
Computer Science Journal of Moldova, vol.7, no.3(21), 1999

PRONET: Basic concepts of a system of

Artificial Intelligence

S. Lâsâi

Abstract

In the work are expounded the principles and basic elements
of a system of artificial intelligence. Knowledge representation
develops according to the method settled for processing. A thing,
a phenomenon can be determined or established by more modules
subject to their state as well as the links and relations between
them. The system creates a set of blocks (modules) for which the
concurrent work is pre-established. The volume of knowledge can
be also increased without increasing the number of blocks.

For Artificial Intelligence systems the ratio between the user’s and
the system’s work is too big.

The knowledge and data representation methods is the key of suc-
cess of Artificial Intelligence. Traditional methods of knowledge rep-
resentation are well known. Strong and week points of these methods
are known too.

In the proposed system the representation and knowledge process-
ing methods are elaborated at the same time and rely on the following
concepts:

* determination of things. A thing or a phenomenon can be deter-
mined by more modules subject to their state as well as the links
and relations between them;

* relations between names and things. A thing can be determined
without knowing the name but under the relations and the con-
tent of cells of module. Other authors have also examined the
relations between names and objects [1].

c©1999 by S.Lâsâi

284

PRONET: Basic concepts of a system of . . .

* the concurrent work of modules. The parallelism allows to elab-
orate either simpler or more efficient algorithms or both.

* self-learning. Some modules can analyze and perform changes
within other modules.

* the property <<to forget>>. The system has the property <<to
forget>> as the links are memorized in quasi-stacks for which is
reserved a limited space. The system can be <<forced>> <<not
to forget>>.

* the volume of knowledge. The application of the system in a do-
main requires a large number of modules. At the same time, the
same set of modules allows to solve problems belonging to differ-
ent classes. The volume of knowledge can be increased without
increasing the number of blocks.

ProNet system is an application of L & R (Link and Relation)
system [2] in Artificial Intelligence.

A version of L & R has been implemented in Turbo Prolog with a
purpose to experiment with the work of basic elements of the system.

The ProNet system creates a set of blocks (modules) for a certain
goal.

Each block contains:

* a set of cells (STATus, NAME, CLASS, ACTive, DEFine, CI
(Cell Immediate), LAMP, TARG (TypeARG));

* an effector (procedure, demon);

* arguments;

* quasi-stacks ’in’, ’out’ and ’Bin’.

Cells, arguments and quasi-stacks are used to search, analyse and
treat blocks.

The effector of the block contains operations which are executed
when the effector is activated. Each block can contain one or more

285

S.Lâsâi

ports. Ports are divided in sections. Each section contains ’condition’
and ’operation’ partitions (divisions). The purpose of dividing is the
following:

* to facilitate the effector design

* to determine the ports and ’parasitic’ sections (that don’t work
for a long period of time)

* the possibility to change blocks by other blocks at ports and
sections level.

The concept of block is not new. The author has used it [3] as a
method of languages realization.

The system can be either in ’learning’ or ’activation’ state. The
blocks are defined in ’learning’ state.

Arguments. Each argument contains four cells:

* argname. The cell contains the name of a block if <<argmod>>
contains R. Otherwise we can write in the cell other values;

* argclass, that determines the class of <<argname >>;

* argdef, that determines whether <<argname>> is defined;

* argmod, that determines the type of argument.

The four types of blocks (F, V, L and T) are subject to types
of arguments. Type F is a block with a fixed number of arguments.
For type V the number of arguments is great and can be changed in
activation state as well. The first argument is fictive. Type L (Like)
differs from Type V (Variable) by activation method. When a block is
defined by Type L the medium requests the value of p−limit. During
the work the block self-activates when the number of defined arguments
is greater or equal to p−limit. Type T (Table) can be compared with a
relation of Relational Database. But blocks of type T contain also an
effector and its attributes.

The system allows more methods to activate blocks.

286

PRONET: Basic concepts of a system of . . .

Explicit method. Let the following operation be performed within
the effector of block Bi:

set (act (name (Bt)), ’3’)
The expression means: <<set the value ’3’ for the block ’Bt’ in cell

ACT>>. In this case the medium writes (adds) the pair <Bi, 3> for
Bt within ’Bin’. The medium will delete the less weighted pair if there
is no space within ’Bin’. In the process of activation the medium checks
if ports of the effector allows such activation. If activation is allowed
then <Bi, W> is written for Bt within ’in’, ’1’ is written within Lamp
and block Bt starts to work. If Bi activates Bt with a higher frequency
then W will be bigger and the pair <Bi, W> would have more chances
to keep within ’in’. Blocks that are activated by Bt are registered in
quasi-stack ’out’.

Implicit method. This method of activation is pre-established. The
medium implements the method for blocks of type F. If a block B of
class C passes to ’defined’ state then the medium will try to activate
all blocks of type F that contain an argument of class C.

Activation method pti. ’Virtual’ blocks can be defined. The blocks
contains one port. They can be sent into other blocks and activate
them. ’Virtual’ blocks execute as if being a party to these blocks. The
notion pti (port immediate) differs from notions: macro, procedure or
subroutine.

Logical expression and goal (<logical expression>) are used within
an effector from ’condition’. Logical expressions are treated from intu-
itionism positions.

If goal (<logical expression>) is used in <<condition>> then the
value of logical expression is calculated. If the value is false then oper-
ations from <<operation>> will be executed. The process repeats as
much as the value of logical expression is false. Otherwise another sec-
tion comes after. Blocks that contain goal (<logical expression>) are
checked by the medium and their work can be interrupted. The effector
can find out whether the execution of the block has been interrupted.

The congruencies a = b, d = c, c = e, c = b, d = f , e = h, g = f ,
p = q are given. To verify the equality b = h. The problem has been
solved in L and R using a stack. Other solution. Let’s represent the

287

S.Lâsâi

condition of the problem using a graph. We can easily find the solution.
We will proceed likewise in Pronet. We define a, b, . . . , q as blocks of

class ’Tempo’. Such blocks can be added and eliminated in ’activation’
state as well. Then we add arguments. The arguments of a block will
be blocks linked to it. For example, the block c will contain arguments
<b, d, e>.

The blocks <<start>> and <<final>> are used to solve some
problems. The block <<start>> prepares data for the block that
searches the solution. In our case the first argument is . Then it
activates the block that searches the solution. The block <<start>>
activates block <> using the operation:

set (pti (argname(arg (my))), name (seek−out))
where ’my’ is the name of actual block (in this case – start) and the
value of “argname(arg(my))” is ’b’.

The block ’Final’ contains the goal (block) we search. The block
’Final’ can activate other blocks.

The effector of block seek−arg contains sections as follows:

Port Condition Operation
def (my) = 3 quit.% This block was treated

(processed)
argdef (arg (name (final))) quit.% The solution was found
= 3 (anteriorly)
argname (arg(name set(def(my),3),
(final)))=my set (arg def(arg(name(final))),3)

quit.% Now we have found solu-
tion
blank (p),
set (ci (my), argname (p (arg
(my)))).

goal (not (e−name (ci set (pti (ci (my)),
(my)))) name (seek−arg)), new (p),

set (ci (my), argname (p (arg
(my)))).
Init (p),
set (def (my), 3), quit.

288

PRONET: Basic concepts of a system of . . .

This block contains one port without input conditions and six sec-
tions. Let’s start from section 4. The operation blank (p) - neutralizes
the value of p. New(p) sets a new value for p so it will point to the pre-
vious argument. The cell <<ci>> is used for a compact writing. The
block <<c>> contains 3 arguments: b,d, and e. In this case ci (my)
is equivalent to ci (name(c)). First we put ’b’ within ci (my). Then ’d’
and ’e’. We check if the condition contains block ’b’. The operation
“set (pti (ci (my)), name (seek−arg))” sends the block ’seek−org’ to
’b’, ’d’ and ’e’ so it sends the block. If the solution is found then ’3’
will be sent for ’Final’ to argdef. The block ’Final’ usually ends the
work with:

set (act (in (name (start))), 3), quit
where “in (name (start))” is the name of the block that activates the
block ’start’.

If we use more processors then ’Final’ must contain a section with
the condition:

goal (not (e−name (class (Tempo), lamp (1))))
The expression will be true if none of blocks of class ’Tempo’ works.

This is an indispensable condition for case a=q. If we use one processor
then it makes no sense to use lamp (-). In this case we can use the
operation ”close (class (Tempo))” and so all blocks of class ’Tempo’
will be processed before ’Final’.

It is not reasonable to prove a theorem every time we use it. Let
blocks A, B and C be linked.

Block B has one ’entance’ and one ’exit’. If C is the application
of a theorem and B- its proof then from beggining we can include the
following section into the effector of bloc B:

Condition Operation
def (my) = 3, e−name (out (my)). Set (act (out (my)),3).

Then after the first good try of B (B will pass to ’defined’ state) the
proof will not be repeated. So we pass directly to C. Another effector
can localize structures of type < A, B, C > . The effector can inform
us which blocks pretend to theorem status. If necessary, the effector
can change the structure.

289

S.Lâsâi

References

[1] Sapiro E., Takenchi A., Object oriented programming in Concur-
rent Prolog, New Generation Computing, 1 (1983) OHMSHA,
LTD, pp.25-48;

[2] Lâsâi S., L and R – un system formel pour les deductions, Com-
puter Science. The proceedings of the 3rd International Sympo-
sium of Economic Informatics – May 1997, Bucharest. pp.65-69.

[3] Lâsâi S., G1 – self-extensible geometric language and its imple-
mentation, Computer software systems, Kiev: Naukova Dumka,
1973, pp.51-63. (in Russian)

S.Lâsâi, Received November 22, 1999
Moldova State University,
Faculty of Mathematics and Computer Science,
60, Mateevich str., Kishinev,
MD-2009, Moldova

290

