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Abstract

In this paper, complex membership grades are introduced for
the extension of fuzzy set theory to the complex domain. This
model is based on the idea of viewing the complex domain in a
linguistic manner, where two linguistic terms are required to de-
fine an object. Thus, as opposed to Buckley’s model [13], after
fuzzification the two-dimensionality of the universe of discourse
is still apparent. One form for representing a complex fuzzy set
is using the Cartesian Complex Fuzzy Set representation, which
produces complex sets of the form Z, = X + jf/. The motivation
for this aberrant representation is oriented from the limitations
in using a direct extension to Zadeh [17], that Buckley [13]
introduced. These limitations pose the guidelines for Complex
Membership Grades and, therefore, are initially discussed in this
paper. Complex Fuzzy Sets are defined and a technique for con-
verting between Complex Fuzzy Sets and Fuzzy Relations is devel-
oped based on Cylindrical Extensions and Projections defined by
Zadeh [20]. Next, linguistic coordinate transformations are dis-
cussed and exemplified by a rule-base coordinate transformation
between Polar and Cartesian Complex Fuzzy Sets. Arithmetic
operations and defuzzification are demonstrated. The simplicity
of these latter operations is crucial when considering implementa-
tion prospects. Finally, Complex Membership Grades are applied
to the design of adaptive filters. It is shown that a logically
derived rule-base can be described, using the linguistic complex
domain, for the adaptation process. Emphasis, in this part, is put
on the unique characteristics of the complex membership grades
model.
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1 Introduction

The idea of extending fuzzy set theory to the complex domain was ex-
plored as early as 1985. In their book, Kaufmann and Gupta [4] nour-
ished their reader’s motivation by presenting ideas and giving insights
for possible fuzzification models of the complex domain. Although
Kaufmann and Gupta’s ideas were yet in their embryonic stages, it was
those ideas that, nevertheless gave researchers directions and thoughts.
The pioneering work in this field is accredited to Buckley [13] who ini-
tiated fuzzy complex number theory. In [13], [15], [14] and [24], those
concepts and the affiliated formulations are developed.

Buckley [13] directly extends the fundamental concepts given by
Zadeh [17], who suggested that membership in a set be governed by
a measure of extent. Thus, treating the complex domain as any other
universe of discourse and assigning a grade of membership that de-
scribes the degree of inclusion in that set. As Zadeh [17] permits the
definition of a fuzzy membership on any universe of discourse, it seems
a natural extension to view the complex domain as just another uni-
verse of discourse. This, however, fails to propagate to the linguistic
model some features of the complex domain, which are evident in op-
erations such as multiplication and coordinate transformations. It is
those features that make complex analysis ubiquitous in engineering.

Referring back to the sequence of events that lead to the intro-
duction of the complex numbers, there was a lot of turmoil among
mathematicians with regrad to the need for complex numbers and
their meaning. Although, well before their introduction, it was widely
known that complex numbers could be used in several applications,
many mathematicians were still uneasy with v/—1 and did not have a
cogent reason to prevail upon the future of mathematics complex num-
ber analysis. Inaguration came only when it was shown that, in some
cases, a real solution to the cubic equation, using an existing formula,
could be obtained by two complex numbers that canceled one another
[12]. Thereafter, making the complex numbers accredited among the
mathematical community.

This sequence of events, together with the fact that the complex
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numbers are application oriented and that fuzzy set theory is an engi-
neering tool, urged the authors to evaluate fuzzification models for the
complex domain based on their applicability prospects.

In this paper, complex membership grades are proposed as a model
for the fuzzification of the complex domain. A complex fuzzy set is
composed of two fuzzy sets [17] that, in the Cartesian representation
corresponds to the real and imaginary components. Two primary com-
plex membership grade representations are the Cartesian and the Polar.
Once a linguistic representation (which is essentially complex fuzzy sets
on the domain) is obtained, linguistic operations can be defined. One
of the most important operations is the coordinate transformations.
That is to take, for example, a Cartesian complex membership grade
and transform it to a Polar complex membership grade. This paper
proposes a Rule-Base Coordinate Transformation(RBCT) technique for
that transformation. Further, as it is necessary to relate complex fuzzy
set theory with the existing fuzzy set theory, a conversion scheme is de-
veloped. This conversion scheme converts complex fuzzy sets to fuzzy
relations and vice versa.

Section 2 investigates the limitations of the existing model defined
by Buckley [13]. These limitations are used as guidelines for the defini-
tion of the complex membership grades. A pertinent review of linguistic
variables and fuzzy relations is given in section 3. Section 4 presents
the definitions for complex fuzzy sets. Section 5 deals with conver-
sions between complex fuzzy sets and fuzzy relations, thus permitting
the application of existing results from fuzzy set theory. Section 6
investigates complex fuzzy set transformations, which are based on a
rule-base system. The transformation model facilitates a change in the
linguistic terminology that is used to describe a phenomenon in the
complex domain. Methods for arithmetic operations and defuzzifica-
tion are developed in section 7. An application to the design of a second
order adaptive analog filter is discussed in section 8. Finally, section 9
discusses the motivation and potential of complex fuzzy sets.

Throughout this paper the term fuzzy sets is used to denote fuzzy
sets as defined by Zadeh [17].
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2 Limitations of The Existing Theory

The theory defined by Buckley [13] proposes to create fuzzy sets over
the complex domain, therefore using the complex domain as the uni-
verse of discourse. This implies that, a point in the two-dimensional
complex domain is evaluated as belonging to a fuzzy set using a mem-
bership grade. Essentially, in this method, a fuzzy set defined on the
complex domain is a mapping from C to the interval [0,1]. Buckley
also defines the requirement from two-dimensional structures for the
constitution of fuzzy complex numbers. Along with these definitions,
mathematical operations are developed based on the extension princi-
ple. The most conspicuous feature of Buckley’s direction is that the
complex domain loses its two-dimensionality characteristic under fuzzi-
fication. As analysis in the complex domain is a mathematical tool and
the components of a complex number relate to the physical world, it is
necessary to preserve the two-dimensionality characteristic under fuzzi-
fication too. The following example can illuminate this requiremnet.

Example 2.1 Suppose a given universe of discourse for length and a
fuzzy set of long objects with a membership function jueng(x). Also,
suppose a given universe of discourse of width and a fuzzy set of wide
objects with a membership function pyige(y).

In many practical cases, where complex numbers are applied, it is
advantageous to represent two physical numbers as a single complex
number for mathematical reasons. An aggregated representation could
be useful to do operations such as coordinate transformations, which in
the fuzzy case means a change in the linguistic terminology that is used
to represent the object, or operations that cause interactions between the
two components, such as the complex multiplication. In this example,
the measure of length and the measure of width may be defined on the
two independent azes that correspond to the real and the imaginary
azxes, respectively.

For an object having the complex value z = x + jy, it is clear that
in order to evaluate it as being long the first component in conjunction
with uyong(x) is used, and in a similar fashion the evaluation for being
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wide. Thus, it is essential to be able to extract the physical components,
or implications, from the aggregated representation.

Furthermore, the operations that are defined by Buckley [13] are
based on the extension principle. As the universe of discourse for
a fuzzy set is two-dimensional, these operations are computationally
difficult to perform on the structures that are permitted and, hence-
forth, question the feasibility in an application designer’s perspective.
A simple multiplication, for example, on a Cartesian rectangular fuzzy
number is computationally expensive. Key topics such as coordinate
transformations and defuzzification are not discussed in [13] or any
subsequent work. Moreover, considering the set of structures that are
permitted, or that can be generated by applying simple operations to
simple fuzzy structures, defuzzification seems a serious drawback in the
model developed in [13]. Finally, up-to-date, there has not been any
application based on the theory presented by Buckley that would un-
veil it’s potential as an engineering tool. In this respect, it should be
emphasized that both complex numbers and fuzzy sets are tools used
in innumerable applications.

3 Linguistic Variables and Fuzzy Relations

3.1 Linguistic Variables

The values of linguistic variables [19] [20] [21] are words rather than
numbers. The purpose of having variables of this type is to provide a
means to describe phenomena that are too ill-defined to be suitable for
characterization using quantitative models. Fuzzy sets are essentially
summaries of sub-classes of elements in a universe of discourse.

Definition 3.1 (Zadeh [19] [20] [21]) A linguistic variable is defined
by a quintuple (x,T(x),U, G, M) in which x is the name of the variable;
T(x) (or T) is the set of linguistic values of x, where each value is
a fuzzy variable and is denoted generically by X that ranges over a
universe of discourse U which is associated with the base variable w;
G is a syntactic rule (usually a grammer) for generating the names,
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X, of values x; and M 1is a semantic rule for relating with each X its
meaning, M (X) which is a fuzzy subset of U.

LENGTH

vares ! ‘ ol

Short  Quite Short  Medium  Quite Long  Long

Base variables

Figure 1. Linguistic Variables

As a complex number comprises two components, usually, repre-
senting two physical phenomena, and implications regarding a complex
number are projected back to the physical domain, it seems essential
to define the linguistic variables of the fuzzy model using the physical
universes of discourse as basis. Thus, as there are two distinct phys-
ical universes of discourse, there should be two linguistic variables to
describe a single object in the linguistic complex domain.

3.2 Fuzzy Relations

In addition to the linguistic pairs that are used to describe phenomena
in the complex domain, it is also necessary, in many cases, to describe
relations between the two components of the complex number. Thus,
as opposed to the linguistic pair, constructing fuzzy sets with a base
universe of discourse, which is the complex domain. Fuzzy relations are
used to describe interactions [19] [20] [21] between the two compo-
nents of the complex number. The motivation to describe interactions
is given in the following example.
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Example 3.1 Given the case in example 2.1, it is clear that as the
width of the object changes, the subjective classification of the object
as being long would change too. Thus, the membership function of
the fuzzy set long, which evaluates the length of the object, would have
to be dependent on the width of the object. In other words, a typical
object evaluated on the width dimension as being wide and on the length
dimension as being long, would be, in measurement, longer than the a
typical object evaluated on the width dimension as being narrow and on
the length dimension as being long.

The fundamental concepts of fuzzy relations are given in Zadeh’s
series of papers [19] [20] [21] and the mathematical foundations are
extensively discussed in Di Nola, Sessa, Pedrycz and Sanchez’s book
[1]. A brief summary of the concepts for the two-dimensional case used
in this paper is presented in the following.

If U is the Cartesian product of two universes of discourse Uj, U,
then a binary fuzzy relation, R, in U is a fuzzy subset of U. Using the
standard notation, R may be expressed through pgr(ui,u2)/(u1,us) as,

R = pr(ut,ug)/(u, us) (1)
Uy xUsz
g is the membership function of R. Common examples of binary
fuzzy relations are: much smaller than, quite bigger than, etc.
If R is a binary fuzzy relation in Uy, Us, then its projection on U;
(where 7 may equal 1 or 2) is a fuzzy set Fj,.

Fy, = ProjRonU;

:/ Vg pr(ur, u)]/ (u1, uz)
U;

where 7’ is the complement index of i, for example, if i = 1 then 7' = 2.
Distinct fuzzy relations in U, Uy can have identical projections on U;.
However, given a fuzzy set F, in U;, there exists a unique largest relation
Rq in Uy, U, whose projection on U; is Fy;. The membership function
of R, is given by:
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pi, (U1, u2) = p, (u;) (2)

Ry is referred to as the Cylindrical extension of Fy, with F, consti-
tuting the base of R,,.

Projections and cylindrical extensions, for two-dimensional fuzzy
relations, are extensively discussed and graphically illustrated in [11].

4 Definitions

Using linguistic terms to describe phenomena in the complex domain
is actuated from the need to view the complex domain in a more coarse
resolution. Thus, in order to avoid dealing with unnecessary precision
in the description of objects in the complex domain, the complex fuzzy
set is introduced. As discussed in the previous sections, it is, neverthe-
less, necessary to preserve the two-dimensionality characteristic of the
fuzzified object. The complex membership grade, essentially, contains
two membership grades, each of which is related to a specific dimen-
sion. As an example, the complex fuzzy set Z, = X + jY, contains
information on the x-axis and y-axis fuzzy sets. It is obvious that the
features of the two fuzzy sets and, henceforth, the complex fuzzy set
are dependent on the coordinate system being used such as the Carte-
sian coordinate system used for Z,. This leads to the requirement of
a scheme for coordinate transformations that is described in the next
section.
In this discussion the following notational conventions are used:

e (' — Denotes the complex numbers domain.
e R — Denotes the real numbers domain.
e z — Denotes a complex number.

e Z, —Is used to denote a complex fuzzy set in a given representa-
tion g.

e Z.— Denotes a complex fuzzy set in the Cartesian representation.
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. Zp — Denotes a complex fuzzy set in the Polar representation.
e U.—[0,1] x [0,1].

Definition 4.1 Zg : C = U, is defined as the complex fuzzy set on
the complex domain in a given representation g, if the complex fuzzy
set is composed of a pair of fuzzy set (U, V)g. The measure of extent to
which z € C, where z = (u,v)y, belongs to the complex fuzzy set Zg 18
called the complex membership grade and is defined to equal the pair
value (U(u),V (v)),

In contrast to fuzzy sets [17], which would map a domain to [0, 1],
in complex membership grades the mapping is to a two-dimensional
range. Before we delve into the essence of this definition, two useful
representations are given.

Definition 4.2 Z. is defined to be the Cartesian complex fuzzy set
composed of the two fuzzy sets X (x) and Y (y), if every element z €
C such that x = Re(z) and y = Im(z) has the complex membership
grade (X (z),Y (y))e, which in this case is called the Cartesian complex
membership grade. This complez fuzzy set is written Z, = X (z) +
§Y (y) or simply Z, = X + jY.

Definition 4.3 Zp is defined to be the Polar complex fuzzy set com-
posed of the two fuzzy sets R(r) and ©(0), if every element z € C

such that r = |z| and 6 = /() has the complez membership grade
(R(r),©(0))p, which in this case is called the Polar complex member-
ship grade. This complex fuzzy set is written Zp = R(r) - eI90) o

simply Zp =R e90)

The complex membership function has the following forms for the
general case:

1z 4(2) = (pg(u), py(v)g (3)

The Cartesian and Polar can be written more intuitively as:
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pz(2) = pg () + jpy(y) (4)

bl

and

Nz,p(z) = pp(r) - eIre(0) (5)

As opposed to fuzzy sets defined in [17], where the membership
function has a physical interpretation, the complex membership func-
tion, as a whole, does not. Only by inspecting the two components
that constitute it, individually, can a physical interpretation be drawn.
To illuminate this point, suppose a given Cartesian complex fuzzy set
Z. = X + jY. The compatibility of a Cartesian represented complex
number z = x + jy to this complex fuzzy set is given by the Cartesian
complex membership function pi (2) = pg(z) + jpy (y). This means
that the extent to which z belongs to the complex fuzzy set Z, is given
by a pair of numbers. Although, each of the latter pair of numbers has
a physical interpretation, the pairing as a unit does not constitute a
physical interpretation. The compatibility of z to X is given by p ()
and is interpreted as defined by Zadeh [17]. The compatibility of y is
measured and interpreted in a similar way. This idiosyncratic method
of interpretation is also encountered in complex analysis.

Definition 4.4 Zg = (U, I~/)~g is a Complex Fuzzy Number under rep-
resentation g if and only if U and V are Fuzzy Numbers.

Definition 4.5 Let Zlg and Zgg be two complex fuzzy sets with a
general pair representation of (U1,V1) and (UQ,VQ)Q, respectively.

1. ~fyg = (U%, Vlc)g - where superscript ¢ denotes a complement op-
eration.

2. ZhgUZyy= (U UU, Vi UV,

8. Z1yN Zyy= (U NUz, Vi N V),
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A finite complex fuzzy set may be expressed using the following
notation:

Ag = (s por)/(u1,01)lg + [(Hus s poy) [ (w2, v2)]g +
Foo A (B Py ) [ (U, 'Un)]g
(g JU1 + pooy Ju2 + <o+ fhu,, U,
ooy V1 F oy [V2 + o A fhuy, [Un) g (6)

or

Ay = Sl ) )y = (Smaf ome) (0
i=1 i=1 i=1

In a similar manner, the notation for the representation of uncount-
ably infinite complex fuzzy sets is also extended, i.e.,

Ay = [ (i) 0Dy = ([ afu [1af0)y ®)

In equations 6, 7 and 8, the second equality indicates a
slight deviation from the wusual notation interpretation. Thus
Ag = ([Mma/‘m)/(ulﬂ vl)]g + [(Muzhuvz)/(u% UQ)]g implies that (u1,vs)
and (ug, v1) belong to Ay, under representation g, with complex grades
of memberships (fiy, , fy,) and (py,, iy, ), Tespectively. This deviation
is consistent with definition 4.5.

As indicated in the notation, elements of the set must be in the
same coordinate system representation.

5 Fuzzy Relations on the Complex Domain

The complex fuzzy set does not relate points in the complex domain
in a fashion described by Zadeh [17]. In many cases, however, it is
necessary to have C as the universe of discourse and define fuzzy sets
[17] over them. A model for the definition of fuzzy sets on the complex
domain of this form is described by Buckley [13]. These types of fuzzy
sets are essentially a mapping from C — [0, 1]. The advantage of these
sets over complex fuzzy sets is their physical interpretation.
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In this section a conversion scheme, based on cylindrical extensions
and projections [19] [20] [21] is introduced. The conversion from com-
plex fuzzy sets to fuzzy relations is done using cylindrical extensions,
while the conversion from fuzzy relations to complex fuzzy sets is done
using projections. The scheme for these conversion is given in figure 2.

First
Complex Pair — xXtension \?l(:ﬂ .Fuzzy
Fuzzy Set | Separation ~_| Cylindrical | "~ Relation
Second | Extension

Comp.

Projection

Fuzzy —  _toFirst ™
){ Aggregation '_’ Complex
Relation .| Projection |~ Fuzzy Set

to Second

Figure 2. Conversion Schemes

Suppose a given Cartesian complex fuzzy set Z, = X +5Y. The top
diagram in figure 2, presents the steps to convert this complex fuzzy
set into a fuzzy relation. Thus, each of the fuzzy set components, X (x)
and Y (y), is cylindrically extended to obtain two-dimensional fuzzy re-
lations with membership functions ¢ (z,y) and py (2, y), respectively.
Using the relationships

px(@,y) = pg(v)
py (2, y) = py (y)

Next, the two obtained fuzzy relations are intersected to derive the
Induced Fuzzy Relation (IFR).

pr(T,y) = pg(z,y) A py (2, y) (9)
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For converting to the Cartesian Complexr Fuzzy Set, the reverse
operation starts out with a fuzzy relation pg(z,y) on the complex
domain, which is not necessarily the IFR. Two projections are done
on this relation - one to U, and the other to Uy, where U, and U,
are the universes of discourse of x and y, respectively. These two
projections constitute X (z) and Y (y), repectively. The equations for
the conversions are given by:

X = [ [cUAunta.v)/e

- /U (€ Ue/\urla )]y

where,

Z.=X+3jY (10)

This conversion template can be used for any representation.

6 Coordinate Tranformations

The linguistic complex domain analysis proposed, suggests that the
two-dimensionality characteristic of the complex domain be preserved.
Hence, a phenomenon in the linguistic complex domain is described
using two linguistic variables. A representation of an object in the
complex domain is dependent on the values of the linguistic variables
and the choice of the linguistic variable pair. The latter, essentially,
determines the terminology used to describe the object. Although this
is consistent with the theory of complex numbers by which one can rep-
resent a point in the complex domain as a pair of real and imaginary
components or, alternatively, a pair of magnitude and angle compo-
nents, the theory of complex numbers permits, in addition, the trans-
formation from one representation to the other.

Two issues are discussed in this section. The first is, given complex
fuzzy sets for each of the two coordinate systems, the establishment
of a mechanism to infer the complex grade of membership to a second
complex fuzzy set based on the known complex grade of membership to
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the first complex fuzzy set. This is done using a rule based coordinate
transformation knowledge base of the desired transformation.

The second topic to be discussed is a technique to determine the
complex fuzzy sets in some representation given the complex fuzzy sets
of another and the crisp transformation.

6.1 Rule Based Coordinate Transformations

The model proposed here is based on a set of rules that transform one
representation to another. Returning back to example 2.1, in the lin-
guistic Cartesian representation the two axes are length and width for
real and imaginary, respectively. In a simplified model, where each of
the component sets has crisp boundaries, a Cartesian linguistic par-
tition of this linguistic complex domain can have the form shown in
figure 3. In figure 3, the linguistic variable length may take a linguistic
value from the set {VeryShort, Short, QuiteShort, Medium, ...}, while
the linguistic variable width may take a linguistic value from the set
{VeryNarrow, Narrow, QuiteNarrow, Medium, QuiteWide, . ..}.

WIDTH

(Medium, }—»F—
Quite Wide)|  —T————s
(Short,

— Quite Narrow)

x|
(Very Short, LENGTH
Very Narrow)

Figure 3. An Example of a Cartesian Linguisic Complex Domain for
Length and Width
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A transformation to the linguistic polar representation of the do-
main corresponds to a change in terminology from the pair length and
width to the pair size and compatibility. Figure 4 gives a sample par-
tition for a crisp linguistic domain with the liguistic variable size tak-
ing the linguistic values {VerySmall, Small, QuiteSmall, Medium,. ..}
and the linguistic variable compatibility taking the linguistic values
{VeryGood, Good, QuiteGood, ...}. Compatibility, which connotes the
angle, describes the extent to which the length and the width match.

SIZE
COMﬁ!LIT\'

(Quite Small,
Good)

(Quitc Small,
Very Good)

Very Good)

Figure 4. An Example of a Polar Linguistic Complex Domain for Size
and Compatibility

A table may be generated to describe the transformation from the
Cartesian to the Polar linguistic representations. Or, in other words,
from one pair of linguistic variables to the other. Table 1 presents this
rule base coordinate transformation.

As can be seen from figure 4, the linguistic regions do not match
in size or formation. In other words, there does not exist a one-to-one
mapping from one linguistic representation to another. In the general
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Table 1. Example of a Rule Base Coordinate Transformation Table

| | LENGTH \
| WIDTH | Very Short [  Short | Quite Short [ ... |
Very Narrow | (Very Small, (Small, (Small,
Very Good) Good) Quite Good)
Narrow (Very Small, (Small, (Quite Small,
Good) Very Good) Good)
Quite Narrow (Small, (Small, (Quite Small,
Good) Very Good) | Very Good)

case, a phenomenon would be described using many complex lingustic
values in some representation and would transform to many complex
linguistic values in another. The crisp boundary case as in figure 4
does not permit to describe which region is more significant in the
representation of the object. However, the fuzzy case, with a complex
grade of membership would.

6.2 Transformation Generated Complex Fuzzy Sets

A transformation generated complex fuzzy set in a target representa-
tion is defined by two parameters: the complex fuzzy set in some given
representation and a crisp transformation to the desired representa-
tion. The most commonly used transformation will be developed, as a
model, in this section - the Polar/Cartesian transformations.

The crisp Polar to Cartesian Transformation is given by the follow-
ing two equations:

x =1 -cos(d)

y =1 -sin(9)

Using these two equations as a starting point, a method for the com-
putation of the complex fuzzy set in the Cartesian coordinate system,
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given the Polar complex fuzzy set, may be derived. This computation
is based on fuzzy arithmetic presented in [2] and [4]. Thus, the fuzzy
case would yield:

X = R-cos(0)
¥ = i sin(®)
where,
Zy=R-exp’® = Z,. = X +jY (11)

The problem in computing these two equations arises from the co-
sine and sine terms. Given that © is a fuzzy number, the cosine and
sine functions applied to the fuzzy number according to fuzzy arith-
metic [4], in general, would not yield a fuzzy number. The few cases,
however, that guarantee the result being a fuzzy number pose restric-
tions on the membership function of ©. One of the simplest cases occurs
when O is a fuzzy number with a support spanning only a monotonous
section of the cosine and sine functions. Note that in this case, the
restriction must hold for both the cosine and sine functions together,
in order to have fuzzy numbers for both X and Y.

An important result that extends significantly the set of member-
ship functions that would yield fuzzy numbers for X and Y is presneted
by in [9]. In that work it was found that when a gaussian function is
applied to a fuzzy number, a fuzzy number is produced. The implica-
tions of this result are demonstrated in [3]. Since the cosine and sine
functions are periodic, it is possible to select an interval that would
conform to the model described in [9] and apply the same concept to
get a fuzzy number.

Applying this concept, the following example is given. Working
with © that is a fuzzy number under the interval [—=, ), would yield
a fuzzy number from the cosine function (figure 5).

Several other intervals exist. For the sine function we may pick
T 37
-9 7)

The Cartesian to Polar transformation is simpler to handle. The
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Possible

[uzzy number
support range
for &

that would
yielda -
fuzzy number
for cos(®)

Cosine Value

= An g]ciin Radians

Figure 5. The range of angles over which 6 should a fuzzy number

crisp transformation is given by:

r = z? 4+ y?
0= arctan<y>
T

Computation of these functions is discussed in existing fuzzy set
literature. Thus, the fuzzy case can easily be computed as:

where } .
Ze=X+jY = Z,=R-exp’® (12)
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7 Operations

As stated in section 2, the simplicity of some operations is crucial for
the feasibilty of implementing applications based on this model. Two
classes of operations are considered here - arithmetic operations and
defuzzification.

In addition to a simple model for computing arithmetic operations,
in order for the arithmetic operations to remain realtively easy to com-
pute, the property of closure must be preserved. Thus, operating on
complex fuzzy numbers should generate complex fuzzy numbers.

Defuzzification has permeated into fuzzy sets due to its demand in
the application arena. Due to its importance, it will be discussed too.

7.1 Arithmetic Operations

The basic operations of addition, subtraction, multiplication and divi-
sion are discussed in this section. These four operations fall into two
categories. The first consisting of addition and subtraction while the
second includes multiplication and division. Addition and subtraction
are computed with ease when the linguistic terminology is Cartesian.
On the other hand, multiplcation and division require a Polar repre-
sentation. Coordinate transformations may be used to transform from
one representation to the other. Both the models are extensions of the
fuzzy set arithmetic case.
Addition is computed using the following equation:

Zye+ Zoe= (X1 + X2) + (Y1 + Ya) (13)

subtraction is done in a similar fashion.
Multiplcation follows the model in equation.

Zl,p . 22’]) == (Rl . R2)€j(é1—|—é2) (14)

Theorem 7.1 If ZLS and ?2’0 are Cartesian Complex Fuzzy Numbers
then Zy o+ Za . and Zy . — Zs . are Cartesian Complex Fuzzy Numbers.
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Theorem 7.2 If 2171, and 2271, are Polar Complex Fuzzy Numbers then
Zip - Zop and Zy p/Za,y are Polar Complex Fuzzy Numbers.

The proofs follow directly from the definitions given and arithmetic
operations of fuzzy sets [4].

7.2 Defuzzification

As each of the components of a complex fuzzy set is dependent on a
single variable, defuzzification remains a simple operation. Leading to
the idea that in order to defuzzify the complex fuzzy set, defuzzification
of each of its components must be done. As the components are fuzzy
sets, the defuzzification is an extension to the standard models such as
the ones discussed in [16].

Dfz{Zy} = (Df2{U}, Df={V}) (15)
where Dfz is the defuzzification operation. The above equation holds
in any given representation.

8 An Application to The Design of Adaptive
Filters

In this section, complex membership grades are applied to the design
of adaptive filters. As part of this example, it is explained how the
concepts are used in applications that include theory based on complex
numbers.

First, it is shown that complex fuzzy sets are easily constructed for
the adaptive filter problem by pair aggregations of fuzzy sets in a given
representation system. Both the Cartesian and Polar linguistic com-
plex fuzzy set representations are required to solve the problem of the
adaptive filter design. For each representation, the underlaying fuzzy
sets are derived by assigning linguistic attributes to physical phenom-
ena. This makes the task, of constructing the underlaying fuzzy sets,
simple. In addition, the extraction of physical interpretations from
linguistic complex variables is done by component inspections.
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The second goal of this example is to emphasize the difference be-
tween a regular two-dimensional aggregation of linguistic variables and
a complex linguistic variable. This is achieved by applying the linguistic
coordinate transformations, which are an extension to the coordinate
transformations frequently used when the application has theory based
on complex analysis. These linguistic coordinate transformations are
unique to complex fuzzy sets.

As opposed to fuzzy set models for adaptive filters that are based
on adaptation algorithms in the time domain such as in [10], com-
plex membership grades establishes a framework for frequency domain
based adaptation algorithms. The frequency domain derived rule-base
motivates future research in this area as it has the potential to overcome
problems extant in conventional adaptive algorithms such as LMS.

8.1 Second-Order Analog Filter Preliminaries

For simplicity, the filter model described is based on a second order ana-
log filter. Nevertheless, the techniques presented here form the founda-
tion from which high-order adaptive analog filters and digital adaptive
filters, based on complex membership grades, may be designed.

R L

+

x(1) y(b)

i

Figure 6. Second-order Analog Filter

When the output voltage is measured on the capacitor, the circuit
shown in figure 6 is a low-pass filter [22] [5] and the corresponding
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differential equation can be written as:

dQ?J(t) + Rcdy_(t) +y(t) = z(t) (16)

L
¢ dt? dt

A standard representation of the Laplace transform for a second
order system is given by:

H(s) = i = i (17)
824+ 2wps+w2 (s —B)(s— D)
where,
R
Nw, = = 1
(w I (18)
1
2
= — 1

From the Laplace transform, the zero-pole plot may be obtained,
where w,, and ( in the above equation have an important role as can
be seen in figure 7.

Imaginary

S-domain

C Real

Cos(0)=C

Figure 7. Key Components in The Poles and Zeros Plot of a Second
Order Filter
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In figure 7, the frequency response, and as part of it the magnitude
response, which is given by |H(s)|, at coordinate A is mainly affected
by pole B. This is due to the fact that vector AB is smaller than vector
AD. When AB is much smaller than AD, the effects of pole D on the
frequency response may be neglected. It is assumed that this is the
case here. Thus, in the adaptation process described, the magnitude
response at the frequencies around which the noise varies will be almost
solely determined by pole B, and, therefore, only adjustments to the
placement of pole B will be considered. Obviously, as the poles are
conjugate, the location of pole D would also be changed.

8.2 The Adaptive Filter Model

The contamination of a desired signal by unwanted, often larger, signals
or noise is a problem often encountered in many applications [7]. Lin-
ear filters are selected as a tool to obtain an estimation of the desired
signal when the signal and noise occupy fixed frequency bands.

Amplitude
Noise Spectrum

Filter Magnitude
Response

Average Noise

Cut-off :

frequency

—> f,
Small Variations [Hz)

Figure 8. Adaptive filtering under a spectral overlap between a signal
and a strong interference

275



D. Moses, H. Teodorescu, M. Friedman, A. Kandel

When the spectrum of the desired signal and noise overlap, as in figure
8, and when these signals are not known in advance or vary, an adaptive
filter must be used. In such cases, the coefficients of the filter cannot
be specified in advance and must vary.

An adaptive filter has the property that its frequency response ad-
justs automatically to improve its performance with respect to some
criterion. This characteristic allows the filter to adapt to changes in
the input signal characteristics. A filter in this category consists of
two distinct parts (figure 9); a filter with adjustable coefficients and an
adaptive algorithm which is used to adjust or modify the coefficients
of the filter. Other variants are discussed in [7].

Signal Filter ", Desired
x(0) () x(®)
e(r)  Error

Adaptive
Control

Figure 9. The Adaptive Filter Model

The block diagram in figure 9 is a simplified architecture. In most
practical cases, X (t) will not be given, but rather a signal that is corre-
lated to X (t) would be available. The only affect of this change would
be in the phase of constructing the fuzzy sets for the error signal. In
addition, the error would be integrated over a short period of time.

In medical applications such as in EEG, the noise is a strong in-
terference with a spectral distribution concentrated around some time
varying frequency (figure 8). Further, the desired signal is measured in
the scale of milli-volts, while the interference signal is in the order of
tens of volts and subtly varies around 60H z. Figure 8 does not depict
to scale the ratio between the signal to noise. When the ratio beween
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the signal and noise is that large, small changes, over time, in the ratio
between the two signals may be overlooked. This case leads to a simpli-
fied adaptation algorithm that, virtually, needs to adjust the location
of the pole in parallel to the frequency axis only.

Initial filter parameters and, thus, the pole locations may be com-
puted using the average parameters of the signals and once these initial
locations of the poles are found, adjustments are made in parallel to
the frequency axis only.

When the adaptive filter is implemented using a second order filter,
the goal is to trim the input signal and adjust the cut-off frequency of
the filter so as to keep the signal-to-noise ratio close to some constant
SN R. The simple, and well-known, adaptation procedure, which will
be translated to rules, increases the cut-off frequency, when the average
frequency of the noise increases, and decreases the cut-off frequency
when the average frequency of the noise decreases. In terms of SN R,
given the measured SN R of the filter (SN R,,,), which in this case is the
ratio between the signal and the error integrated over a given period
of time, the adaptation algorithm increases the cut-off frequency when
ASNR is negative and decreases the cut-off frequency when ASNR is
positive, where,

ASNR =SNR,, — SNR (20)

8.3 Representation using complex membership grades
In the Cartesian representation, the pole would be described by a com-

plex linguistic variable, i.e.,

(X _Location,Y _Location), (21)

As explained in 8.2, this example does not vary the X_Location. In

addition, along with the Cartesian representation for the pole, a polar
representation is also used.

Z, = (R_Location, ®_Location), (22)

A rule-base transformation is used to transform between the two
representations. It should be emphasized that the fuzzy sets for the
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X_Location and Y_Location are optimized with the intention that the
adaptation would be satisfactory. On the other hand, the fuzzy sets for
the linguistic Polar components are designed with the intention that
the parameters for the physical components would be optimal, i.e.,

(wn, Q) = Df{Z,} (23)

where (wy,, () are used to determine the values of R, L and C as can
be seen from equations 18 and 19.

Apart from the optimization issue, it may seem that the pole may be
first defuzzified and then transformed to the polar coordinates to obtain
wp, and (. Doing this operation is conceptually flawed, as if the data
represented in polar coordinates were an input to a second linguistic
controller, the defuzzification followed by crisp transformation and a
fuzzification would be inconsistent with fuzzy set theory that advocates
computation using words.

8.4 A Linguistic Adaptation Architecture

The linguistic model has the architecture shown in figure 10. The
main two components are the fuzzy controller and the rule-base coor-
dinate transformation modules. As stated in the previous section, the
adaptation is performed using the Cartesian linguistic complex num-
ber representation, while the updates to the filter are derived from the
Polar linguistic complex number representation. Hence, requiring a
coordinate transformation module.

q As part of this architecture the fuzzy controller is used to adjust
the Y_Location of the pole. The inputs to the fuzzy controller are the
fuzzified SN R and the linguistic Y_Location of the pole. Its output is
the new linguistic Y_Location of the pole. As can be seen, the architec-
ture of the fuzzy controller used in this example is simple and common
to many fuzzy controller implementations.

Suppose the linguistic values of Y_Location are from the set
{..., LittleBelowAverage, Average, LittleAboveAverage, ...}, and the
terms for the fuzzified SNR are from {...,NegativeSmall, Zero,
PositiveSmall, . ..}. Rules from the rule-base have the form,
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R Location
O I.ocation
New Y _Location \

Y Location,
Tuzzified SNR

— v
_£ Linguistic Rule Base
Coordinate
Transformation

Fuzzy
Controller|

X Location
s . Are used
B =x+jy (pole location) 1o derive -

ASNR R.LC of

the filter

¢

Figure 10. The Linguistic Adaptation Architecture

§1. if Y_Location is Average and SNR is Zero then New_Y _Location
is Average

§2. if Y_Location is Average and SNR is NegativeSmall then
New_Y _Location is PositiveSmall

§3. if Y_Location is LittleAboveAverage and SNR is PositiveSmall
then New_Y Location is Average

After the adaptation step, the linguistic rule-base coordinate trans-
formation computes the linguitic Polar representation. Although, the
fuzzy controller could have been used to generate the Polar represen-
tation directly, it would have been a much more complex controller.
Without the transformation module, the fuzzy controller would have
to compute two linguistic variables as opposed to one. Further, spe-
cific to this problem, moving the pole in one dimension is easier and
more intuitive to the designer than moving it in two dimensions. Thus,
making the rules easier to derive.
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The architecture used in this problem is a simplified one. As the
control is done through the frequency domain, additional linguistic
variables may be added to galvanize a pole when a local minimum in
the error is reached.

9 Discussion

Based on the success of fuzzy set theory in the real domain, it seems
that the introduction of the concepts and techniques from fuzzy set
theory to the complex domain would unleash a framework that could
be applied to the design of systems described in the complex domain.
More significantly, the design of systems that, using conventional math-
ematical methods, were difficult to describe.

The guidelines behind which complex membership grades were in-
troduced included the need to project the features of the complex
domain to the linguistic domain. Primarily, propagating the two-
dimensionality of the universe of discourse through the linguistic spec-
tacle. This, subsequently, gave birth to other essential operations that
are extensions to crisp complex domain operations, such as coordinate
transformations. Also, as opposed to two-dimensional linguistic vari-
ables, complex membership grades defines operations that cause an
interaction between the two components.

The application played an important role in testing and tuning
the proposed model, but by no means is the model confined to filter
design. In this context, it should be emphasized that fuzzy set theory is
an attractive engineering tool and fuzzification models for the complex
domain must consider application design prospects.

In order to facilitate the feasibility of applications, simple and es-
sential operations, such as arithmetic operations and defuzzification,
must remain computationally feasible for a subset of operands, such
as the complex fuzzy number subset. Without this property, the the-
ory would have remained in the realm of computation with symbols.
This point is probably the most conspicuous limitation of the theory
presented in [13].

The filter application presented establishes a new framework for the
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design of adaptive filters. This paradigm is based on a direct frequency
domain rule-base inference that gives the designer a platform for a
simnple and more intuitive filter design process.
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