. Altogether this gives 37 sets of
permutations. ¢

Remark: Even though we will not use this result it is interesting to
note that computer calculations show that for each triple it is possible
to construct Dy, Do, D3 such that DiP;, DoP, D3 P; commutes. In
other words we can replace “at most” with “exactly” in the proposition.
Let us look at an example of such a calculation.

Example: Let us look at the subalgebra where P = (12)(36)(45)
occurs twice and ) = (14)(25)(36) once and let the basis matrices be
diag(dl, d2, d3, d4, d5, d6)P, diag(el, €9,€3,€4, €5, 66)P and
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diag(f1, f2. f3, f1, f5, f6)@. The conditions for being in Cj are dy =
—dg,d5 = —di,eq = —eg,e5 = —ep and those for commutativity
are diey = dgey,dzeg = dges,dies = dses,dify = fids,dofi =
fods,d3fe = defs,dafs = fadi,dsfs = fsda,erfa = fies,eaft =
f2€5,€3f6 = €6f3,€4f5 = f4€1,€5f4 = f5€2. This System has the so-

lutions d1 = —d5,d4 = — ;5f4,61 = —65,d3 = %,63 = %,64 =
_65f£4af1 = fj‘fsae? = 6;?4’(12 = d}%

A list of the 37 triples of permutations is included in the appendix.

6 The impossibility of orthogonality

For these 37 kinds of monomial Cartan subalgebras we would like to
find out which can be made orthogonal to each other. If we have two
such subalgebras < Dy Py, DoPs, D3P3 > and < D{P], D},P;, D{P; >
they cannot be orthogonal if some of the permutations P,P; has exactly
one fixed point. It turns out that otherwise the two subalgebras are
orthogonal if we choose the D; and the D) in a suitable way except for 12
exceptional pairs stated in the appendix. It is interesting to note that
each six cycle subalgebra appears in exactly two exceptional pairs. The
adjacency matrix representing orthogonality of subalgebras can also be
found in the appendix. Unfortunately the graph contains complete
subgraphs of order 12 and 13 which shows that we have more than
2640 six tuples of subalgebras which are pairwise orthogonal. The time
it takes to check if six subalgebras with given permutations can give an
orthogonal decomposition is approximately 20 minutes (using Maple
V). The total time with this approach would be more than 5 weeks.
To reduce the amount of calculations required to examine all potential
decompositions we look instead at triples of orthogonal subalgebras.
Solving such a system takes only about one minute and there are 2091
triples which are pairwise orthogonal. In the appendix is a complete
list of all orthogonal triples.

Using this data we can exclude some subalgebras. Assume that H1
is in the decomposition. Then some of the seven triples containing H1
must be in the decomposition. Look at the first case: (H1, H15, H28) is
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in the decomposition. If H is another subalgebra in the decomposition
then (H1, H15, H) is a triple so H = H28 or H = H29. On the other
hand (H1, H28, H) is a triple which gives that H is H15, H16 or H19,
a contradiction. This kind of argument excludes all decompositions
with a six cycle subalgebra except those containing 4 copies of H19,
but since H19 contains only one permutation this contradicts the linear
independence of all basis matrices.

Using a computer we were able to find all sets of six subalgebras
such that any three of them is one of the orthogonal triples above.
Since the subalgebra H19 occurred much more frequently than the
other subalgebras it was useful to add the condition that no more than
two such subalgebras can be in the same decomposition. This resulted
in only 27 six tuples listed in the appendix.

For each of them we solved the system of equations that comes
from the conditions of commutativity and orthogonality and in no case
this system had any solutions. This completes the proof of our main
theorem.

Theorem 6.1 Cs has no monomial orthogonal decomposition contain-
ing H.
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A Data and Maple scripts

Al
P1 = (123654)
P5 = (136452)
P9 = (145632)

P13 = (146253)
P17 = (152463)
P21 = (163452)
P25 = (12)(36)(4
P29 = (14)(26)(3
P33 = (1364)(25)
P37 = (14)(2563)
P41 = (14)(2635)

The possible basis

5)
5)

P2 = (125463)
P6 = (132564)

P10 = (145362)
P14 = (143256)
P18 = (156324)
P22 = (165234)

P30 = (15)(24)(3
P34 = (1452)(36)
P38 = (14)(2536)

(
(
(
(
P26 = (13)(25)(4
(
(
(
P42 = (1524)(36)

(
(
(
(
6) P27 = (14)(2
(
(
(
(

permutations

P3 = (125436)
P7 = (136425)

P11 = (146523)
P15 = (142635)
P19 = (153624)
P23 = (162534)

(
6) P31 =(16)(25)(34)

P35 = (14)(2365)
P39 = (1425)(36)
P43 = (1634)(25)

A.2 The possible Cartan subalgebras

In this list (i,j,k) refers to the triple (Pi,Pj,Pk) of permutations from

the above list.

Six cycle type:

H1 = (1,31,9)

H5 = (6,30,11)

H9 = (14,25,22)

H2 = (2,29,5)
H6 = (7,27,17)

H10 = (15,31,19)

Three transposition type:

H13 = (25,25,28
H17 = (27,27,28
H21 = (29,28,28
H25 = (31,28,28

H14 = (25, 28,28)
H18 = (27,28,28)
H?22 = (30, 30, 28)

One transposition type:

H26 = (32,32,34)
H30 = (35,35,37)
H34 = (39,39,42)

H27 = (32,34, 34)
H31 = (35,37,37)
H35 = (39, 42,42)

H3 = (3,27,21)
HT = (8,25,13)
H11 = (16, 30,23)

H15 = (26, 26,28)
H19 = (28,28,28)
H23 = (30, 28,28)

H28 = (33,33,36)
H32 = (38,38,41)
H36 = (40,40,43)

29

3)(56)

P4 = (126354)
P8 = (135264)

P12 = (142365)
P16 = (143526)
P20 = (152436)
P24 = (163425)
P28 = (14)(25)(36)
P32 = (1254)(3

(

(

6)
P36 = (1463)(25)
P40 = (1436)(25)

H4 = (4,26, 10)
H8 = (12,26, 18)
H12 = (20,29,24)

H16 = (26, 28,28)
H20 = (29, 29,28)
H24 = (31, 31,28)

H29 = (33,36,36)
H33 = (38,41,41)
H37 = (40,43,43)
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The following Maple script was used for checking that a Cartan
subalgebra can be constructed for each triple above:

cartantest := proc(k, |, m)

local Q, egs, j, L, L1, L2, L3, L4, S1, 52,53, r,s, Hl, H2, H3;

Q1 := P.k;
Q2 = P.l;
Q3 := P.m;
egs :={};
forjto3 do

L; := evalm(diag(d1.j, d2.j, d3.j, df.j, d5.j, d6.5) ‘& * Q) ;
L1; := submatrix(L;, 1..3, 1..3);

L2; := submatrix(L;, 1..3, 4..6) ;

L3; := submatrix(Lj, 4..6, 1..3);

L4 ; = submatrix(L;, 4..6, 4..6) ;

S1; :=evalm(L1; + transpose(L;)) ;

52; :=evalm(L2; — transpose(L2;));
58; :=evalm(L3; — transpose(L3;));
eqs := egsunion {d5.5 #0, d6.j #0, d1.j #0, d2.j #0, d3.j #0, dj.j # 0};

forrto3 do
for sto3 do egs := egs union {ng'r,s =0, 83;, ,=0, S.Z]-T’S =0}od
od
od;
Hi :=evalm((L1 ‘& *“La) — (L2 ‘& *‘L1));
H2 :=evalm((Ly ‘& * ‘ Lg) — (L3 ‘& * * L1)) ;
H3 :=evalm((Ly ‘& * ‘ Lg) — (L3 ‘& * * L2)) ;
forrto6 do
for sto6 do egs := egsunion {H3, s =0, H2, s =0, Hl, s =0} od
od;
print(egs) ;
RETURN(solve(egs))
end
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A.3 The orthogonal pairs

There exist orthogonal subalgebras of types Hi and Hj if and only if

the entry (4, j) in the matrix below is one.

OCOO—OO0C—HOOCOOCO—I—OO—CCOO rrrdr rfr r rf rf rf r =
OCOO—OO0C—HOOCOOCO—I—OO—CCOO rrrdr rfr r rf rf rf r =
OO0 OOOIO—ICOOC—I—OO0O0O—~OOrAr1O O rr rf rf rf r—f r—f r—f r r—f
OCOO0OCO—C—OCOO—I—OOOO—CCO OO rr rr r rf rf rf r =
OO0 O-OCOCOCCOOOO—Irrirdr OO O O i ri i v i v mf e = ]
OO OO—OO0OCOOOOOOO— I I ICCCOArtririririririririr—r—
O 00000 OCCOCOHCOOO—Irrirdr OO O O i rf i v i = e e ]
O 100000 OCOCOO—HOOOO— I I IIICCCO At
—HOOOOOOOCOHOCOO—OO— OO OO mr mi i rf i 7 i 7 mf e 1 ]
—OO0O00OCCO—HOOCO—I—OO—CCOO rirrdr rr r rf rf rf r =
OCOO0O—OCCOO—IO—I—TOOOO—CCO OO rr rr r rf rf rf r =
COO0O—0OCCOO—O——TIO0OO— OO rO O rri ri rf rf rf rf m= =i ]
HOA OO T A A A A r e = A A A A A A A A O O — OO OO O O —
O OO At A A A A A A A A A A A A A OO OO OO O —
OOOO— A rdr A r A r A = r e = e A A A A A A A A~ O O O O OO — OO
COCO—rrArArdrd A A A = A A e e A A A A A A A O O O OO OO O
OrAr = O OO A r A r r = r A A A A A A A QO OO — — = — O OO
OO OO A A A A A A A A A A A A A C O OO — — — = O OO O
T 1t e et et e e e e e e e T e e e et e e e e e e e e e e e e e e e e e e e
HrArA O A A O A O O A A r e = e A A A A A A A QO OO — — = — O OO
A O O A C O A A A A A A A A A A A A OO OO — — = O OO
OO OO A A A A A A A A A A A C O~ — OO OO O —i
O A A OO A A A A A A A A A A OO OO OO O —
HrA A A A OO A O A O A r = r e A A A A A A A A A O O OO OO — — OO
A OAC OO A A A A A A A A A A A A OO O OO OO O
OO0 HOCOOO—I~rrdrdrArd OO0~ —OOOOOC
OCOOO—OCOCOO— IO OO0 I rdrirdrirdrAr— O OO0 OO O
—OOO0O0O0COO—OCOCO—ITIOOrIrdririririCO—— OO0 O OoCO
CO0COOCO—HOHOOO—IIO0O0O—I I ICCAA—1COO0O0O0O0OO——OCO
OCOO0OOOOHOOOOOOT—IriririrICO T riri—COO0O0O0OOOO O r—ir
COO—OO—10—00Orir OO~ —CCCOOOOOOO——OC
OO OO—COCOOOOCOT—Irdiriririrdriri—C O COO0OOO—— OO OO
CO0O—OOCOCOCO— IO A AIICC—ICC——OOOOOOOOOO
OCOO—OO0C—OOOOTIririr{ OO I OO —COO0O0OOOOO O r—ir
[elelolelel olelelelolelelololelelolalolabolelel ol lelelolelelelol lelole o)
Or—- 0000 Irdririririririri—C OO COOO—— OO OO
—OOO0O0OCOO—ICOriririririri—C OO CO——OOOOo O OO

The following pairs cannot be made orthogonal even though there

is no product of permutation matrices with exactly one fixed point.

(1,3),(1,9),(2,4),(2,7),(3,9), (4, 7), (5,6), (5,8), (6,8), (10,11), (10, 12), (11, 12)

The data above were obtained using

nofizedpoint := proc(indlist1, indlist2)

localsi, j, k, I, m, n;

indlist1q

i

indlistl o ;

j:
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k := indlistl 3;

[ ;= indlist2 ;

m = indlist2s ;

n = indlist23 ;

if not (trace(evalm(P.i‘& x ‘P.l)) =1 or

trace(evalm(P.i ‘& * ¢ P.m)) = 1 or

trace(evalm(P.i ‘& * ¢ P.n)) = 1 or trace(evalm(P.j ‘& = ‘P.l)) =1 or
trace(evalm(P.j ‘& * * P.m)) = 1 or trace(evalm(P.j ‘& % ‘P.n)) =1 or
trace(evalm(P.k ‘& = ‘ P.l)) = 1 or trace(evalm(P.k ‘& * * P.m)) =1 or
trace(evalm(P.k ‘& x * P.n)) = 1)then RETURN(true)

else RETURN(false)

fi

end

and

two_ort _cartantest := proc(zl, z2)
localegs, U1, U2, p, il, 12, k, q, pl, ql;
eqs = {}3
Ul := cartanlist,y ;
U2 := cartanlist ;o ;
forpto3 do
il :=op(p, Ul);
i2 := op(p, U2);
Al.p := evalm(diag(al.p, bl.p, cl.p, dl.p, el.p, f1.p)‘& *“P.il);
A2.p := evalm(diag(a2.p, b2.p, c2.p, d2.p, e2.p, f2.p) ‘& * * P.i2)
od;
forkto2 do
forpto3 do
egs := egsunion {a.k.p # 0, b.k.p # 0, c.k.p # 0,
dkp#0,ekp#0, fkop#0};
A.k.1.p := submatrix(A.k.p, 1..3, 1..3)
A.k.2.p := submatrix(A.k.p, 1.3, 4..6) ;
A.k.3.p := submatrix(A.k.p, 4..6, 1..3);
( )

A.k.4.p := submatrix(A.k.p, 4..6, 4..6

)

)
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T.k.1.p:=evalm(A.k.1.p + transpose(A.k.4.p));
T.k.2.p := evalm(A.k.2.p — transpose(A.k.2.p));
T.k.3.p := evalm(A.k.3.p — transpose(A.k.3.p))
od;
forpto3 do forgto3do
egs := egs union {trace(evalm(A1.p‘& x “ A2.q))};
com.k.p.q := evalm((A.k.p‘& x* Ak.q) — (Ak.q'&**Ak.p));
forp! to6do for ¢/ to6do
egs := egs union {com.k.p.qps, q1 = 0};
ifpl <4 and ¢! < 4then
eqs := egs union {T".k.p.qp1, 1 = 0} fi
od
od
od
od
od;
RETURN(solve(egs))

end

A.4 The orthogonal triples

In this list (i,j,k) refers to the triple (Hi,Hj,Hk) of subalgebras from the
above list.

(1,15,28) (1,15,29) (1,16,28) (1,16,29) (1,19,19) (1,19,28)
(1,19,29)
(2,17,30)  (2,17,31) (2,18,30) (2,18,31) (2,19,19) (2,19,30)
(2,19,31)
(3,19,19)  (3,19,32) (3,19,33) (3,20,32) (3,20,33) (3,21,32)
(3,21,33)
(4,19,19) (4,19,36) (4,19,37) (4,24,36) (4,24,37) (4,25,36)
(4,25,37)
(5,13,26) (5,13,27) (5,14,26) (5,14,27) (5,19,19) (5,19,26)
(5,19,27)
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(6,19, 19)
(6,21,33)

(7,19, 19)
(7,23, 35)

(8,19, 19)
(8,25,37)

(9,19, 19)
(9,23, 35)

(10,15,28)
(10,19,29)

(11,13, 26)
(11,19,27)

(12,17,30)
(12,19, 30)

13,15,19
13,19,21
13,19,35
13,23,27

AAAA

14,15,19
14,19, 21
14,19, 35
14,23,27

o~ o~~~
_ D — T

15,17,19
15,19,23
15,24,29
15,25,37

AAAA
—_ - D=

(6,19, 32)

(7,19, 34)

(8,19, 36)

(9,19, 34)

(10, 15,29)

(11,13,27)

(12,17,31)

13,16,19
13,19,24
13,22,26
13,23, 34

AAAA

14,16,19
14,19,24
14,22,26
14,23, 34

o~ o~~~
NN

(15,18, 19)
(15,19,28)
(15,24, 36)

(6,19, 33)

(7,19,35)

(8,19, 37)

(9,19, 35)

(10, 16, 28)

(11,14, 26)

(12,18, 30)

13,17,19
13,19,25
13,22,27
13,23,35

AAAA

14,17,19
14,19,25
14, 22,27
14,23, 35

o~ o~~~
NN AN N

(15,19, 19)
(15,19,29)
(15, 24, 37)

34

(6,20, 32)

(7,22,34)

(8,24, 36)

(9,22, 34)

(10, 16,29)

(11,14,27)

(12,18, 31)

(13,18, 19)
(13,19, 26)
(13,22, 34)

(14,18,19)
(14,19, 26)
(14,22, 34)

(15,19, 20)
(15,19, 36)
(15,25,28)

(6,20, 33)

(7,22, 35)

(8,24,37)

(9,22, 35)

(10,19,19)

(11,19,19)

(12,19, 19)

(13,19,19)
(13,19,27)
(13,22,35)

(14,19,19)
(14,19, 27)
(14, 22, 35)

(15,19,21)
(15,19, 37)
(15,25,29)

(6,21,32)

(7,23,34)

(8,25, 36)

(9,23, 34)

(10,19,28)

(11,19, 26)

(12,19,31)

(13, 19,20)
(13,19, 34)
(13,23,26)

(14,19, 20)
(14,19, 34)
(14,23, 26)

(15,19, 22)
(15,24,28)
(15,25, 36)
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(16,17,19)  (16,18,19) (16,19,19) (16,19,20) (16,19,21) (16,19,22)
(16,19,23) (16,19,28) (16,19,29) (16,19,36) (16,19,37) (16,24,28)
(16,24,29) (16,24,36) (16,24,37) (16,25,28) (16,25,29) (16,25, 36)
(16,25, 37)

(17,19,19) (17,19,22) (17,19,23) (17,19,24) (17,19,25) (17,19,30)
(17,19,31)  (17,19,32) (17,19,33) (17,20,30) (17,20,31) (17,20, 32)
(17,20,33) (17,21,30) (17,21,31) (17,21,32) (17,21,33)

(18,19,19) (18,19,22) (18,19,23) (18,19,24) (18,19,25) (18,19,30)
(18,19,31) (18,19,32) (18,19,33) (18,20,30) (18,20,31) (18,20,32)
(18,20,33)  (18,21,30) (18,21,31) (18,21,32) (18,21,33)

(19,19,19)  (19,19,20) (19,19,21) (19,19,22) (19,19,23) (19, 19,24)
(19,19,25) (19,19,26) (19,19,27) (19,19,28) (19,19,29) (19,19,30)
(19,19,31)  (19,19,32) (19,19,33) (19,19,34) (19,19,35) (19,19, 36)
(19,19,37) (19,20,22) (19,20,23) (19,20,24) (19,20,25) (19,20,30)
(19,20,31)  (19,20,32) (19,20,33) (19,21,22) (19,21,23) (19,21,24)
(19,21,25) (19,21,30) (19,21,31) (19,21,32) (19,21,33) (19,22,24)
(19,22,25)  (19,22,26) (19,22,27) (19,22,34) (19,22,35) (19,23,24)
(19,23,25)  (19,23,26) (19,23,27) (19,23,34) (19,23,35) (19,24,28)
(19,24,29) (19,24,36) (19,24,37) (19,25,28) (19,25,29) (19,25,36)
(19,25,37)  (19,26,28) (19,26,29) (19,26,30) (19,26,31) (19,26,32)
(19,26,33) (19,26,34) (19,26,35) (19,26,36) (19,26,37) (19,27,28)
(19,27,29)  (19,27,30) (19,27,31) (19,27,32) (19,27,33) (19,27,34)
(19,27,35) (19,27,36) (19,27,37) (19,28,28) (19,28,29) (19,28,30)
(19,28,31)  (19,28,32) (19,28,33) (19,28,34) (19,28,35) (19,28,36)
(19,28,37) (19,29,29) (19,29,30) (19,29,31) (19,29,32) (19,29,33)
(19,29,34)  (19,29,35) (19,29,36) (19,29,37) (19,30,30) (19,30,31)
(19,30,32) (19,30,33) (19,30,34) (19,30,35) (19,30,36) (19,30,37)
(19,31,31) (19,31,32) (19,31,33) (19,31,34) (19,31,35) (19,31,36)
(19,31,37) (19,32,32) (19,32,33) (19,32,34) (19,32,35) (19,32,36)
(19,32,37) (19,33,33) (19,33,34) (19,33,35) (19,33,36) (19,33,37)
(19,34,34)  (19,34,35) (19,34,36) (19,34,37) (19,35,35) (19, 35,36)
(19,35,37) (19,36,36) (19,36,37) (19,37,37)
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(26,34, 34
(27,34,34
(28,28,36
(28,37,37
(29,29, 36
(
(
(

30, 30, 32
30,33, 33

31,31, 32

)
)
)
)
)
)
)
)

(26,34, 35)
(27,34, 35)
(28,28,37)

(29,29, 37)
(30, 30, 33)

(31,31, 33)

(26, 35, 35)
(27, 35, 35)
(28,29, 36)

(29, 36, 36)
(30, 31, 32)

(31, 32,32)

(28,29, 37)

(29,36, 37)
(30,31, 33)

(31,32, 33)

(28,36, 36)

(29,37, 37)
(30,32, 32)

(31, 33,33)

(28,36,37)

(30,32,33)

The triples were calculated with the following procedure:

three_ort_cartantest := proc(zl, 2, ©3)

local U1, U2, U3, egs, p, il, 12,13, k, q, y, 2z, pl, ql;

Ul := cartanlistyg ;

U2

:= cartanlist .o ;

U3 := cartanlistgs ;

eqs :

={};

forpto3 do

i1 == op(p, Ul);
i2 := op(p, U2);
i3 := op(p, U3

)
);

3

Al.p := evalm(diag(al.p, bl.p, cl.p, d1.p, el.p, f1.p) ‘& = P.il);
diag(a2.p, b2.p, c2.p, d2.p, €2.p, f2.p) ‘& = * P.i2);
A3.p := evalm(diag(a3.p, b3.p, c¢3.p, d3.p, e3.p, f3.p) ‘& * ‘ P.i3)

A2.p:= evalm

od;

forkto3 do

forpto3 do

egs := egsunion {c.k.p # 0, b.k.p # 0, a.k.p # 0,
dkp#0,ekp#0, fkp#0};

A.k.1.p := submatrix(A.k.p, 1..3, 1.3

A.k.2.p := submatrix(A.k.p, 1..3, 4..6

A.k.3.p := submatrix(A.k.p, 4..6, 1.3

A.k.4.p := submatrix(A.k.p, 4..6, 4..6) ;

(
(
(

T.k.1.p := evalm(A.k.1.p + transpose

T.k.2.p := evalm(A.k.2.p — transpose
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T.k.3.p := evalm(A.k.3.p — transpose(A.k.3.p))
od;
forpto3 do forgto3do
foryto3 do forzto3do
if not (y = z) then
eqs := egs union {trace(evalm(A.y.p ‘& * ‘ A.z.q))} fi
od
od;
com.k.p.q:= evalm((A.k.p‘& x ‘ Ak.q) — (Ak.q‘&+“Ak.p));
for p/ to6do for g7 to6do
egs := egs union {com.k.p.qp1, 91 = 0};
ifp! <4 and ¢qf < 4then
eqs := egsunion {T.k.p.qp1, 1 = 0} fi
od
od
od
od
od;
RETURN(solve(egs))

end

A.5 Possible six tuples of subalgebras

This is a list of all six tuples of subalgebras such that any three of can
be made orthogonal.

(19,19, 26,26, 34, 34)
(19,19, 26,27, 34, 34)
(19,19, 27,27, 34, 34)
(19,19, 28,28, 36, 36)
(19,19, 28,29, 36, 36)
(19,19, 29,29, 36, 36)
(19,19, 30, 30, 32, 32)
(19,19, 30,31, 32, 32)
(19,19, 31,31, 32, 32)

(19,19, 26,26, 34, 35)
(19,19, 26,27, 34, 35)
(19,19, 27,27, 34, 35)
(19,19, 28,28, 36, 37)
(19,19, 28,29, 36, 37)
(19,19, 29,29, 36, 37)
(19,19, 30, 30, 32, 33)
(19,19, 30,31, 32, 33)
(19,19, 31,31, 32, 33)

37

(19,19, 26,26, 35, 35)
(19,19, 26,27, 35, 35)
(19,19, 27,27, 35, 35)
(19,19, 28,28, 37, 37)
(19,19, 28,29, 37, 37)
(19,19, 29,29, 37, 37)
(19,19, 30, 30, 33, 33)
(19,19, 30,31, 33, 33)
(19,19, 31,31, 33, 33)
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In order to minimize the total amount of calculations all five tuples
of orthogonal subalgebras were calculated first:

fivelist := proc(triplelist)
local fivelist, triple, i, j, fivetuple, fivetuple_od, perm;
fivelist .= [];
for triple in triplelist do forito37do for jto37do
fivetuple := sort([op(triple), i, j]);
fivetuple_od := true;
for perm in choose([1, 2, 3, 4, 5], 3) do

if not

member([fivetuple,,.,.,, , fivetuple ..., fivetuple ..., 1,
triplelist)

then fivetuple_od := false

fi
od;
if fivetuple_od and not member(fivetuple, fivelist) then
print(triple, fivetuple) ; fivelist := [op(fivelist), fivetuple]
fi
od
od
od;
RETURN(fivelist)

end

and then all completions to six tuples

sizlist := proc(fivelist, triplelist)
local sizlist, fivetuple, i, siztuple, siztuple_od, perm;
sizlist := [];
for fivetuple in fivelist do forito 37do
siztuple := sort([op(fivetuple), i) ;
sixtuple _od = true;

for perm in choose([op(fivetuple)], 2) do
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if not member(sort([op(perm), i]), triplelist) then
siztuple _od := false fi
od;
if siztuple_od and mnot member(siztuple, sizlist) then
print(fivetuple, siztuple); sizlist := [op(sizlist), siztuple]
fi
od
od;
RETURN(sizlist)

end

Finally those with more than 2 occurrences of H19 were removed
resulting in the 27 six tuples above which were all examined by

stz _ort _cartantest := proc(zl, z2, ©3, ©4, x5, 6)
local U1, U2, U3, U4, Ub, U6, egs, p, il, 12,13, i4, 15, i6, k, q, y, 2, pl, ql;
Ul := cartanlist,; ;
U2 := cartanlist ;o ;
U3 := cartanlist ;3 ;
Uj := cartanlistyy ;
U5 := cartanlist ;5 ;

U6 := cartanlist 6 ;

egs :={};

forpto3 do
il :=op(p, Ul);
12 :=op(p, U2);
i8 := op(p, U3);
i4 :=op(p, U4);
i5 := op(p, U5);
i6 := op(p, U6);

Al.p := evalm(diag(al.p, bl.p, c1.p, d1.p, el.p, f1.p) ‘& = P.il);
print(A1.p);
A2.p := evalm(diag(a2.p, b2.p, c2.p, d2.p, e2.p, f2.p) ‘& = * P.i2);
print(A2.p);
A3.p := evalm(diag(a3.p, b3.p, c3.p, d3.p, e3.p, f3.p) ‘& * ‘ P.i3);
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print(A3.p);

A4 .p := evalm(diag(a4 .p, b4.p, ¢4.p, d4.p, €4 .p, f4.p) &+ P.i});
print(A4.p);

Ab.p:= evalm(diag(a5.p, b5.p, ¢5.p, d5.p, €5.p, f5.p) ‘& ** P.i5);
print(A5.p);

A6.p := evalm(diag(a6.p, b6.p, c6.p, d6.p, e6.p, f6.p) ‘& = P.i6);
print(A6.p)

od;
forkto6 do
forpto3 do
eqs := egsunion{d.k.p # 0, ek.p #Z0, f.kp#0, c.kp# 0,
a.kp#0,bkp#0};
A.k.1.p := submatrix(A.k.p, 1..3, 1..3);
A.k.2.p := submatrix(A.k.p, 1..3, 4..6) ;
A.k.3.p := submatrix(A.k.p, 4..6, 1..3);
A.k.4.p := submatrix(A.k.p, 4..6, 4..6) ;
T.k.1.p := evalm(A.k.1.p + transpose(A.k.4.p)) ;
T.k.2.p := evalm(A.k.2.p — transpose(A.k.2.p)) ;
T.k.3.p := evalm(A.k.3.p — transpose(A.k.3.p))
od;

forpto3 do forgto3do
foryto6 do forzto6do
if not (y = z)then
egs := egs union {trace(evalm(A.y.p ‘& * * A.z.q))} fi
od
od;
com.k.p.q = evalm((A.k.p ‘& x“ A.k.q) — (A.k.q'& *‘ A.k.p));
for pl to6do for qf to6do
eqs := egs union {com.k.p.qp1, q1 = 0};
ifp! <4 and ¢! < 4then
egs := egs union {T'.k.p.qp1, g1 =0} fi
od
od
od
od
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od;
RETURN(solve(egs))

end
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