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Stability of a majority efficient solution of a

vector linear trajectorial problem∗

V.A. Emelichev Yu.V. Stepanishyna

Abstract
The multicriteria problem of majority choice on a system of

subsets of a finite set with linear partial criteria (MINSUM) is
considered. Sufficient and necessary conditions of preserving ma-
jority efficiency by an efficient trajectory under “small” perturba-
tions of vector criterion coefficients have been found. Lower and
upper attainable estimates of the stability radius of a majority
efficient trajectory have been obtained.

In the papers [1,2] stability of different types of efficient solutions
(optimal by Pareto, Smale, and Slater) of a vector trajectorial problem
was investigated. Sufficient and necessary conditions of local stability
(the property of a trajectory to preserve appropriate efficiency under
“small” independent perturbations of vector criterion parameters) of
such solutions were presented. Lower attainable estimates of stability
radii of such trajectories, and formulas in several cases, were obtained.
A summary of these results can be found in [3].

In this work the parralel results have been obtained for a majority
efficient solution being an element of the Pareto set.

Note that the papers [4–14] are devoted to various types of stability
of the whole Pareto set of vector discrete optimization problems.

1 Definitions and properties

As in [1], we consider a class of vector discrete optimization problems
described with the following model.
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Let E = {e1, e2, . . . , em}, m > 1 be a set with a vector weight
function a : E −→ Rn, n ≥ 1. We can thereby treat this function as
a matrix A = [aij ]n×m ∈ Rnm, where (a1j , a2j , ..., anj) = a(ej), j ∈
Nm = {1, 2, ...,m}. Let T = {t} ⊆ 2E \ {∅}, |T | > 1 be a set of
elements named trajectories and the vector criterion

f(t, A) = (f1(t, A), f2(t, A), ..., fn(t, A))

be defined on T. The partial criteria of the vector criterion are linear:

fi(t, A) =
∑

j∈N(t)

aij −→ min
t∈T

, i ∈ Nn,

where
N(t) = {j ∈ Nm : ej ∈ t}.

By Zn(A) we denote the problem of finding the set of majority
efficient trajectories [15–17]:

Tn
M (A) = {t ∈ T : µ(t) = ∅},

where

µ(t) = {t′ ∈ T :
n∑

i=1

sign τi(t, t′, A) > 0},

τi(t, t′, A) = fi(t, A)− fi(t′, A) =
∑

j∈N(t\t′)
aij −

∑

j∈N(t′\t)
aij .

In the particular case, where the number of criteria n = 1 the set
of majority efficient trajectories turns into the set of optimal solutions
T 1

M (A), A = (a11, a12, ..., a1m), and our problem turns into the linear
scalar (singlecriterion) trajectorial problem. Its stability radius is stud-
ied in detail by V.K.Leont’ev and E.N.Gordeyev (see, for example, refs
[18–21] and bibliography there).

It is easy to see that many problems of combinatorial optimization
with linear objectives can be treated as special cases of trajectorial
problem: optimization problems on graphs, Boolean programming, and
some sheduling problems.
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It can easily be understood that any majority efficient trajectory is
efficient, i.e. an element of the Pareto set [22]:

Tn
P (A) = {t ∈ T : π(t) = ∅},

where
π(t) = {t′ ∈ T : τ(t, t′, A) ≥ 0, τ(t, t′, A) 6= 0},
τ(t, t′, A) = (τ1(t, t′, A), τ2(t, t′, A), ..., τn(t, t′, A)),

0 = (0, 0, ..., 0) ∈ Rn.

Indeed, if a majority efficient trajectory t does not belong to the
Pareto set, then there exists a trajectory t′ ∈ T such that

τ(t, t′, A) ≥ 0, τ(t, t′, A) 6= 0,

i.e. µ(t) 6= ∅. This contradicts the definition of the majority efficient
trajectory.

In the two-criteria case (n = 2) the following equality clearly holds:

T 2
M (A) = T 2

P (A).

Thus the sets T 1
M (A) and T 2

M (A) are always non-empty.
The following example shows that the set of majority efficient tra-

jectories of 3-criteria problem may be empty.

Example 1. Let E = {e1, e2, e3}, t1 = {e1}, t2 = {e2}, t3 = {e3},

A =




1 2 3
2 3 1
3 1 2


 .

Then f(t1) = (1, 2, 3), f(t2) = (2, 3, 1), f(t3) = (3, 1, 2). It is obvi-
ously that any of trajectories t1, t2, t3 is efficient but none of them are
majority efficient.

The absence of majority efficient trajectories of the problem Zn(A)
may be explained as follows. The binary relation

t ≺ t′ ⇔
n∑

i=1

sign τi(t, t′, A) < 0,
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specifying the set Tn
M (A), is not always transitive for n ≥ 3. In this

example

t1 ≺ t2 ≺ t3 ≺ t1.

The example characterizes the situation known as the Condorcet-
Arrow’s voting paradox [23,24] (see also [16,17]).

It is easy to see that the above binary relation can be intepreted
as a group choice relation under that a trajectory t is ”preferred” to a
trajectory t′, if t surpasses t′ in more criteria than t′ surpasses t.

For any vector x ∈ Rn we denote

N+
n (x) = {i ∈ Nn : xi > 0},

N−
n (x) = {i ∈ Nn : xi < 0},

N0
n(x) = {i ∈ Nn : xi = 0}.

Let
k+ = k+(t, t′, A) =| N+

n (τ(t, t′A)) |,
k− = k−(t, t′, A) =| N−

n (τ(t, t′A)) |,
k0 = k0(t, t′, A) =| N0

n(τ(t, t′A)) | .
It is evident that k+ + k− + k0 = n.

In this notation the following equivalent definition of the set Tn
M (A)

holds:

t ∈ Tn
M (A) ⇔ ∀t′ ∈ T (k−(t, t′, A) ≥ k+(t, t′, A)). (1)

Arising from the above definition, the following properties are valid
for any natural number n.

Property 1 ∀t ∈ Tn
M (A) ∀t′ ∈ T (k−(t, t′, A) ≥ k+(t, t′, A)).

Property 2 ∀t ∈ Tn
M (A) ∀t′ ∈ Tn

M (A) (k−(t, t′, A) = k+(t, t′, A)).

Property 3 ∀t′ ∈ T \ {t} (k−(t, t′, A) ≥ n
2 ⇒ t ∈ Tn

M (A)).
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Hereafter we investigate stability of a trajectory t ∈ Tn
M (A) in the

usual case [1–3, 4–11, 18–21], where all the vector criterion parameters
are independently perturbed by adding of a perturbing matrix to the
matrix A.

For an arbitrary number ε > 0 we define the set of perturbing
matrices

B(ε) = {B ∈ Rnm : ‖ B ‖< ε},

where ‖ B ‖= max{| bij |: (i, j) ∈ Nn ×Nm} is the Chebyshev norm
(l∞) of the matrix B = [bij ]n×m.

The following property is valid by the continuity of functions fi(t, A)
and, consequently, of their differences τi(t, t′, A) on the set Rnm of all
n×m− matrices.

Property 4
∃ε > 0 ∀t, t′ ∈ T ∀B ∈ B(ε)

(k−(t, t′, A) ≤ k−(t, t′, A + B)) & (k+(t, t′, A) ≤ k+(t, t′, A + B)).

2 Stability criterion

On the the analogy of [1,2], we say that a trajectory t ∈ Tn
M (A) is

stable if there exists a number ε > 0 such that the trajectory preserves
majority efficiency in any perturbed problem Zn(A + B), B ∈ B(ε),
i.e.

∃ε > 0 ∀B ∈ B(ε) (t ∈ Tn
M (A + B)).

A trajectory t ∈ Tn
M (A) is naturally called unstable if

∀ε > 0 ∃B ∈ B(ε) (t 6∈ Tn
M (A + B)).

To derive necessary and sufficient conditions of stability we need
the following lemma. It is valid in particular for the vector trajectorial
problems with linear partial criteria.
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Lemma 1 [1] Let t, t′ ∈ T, t 6= t′, B(α) = [bij ]n×m be a perturbing
matrix with elements

bij =





α, if i ∈ Nn, j ∈ N(t \ t′);
−α, if i ∈ Nn, j ∈ N(t′ \ t);
0 otherwise.

(2)

Then setting
∆(t, t′) =| t \ t′ ∪ t′ \ t |,

we have

∀i ∈ Nn ∀α ∈ R (τi(t, t′, A + B(α)) = τi(t, t′, A) + α∆(t, t′)).

Note that ∆(t, t′) > 0 for t 6= t′.

Theorem 1 A majority efficient trajectory t of the problem Zn(A), n ≥
1 is stable if and only if

∀t′ ∈ T \ {t}
(

k−(t, t′, A) ≥ n

2

)
. (3)

Proof. Sufficiency. From (3) and property 4, we obtain the following

∃ε > 0 ∀t′ ∈ T \ {t} ∀B ∈ B(ε)
(

k−(t, t′, A + B) ≥ n

2

)
.

Thus by property 3 we have

∃ε > 0 ∀B ∈ B(ε) (t ∈ Tn
M (A + B)),

i. e. the trajectory t is stable.
Necessity. Suppose the opposite: the condition (3) is not valid for a

stable majority efficient trajectory t of the problem Zn(A), i. e. there
exists a trajectory t′ ∈ T such that

k−(t, t′, A) <
n

2
.

Then in view of property 1, we have

k+(t, t′, A) + k0(t, t′, A) > k−(t, t′, A) ≥ k+(t, t′, A). (4)
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Let ε > 0, B(α) = [bij ]n×m be the perturbing matrix with elements
defined by rule (2), where 0 < α < ε. Then using lemma 1, we get

∀i ∈ Nn (τi(t, t′, A + B(α)) = τi(t, t′, A) + α∆(t, t′)).

This implies the following (by virtue of α > 0, ∆(t, t′) > 0):

k+(t, t′, A + B(α)) ≥ k+(t, t′, A) + k0(t, t′, A),

k−(t, t′, A + B(α)) ≤ k−(t, t′, A).

Therefore due to (4) we have

k+(t, t′, A + B(α)) > k−(t, t′, A) ≥ k−(t, t′, A + B(α)).

Now, according to definition (1) of the majority efficient trajectory we
conclude that t 6∈ Tn

M (A + B(α)).
Thus under our assumption we can find a perturbing matrix B ∈

B(ε) for any ε > 0 such that the majority efficient trajectory t of the
problem Zn(A) loses its efficiency in the perturbed problem Zn(A +
B). Hence the trajectory t is unstable. The contradiction proves the
necessity of the theorem.

Theorem 1 has been proved.

If a majority efficient trajectory t of the problem Zn(A) is not
strictly efficient, i. e. does not belong to the traditional Smale set [22]

Tn
S (A) = {t′ ∈ T : σ(t′) = ∅},

where σ(t′) = {t′′ ∈ T \ {t′} : f(t′) ≥ f(t′′)}, then it is easy to under-
stand that

∃t∗ ∈ T (k0(t, t∗, A) = n),

i. e. k−(t, t∗, A) = 0 < n
2 . Thus from theorem 1, we derive

Corollary 1 Any stable majority efficient trajectory is strictly effi-
cient.

The next statement follows directly from theorem 1.
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Corollary 2 Let t, t′ ∈ Tn
M (A), n ≥ 1. If k0(t, t′, A) > 0, then both

trajectories t and t′ are unstable.

If we combine this with property 2, we obtain

Corollary 3 If the number of criteria n ≥ 1 is odd, then for stability
of a trajectory t ∈ Tn

M (A) it is necessary the trajectory to be a unique
majority efficient trajectory, i. e. | Tn

M (A) |= 1.

In particular, the next well-known result [18] follows from the above:
An optimal trajectory of scalar problem Z1(A) is stable only if the prob-
lem has a unique optimal trajectory.

Following examples attest the converses of corollaries 1–3 to be not
always valid.

Example 2. Let E = {e1, e2, e3, e4}, t1 = {e1}, t2 = {e2, e3}, t3 =
{e2, e4},

A =




1 2 1 0
2 2 1 1
3 1 1 1
3 1 0 2


 .

Then f(t1) = (1, 2, 3, 3), f(t2) = (3, 3, 2, 1), f(t3) = (2, 3, 2, 3).
The both majority efficient trajectories t1 and t2 in this example are

strictly efficient but the trajectory t1 is stable, whereas t2 is unstable
(k−(t2, t3, A) = 1 < 2).

This means that the converse of corollary 1 is not valid in the instant
case.

Example 3. Let E = {e1, e2, e3}, t1 = {e1}, t2 = {e2}, t3 =
{e1, e3}, t4 = {e2, e3},

A =




2 1 0
1 2 0
2 1 1
1 2 0


 .
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Then f(t1) = (2, 1, 2, 1), f(t2) = (1, 2, 1, 2), f(t3) = (2, 1, 3, 1),
f(t4) = (1, 2, 2, 2).

The majority efficient trajectories t1 and t2 are both unstable since
k−(t1, t3, A) = k−(t2, t4, A) = 1 < 2. Nevertheless k0(t1, t2, A) = 0.
Thus the converse of corollary 2 does not hold.

Example 4. Let E = {e1, e2, e3, e4}, t1 = {e1, e2}, t2 = {e1, e3}, t3 =
{e4},

A =




1 2 0 2
1 0 1 2
1 1 2 1


 .

Then we have f(t1) = (3, 1, 2), f(t2) = (1, 2, 3), f(t3) = (2, 2, 1).
It is obviously that the strictly efficient trajectory t3 is a unique ma-
jority efficient trajectory of this problem. But it is unstable because
k−(t3, t2, A) = 1 < 3

2 .
This means that uniqueness of a majority efficient trajectory is not

a sufficient condition of its stability (see corollary 3).

3 Stability radius

Let us remind (see [1,2]) that the stability radius of an efficient trajec-
tory t of the problem Zn(A) is the value

ρn
P (t, A) =

{
supΩ(A), if Ω(A) 6= ∅,
0, if Ω(A) = ∅,

where
Ω(A) = {ε > 0 : ∀B ∈ B(ε) (t ∈ Tn

P (A + B))}.
The equality ρn

P (t, A) = 0 shows unstability of the efficient trajec-
tory t. The following formula of the stability radius of a stable efficient
(optimal by Pareto) trajectory t of the vector linear trajectorial prob-
lem Zn(A) has been derived in [1].

ρn
P (t, A) = ϕn(t, A), n ≥ 1, (5)
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where
ϕn(t, A) = min

t′∈T\{t}
max
i∈Nn

γi(t, t′, A),

γi(t, t′, A) = −τi(t, t′, A)
∆(t, t′)

.

Here as before we denote

∆(t, t′) =| t \ t′ ∪ t′ \ t | .
On the analogy of [1,2], the value

ρn
M (t, A) = sup{ε > 0 : ∀B ∈ B(ε) (t ∈ Tn

M (A + B))}
is called the stability radius of the stable majority efficient trajectory
t ∈ Tn

M (A).
If a trajectory t ∈ Tn

M (A) is unstable, then it is naturally to assume
its stability radius to be equal to zero.

Thus the stability radius of a trajectory t ∈ Tn
M (A) is defined as

the limit of perturbations of elements of the matrix A that preserve
majority efficiency of the trajectory. Since Tn

M (A) ⊆ Tn
P (A), in virtue

of (5) for any majority efficient trajectory t of the problem Zn(A) we
have

ρn
M (t, A) ≤ ρn

P (t, A) = ϕn(t, A). (6)

The next lemma follows directly from the definition of number
ρn

M (t, A).

Lemma 2 Let t ∈ Tn
M (A), ψ > 0. If

∀B ∈ B(ψ) (t ∈ Tn
M (A + B)),

then
ρn

M (t, A) ≥ ψ.

By definition, put

ψn(t, A) := min
t′∈T\{t}

min
i∈N−

n (τ(t,t′,A))
γi(t, t′, A).

We need the following well-known statement (see lemma 3.1 [1]).
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Lemma 3 If γi(t, t′, A) > 0, then the inequalities

∀B ∈ B(ψ) (τi(t, t′, A + B) < 0)

are true for any number ψ satisfying the inequalities

0 < ψ ≤ γi(t, t′, A).

Theorem 2 The following estimates

ψn(t, A) ≤ ρn
M (t, A) ≤ ϕn(t, A). (7)

are valid for any stable majority efficient trajectory t of the problem
Zn(A), n ≥ 1.

Proof. Since under the conditions of the theorem the majority efficient
trajectory t is stable, then by theorem 1 inequalities (3) hold. It follows
that

∀t′ 6= t (N−
n (τ(t, t′, A)) 6= ∅).

Therefore taking into account the obvious inequality ∆(t, t′) > 0
(in virtue of t 6= t′), we obtain

ϕn(t, A) ≥ ψn(t, A) > 0.

At first, the upper estimate for the stability radius

ρn
M (t, A) ≤ ϕn(t, A)

is valid due to inequality (6).
Now let us prove inequality

ρn
M (t, A) ≥ ψn(t, A). (8)

By the definition of the number ψ := ψn(t, A) we have

∀t′ ∈ T \ {t} ∀i ∈ N−
n (τ(t, t′, A)) (γi(t, t′, A) ≥ ψ > 0).

Thus by lemma 3 we obtain

∀t′ ∈ T \ {t} ∀i ∈ N−
n (τ(t, t′, A)) ∀B ∈ B(ψ) (τi(t, t′, A + B) < 0).
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From this, in virtue of stability of the majority efficient trajectory t,
by theorem 1 we have

∀t′ ∈ T \ {t} ∀B ∈ B(ψ)
(

k−(t, t′, A + B) ≥ k−(t, t′, A) ≥ n

2

)
.

The above propositions and (1) imply

∀B ∈ B(ψ) (t ∈ Tn
M (A + B)).

Hence applying lemma 2, we derive (8).
Theorem 2 has been proved.

Since T 1
M (A) = T 1

P (A) and T 2
M (A) = T 2

P (A), in virtue of (5) we
obtain the next corollary of theorem 2 for n = 1, 2.

Property 5 The stability radius of a majority efficient trajectory t of
the problems Z1

M (A) and Z2
M (A) is respectively expressed by the formula

ρn
M (t, A) = ϕn(t, A), n = 1, 2.

Therefore a trajectory t ∈ Tn
M (A), n = 1, 2 is stable if and only if

ϕn(t, A) > 0.

The following examples illustrate that upper and lower bounds of
the stability radius ρn

M (t, A) of a majority efficient trajectory, stated
by theorem 2, are attainable in the case of n = 3.

Example 5. Let E = {e1, e2, e3}, t1 = {e1}, t2 = {e2}, t3 = {e3},

A =




2 1 4
3 1 2
1 2 2


 .

Then f(t1) = (2, 3, 1), f(t2) = (1, 1, 2), f(t3) = (4, 2, 2).
Now if we calculate the bounds for the stability radius of the ma-

jority efficient trajectory t2, using theorem 2, we obtain

1
2
≤ ρ3

M (t2, A) ≤ 1.
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Let us show that the radius is equal to its lower estimate. Really,
for any ε > 1

2 there exists a matrix B ∈ B(ε), for example,

B =



−1

2 − α 1
2 + α 0

0 0 0
0 0 0


 ,

where 0 < α < ε− 1
2 such that the majority efficient trajectory t2 loses

its efficiency in the perturbed problem Z3(A+B). Hence, ρ3
M (t2, A) ≤

1
2 . Taking into account the lower bound, we conclude that the radius
is equal to 1

2 .

Example 6. Let E = {e1, e2, e3}, t1 = {e1}, t2 = {e2}, t3 = {e3},

A =




1 3 3
0 2 1
1 1 3


 .

Then f(t1) = (1, 0, 1), f(t2) = (3, 2, 1), f(t3) = (3, 1, 3). There-
fore, t1 ∈ T 3

M (A) and by theorem 2,

1
2
≤ ρ3

M (t1, A) ≤ 1.

It is easy to see that the relations t1 ≺ t2, t1 ≺ t3 are true for
any matrix B ∈ B(ε), 0 < ε ≤ 1. This means that the trajectory t1
preserves majority efficiency in the perturbed problem Z3(A + B) for
any matrix B ∈ B(ε). From this, by lemma 2, we obtain ρ3

M (t1, A) ≥ 1.
Hence in virtue of the upper bound, we derive ρ3

M (t1, A) = 1.

Now let us illustrate that the stability radius of a majority efficient
trajectory can differ from the bounds stated by theorem 2.

Example 7. Let E = {e1, e2, e3}, t1 = {e1}, t2 = {e2}, t3 = {e3},

A =




3 0 3
3 1 2
0 1 3


 .
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Then by theorem 2 the following inequalities are valid for the ma-
jority efficient trajectory t2.

1
2
≤ ρ3

M (t2, A) ≤ 3
2
.

Let us show that the stability radius of the trajectory t2 is equal to
1.

It is obvious that for any ε > 1 there exists a matrix B ∈ B(ε), for
example,

B =




0 0 0
−1− α 1 + α 0

0 0 0


 ,

where 0 < α < ε− 1 such that t2 6∈ T 3
M (A + B). Therefore,

ρ3
M (t2, A) ≤ 1.

On the other hand, it is easy to see that t2 is the majority efficient
trajectory of the problem Z3(A + B) for any number 0 < ε ≤ 1 and
for any perturbing matrix B ∈ B(ε). Therefore by lemma 2 we have
ρ3

M (t2, A) ≥ 1.
Hence we obtain ρ3

M (t2, A) = 1.
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