
Computer Science Journal of Moldova, vol.7, no.3(21), 1999

Algorithm and program for finding the optimal

paths in dynamic networks

A. Leconiuc

Abstract

The program of finding the optimal paths in dynamic net-
works is studied. Some aspects concerning the implementation
of an earlier proposed algorithm, as well as the description of the
program that actualy reprezents the algorithm implementation
are prezented.

1 Introduction

The problem of finding the optimal paths in dynamic networks, which
was studied in [1-4], is considered in this paper. Some aspects concern-
ing the implementation of the algorithm, proposed in [4], as well as
the description of the program that actualy reprezents the algorithm
implementation, are described here in a more detailed way .

2 The algorithm and problem formulation

The algorithm and problem formulation for finding the optimal paths
in dynamic networks is given here. The problem is studied in the case
when the cost functions on the edges of the network are positive and
non-decreasing functions. We use the algorithm from [4] and propose
some modifications of the algorithm for the program implementation.

c©1999 by A.Leconiuc

308

Algorithm and program for finding . . .

2.1 Problem formulation

Let L be a dynamic system with the finite set of states V , |V | = n,
and at every time moment t = 0, 1, 2, . . . the state of system L is
v(t) ∈ V . Two states v0 and w are chosen in V , where v0 is the
initial state (v0 = v(0)) and w is the final state of the system, i.e. w
is the state in which the system must be brought. The dynamics of
system is described by the directed graph of passages G = (V, E), a
edge e = (u, v) of which signifies the possibility of passage of system L
from the state u = v(t) to the state v = v(t + 1) at any time moment
t = 0, 1, 2, To each edge e = (u, v) a function ce(t) is assigned,
which reflects the cost of system’s passage from the state v(t) = u ∈ V
to the state v(t + 1) = v ∈ V at any time moment t.

So, we assume that the set of states V is divided into two disjoint
subsets VA and VB (V = VA ∪ VB, VA ∩ VB = ∅), where VA is the
position set of player A, and VB is the position set of player B. The
first player is choosing the passages in order to reach the vertex w,
and the second player chooses the passages so that system L could not
reach the state w. The first player has the aim to reach the final state
with the minimal game cost, while the second player has the aim to
maximise the cost of the game.

Define strategies of players as the maps

sA : u → V +(u), for u ∈ VA \ {w},

sB : u → V +(u), for u ∈ VB \ {w}.
Denote by Gs = (V, Es) the digraph generated by the set of edges
(v, sA(v)) and (v, sB(v)). Obviously that for fixed sA and sB there
exists a oriented path Ps(v0, w) connecting v0 and w, or such a path
does not exist. If exists, this path is unique and passing through its
edges from v0 to w, numbers 0, 1, . . . , ks can be assigned to these edges.
These numbers characterize the moments of time te(sA, sB) when the
system passes from a state to another if players A and B fix their
corresponding strategies sA and sB. If there are no paths from v0 to w
in Gs, then starting in v0 and passing through the directed edges, we
get a unique directed cycle Cs.

309

A.Leconiuc

For a fixed pair of strategies sA, sB and fixed v0 define the quan-
tity fv0(sA, sB) equal to

∑

e∈Ps(v0,w)

ce(te(sA, sB)), if there exists a path

Ps(v0, w) from v0 to w in Gs; otherwise set fv0(sA, sB) = +∞. Con-
sider the problem of finding strategies s∗A, s∗B, so that

fv0(s
∗
A, s∗B) = min

sA
max
sB

fv0(sA, sB).

2.2 Algorithm

Step 1. To every vertex v ∈ V assign two labels: l(v) and t(v). l(v) is
the length of the optimal path from v ∈ V to w, t(v) is the time
moment at which this path passes through vertex v.

l(w) = 0, t(w) = t∗, and consider these labels constant;

l(v) =

{
+∞, v ∈ VA,
0, v ∈ VB,

t(v) = +∞ (v 6= w),

and consider these labels temporary.

Consider p = w, Vs = {w}, Es = ∅.
Step 2. For vertices v ∈ V −(p) (V −(p) = {v ∈ V |(v, p) ∈ E}) with

temporary labels modify labels by formulas:

– if v ∈ VA and l(v) > c(v,p)(t(p) − 1) + l(p) then l(v) =
c(v,p)(t(p)− 1) + l(p), t(v) = t(p)− 1;

– if v ∈ VB and l(v) < c(v,p)(t(p) − 1) + l(p) then l(v) =
c(v,p)(t(p)− 1) + l(p), t(v) = t(p)− 1.

– If t(v) = 0, then delete from G′ the edges (u, v), u ∈ V .

Step 3. Find the vertex set V −(Vs) =
(⋃

v∈Vs

V −(v)
)
\ Vs. In V −(Vs)

find the vertex v∗ with the minimal temporary label l(v∗).

Step 4. If v∗ ∈ VA, then go to Step 5. If v∗ ∈ VB and V (v∗) ⊆ Vs,
then go to Step 5. If v∗ ∈ VB and V (v∗) 6⊆ Vs, then delete from
G all edges connecting v∗ with Vs and go to Step 3.

310

Algorithm and program for finding . . .

Step 5. Consider the labels of v∗ constant and put p = v∗, Vs =
Vs ∪ {v∗}. Add to set Es the edge (v∗, u) ∈ E for which l(v∗) =
l(u) + c(v∗,u)(t(u)− 1) and t(v∗) = t(u)− 1.

Step 6. If p = v0 then STOP. The optimal path from v0 yo w can be
obtained by passing from v0 to w through the directed edges in
Es. If p 6= v0, go to Step 2.

3 Program description and examples

3.1 Program description

This program was designed in Delphi 3.0 programming environment.
It uses dynamic arrays for storing algorithm data. The memory is al-
located and freed dynamically at runtime as needed. That’s why the
program is able to process any dynamic network, as far as data de-
scribing the graph do not exceed your operating system memory. This
program has also another characteristic, built into the Microsoft oper-
ating systems, called – multithreading. What does this mean? When
a process(program) starts, a primary thread is created and launched.
However, it is possible to have more than one thread per process, and
each of them performing different tasks. The central process unit can
execute only one thread at a time. Due to its great speed, it executes
a thread for a short time, then switches to another thread and so on,
thus creating the impression that all of the threads are running in par-
allel. The benefit of the end user from multithreading is that you can
build a new graph (or anything else) while another graph is currently
processing, or you can process two or more graphs at the same time.
As mentioned in the algorithm, the graph edges represent functions.
This program may identify the following functions or any combination
of them : sin(t), cos(t), et – exponential +, -, /, * ˆ – power. All these
functions are of the same parameter t. The capacity of determining
the value of a user defined function at runtime is implemented quite
straightforward. After the user has specified all the functions for a dy-
namic network, the program creates a file with as much procedures as
the number of the dynamic network edges. Further, the file is compiled

311

A.Leconiuc

as a dll. When a function value is needed, the corresponding dll proce-
dure is called. Another characteristic of this program is that any graph
can be saved to, or loaded from a file. This is especially useful when you
are dealing with large graphs. Once saved into a file, you can load it in
no time and use it, instead of introducing it every time. The program
has a graphical, easy to use interface, which enables you to draw graphs
(put vertexes where you like them to be) and then modify graph matrix
as needed. All the commands the program can execute have intuitive
names, so anyone who knows the problem formulation would be able
to use them. Note that the program performance depends greatly on
your processor’s frequency as well as on the available physical memory.
The program works under Windows 95/98/NT operating systems.

3.2 Examples

First example 


0 10 2 0 0 0
0 0 0 25 4 0
0 0 0 3 0 0
0 0 0 0 0 9
0 0 0 0 0 12
0 0 0 0 0 0




First player vertexes : 1, 4, 5
Second player vertexces : 2, 3, 6
Initial vertex : 1
Final vertex : 6
Optimal path : 1, 3, 4, 6
Path lenght : 14

Second example 


0 1 0 2 0 0 0
0 0 2 2 3 0 0
0 0 0 0 4 3 0
0 0 2 0 0 0 0
0 0 0 0 0 2 2
0 0 0 0 0 0 0




312

Algorithm and program for finding . . .

First player vertexes : 1, 3, 4, 7
Second player vertexces : 2, 5, 6
Initial vertex : 1
Final vertex : 7
Optimal path : 1, 4, 3, 5, 6, 7
Path lenght : 11

References

[1] D.D. Lozovanu. Extremal-combinatorial problems and algorithms
for their solving. Stiinta, Kishinev, 1991. (in Russian)

[2] D.D. Lozovanu, Algorithms for solving some network minimax
problem and their applications. Cybernetics, No.1, 1991, pp.70-75.
(in Russian)

[3] R. Boliac, An algorithm and a program for finding the minimax
path tree in weighted digraphs. Comput. Sci. Journal of Moldova,
Vol.5, No.1, 1997. pp.55-63

[4] R. Boliac, D. Lozovanu, A. Leconiuc, Optimal paths in Dinamic
Networks. Bul. Acad. of Sci. of R.M. 1999, No.1.

A.Leconiuc, Received October 30, 1999
Institute of Mathematics
and Computer Science,
Academy of Sciences of Moldova
5, Academiei str., Kishinev,
MD2028, Moldova
phone: 73–83–35
e-mail: lozovanu@math.md

313

