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About some classes of periodic orbits in a
problem of two fixed centres

R. Frunza

Abstract

Five classes of periodic motions for the plane restricted prob-
lem of two fixed centres constructed on the base of more than
a thousand of periodic orbits, detected owing to the conducted
numerical experiments are described in the article.

1 Equation of motion in a problem of two fixed
centres

As it is known [1], the restricted problem of two fixed centres consists in
the study of motion of the point M3 which has vanishingly small mass
ms, attracted by two fixed points My and Ms with finite masses m; and
my. Let initial conditions of motion of point M3 are such that it all the
time moves in the same plane. The value mq +m9 as a unit of mass and
mutual distance of points M; and M, as a length one are accepted. In
Cartesian coordinates with origin O at the centre of gravity and with
axis Oz, passing through fixed points M; and Msy, attracting centres
have coordinates (—pu,0) and (1 — p,0), and equations of motion for
point M3 are:
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where

r=\/(z+ p)? +y2,

r2=\/(x—1+u)2+y2,
,uzml/(ml—i-mg).

The equations of motion (1) have the first integral — integral of
energy:
2(1 — 2 . .
C’=M+—M—x2—y2. (2)
1 T2
It is necessary to mark that the equations of motion (1) as well as
the first integral (2) have a certain symmetry, namely they are still the
same after the replacement:

T — T, y— —, CcC—=C (3)

and it is possible to be convinced in this fact by a direct substitution.
By virtue of this property among periodic orbits of a dynamic system
with necessity exist symmetrical ones relatively to the axis of abscissas
[2].

As the detection and study of all types of the symmetrical periodic
orbits of the plane restricted problem of two fixed centres is hampered
in view of their large number, especially those which close after a great
number of axis Oz intersections, we limited the search by symmetrical
ones relatively to the axis of abscissas of periodic orbits, which become
closed after two or four intersections of the axis Ox.

2 About search of periodic orbits

Generally the solutions of the differential equations (1) can be rep-
resented by trajectories in a four-dimensional phase space (z,vy, %, 7).
For the fixed value of a constant of integration C and known values of
three phase coordinates the fourth one is determined by the integral of
energy (2) and the phase trajectories of a system can be represented
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in a three-dimensional phase space, for example, (z,y,%) instead of
four-dimensional one. The following step is reduced to the analysis not
of the entire phase trajectory, but only of its sequential intersections
with some transversal surface, and the intersections themselves — the
consequents of the Poincare’s map.

The analysis of distribution of the dynamic system consequents to-
tality on the transversal surface is easier and more obvious than study
of the trajectory of a system in configuration or phase spaces. In par-
ticular, closed after the 2n intersections with the axis Oz periodic orbit
will be represented on the transversal surface by a set of n invariant
points. Periodic orbit represented on the transversal surface by one
invariant point of the Poincare map is named simpler periodic one [4].

Proceeding from problem symmetries (3) it is expedient to select
as a transversal surface the plane (z,%) and to consider only those
intersections, which satisfy the conditions y = 0,y > 0.

In configuration space (z,y) of a problem these consequents corre-
spond to cross points of the mass point M3 orbit with the axis Ox for
motion of the last one in a positive direction of the axis Oy. Symumetri-
cal periodic orbits intersect the axis Oz at the right angle not less than
two times. For want of their search the distribution of consequents is
analyzed depending on choice of the initial point xg, for fixed value of
the constant C.

Taking into account the circumstance, that the indicated trajecto-
ries proceed from the axis Oz at the right angle, for some initial value
of abscissa zy of the mass point M3 suppose yp = 0 and g = 0 and
from the equation (2) determine gjy. Under these initial conditions nu-
merically integrating equations (1) up to n'” intersection of the axis of
abscissas, or equally the transversal plane, the sign of the phase coor-
dinate is determined. The operations are repeated for the other initial
point xp on the axis Oz, neighbouring to the first. If the signs of coor-
dinates &, are different for these points, then this section with necessity
contains such point zg, for which #; = 0 and the orbit, corresponding
to this, is periodic. If the section with different signs is chosen, the
position of the invariant point, belonging to it, can be determined with
a predesigned exactness by one of the methods of specification of the
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non-linear equation root.

It is necessary to take into consideration the circumstance, that
for variation of the value of the integration constant C by virtue of
continuous dependence of system (1) solutions on the initial conditions,
periodic orbits of a dynamic system are not situated isolate. They are
grouped in classes represented by some curves on a plane (C, z¢), which
are named the classes characteristics [3, 4].

3 Classes of periodic orbits in a problem of two
fixed centres

The numerical experiments on search of symmetrical periodic trajec-
tories were carried out for a dynamic system with the values of a pa-
rameter p = 0.5 and p = 0.1.

In case p = 0.5 the investigated system has an additional symmetry:

T — —, Y=y, C—C, (4)

the account of which enables to exclude from examination a half-plane
x < 0 generalizing for it the results of numerical experiments conducted
for z > 0.

Found periodic orbits were refereed to this or that class, following
the orbits classification method proposed by E.Stromgren in study of
the Copenhagen variant of the restricted problem of three bodies [2],
based on the analysis of a position of orbits in relation to finite masses
my and my and to the libration points. It is necessary to mark, that
unlike the Copenhagen problem, at which there are five libration points,
the problem of two fixed centres has only one libration point which
coincides with the system masses centre. This fact explains why the
classes of its symmetrical periodic orbits are relatively not numerous.

Another classification criterion can be that circumstance, that for
initial gy > 0 the periodic orbits can be circumscribed by a mass point
in two directions: direct or converse.

During numerical experiments it was revealed more than a thou-
sand of symmetrical simpler periodic orbits which were grouped in two

173



R.Frunza

classes and the symmetrical orbits closed after two revolutions which
were grouped in three classes.

3.1 Class (a)

Fig. 1. Class (a)

The class (a) includes direct simpler periodic orbits of the oval form
circumscribed by the mass point M3 in a plane (z,y) round attracting
centres My and Ms. In accordance with magnification of the constant C
value orbits of the class (a) do not change the configuration, remaining
enclosed in each other in such a way that smaller one is completely
enclosed in areas limited by trajectories of large sizes.

For 1 = 0.5 the orbits of the class (a) are symmetric relatively to
axes Oz and Oy (fig. 1). The class (a) begins with simpler periodic
orbit going out from a point zg = 4.7619, which corresponds to value of
the energy constant C = 0.21, and the halfcycle of motion on it is equal
T/2 = 64.7534. At magnification of the parameter C, sizes of orbits of
the class (a) and period of motion decrease. The class (a) evolves up
to value C = 1.95, to which there corresponds the value z¢g = 0.5128
and T'/2 = 1.0939.

At = 0.1 orbits of a class (a) were detected in the range of values
from C = 0.36 up to C = 1.95. To the value C' = 0.36 there corresponds
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the orbit with initial value o = 3.1778, final value 1 = —2.3778 and
value of a halfcycle T'/2 = 14.4132. To maximum value C' = 1.95 there
corresponds the orbit, defined by values z¢y = 0.9128, z; = —0.1128
and T'/2 = 0.6455.

3.2 Class (k)
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Fig. 2. Class (k)
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The class (k) is formed from symmetrical simpler periodic orbits
circumscribed by a system in a neighbourhood of the problem libration
point.

At p = 0.5 orbits of this class represent the sections of straight
lines passing through the origin of coordinates, coinciding with the axis
Oy. They were detected in the range of values from C' = 0.20 up to
C = 0.50. For value C' = 0.2 the magnitude of oscillation is maximum
Ymaz = 9.9875, and the halfcycle of motion is 7'/2 = 141.3505. For
magnification of value of a constant C amplitude and period of motion
on orbits decrease. For value C' = 0.50 amplitude of oscillation is equal
to 3.9686, and the halfcycle of motion is equal 7'/2 = 36.3753.

At = 0.1 orbits of a class (k) are no more the sections of straight
lines, and are similar to some parabolical curves (fig.2). They were
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detected in the range of values from C = 1.65 up to C = 3.20. For
C = 1.65 motion of the mass point M3 begins from the point z¢ =
0.8848, and the halfcycle of motion on it is equal 7/2 = 1.8304. At
increase of C the class (k) orbits move to the left along the axis Oz and
are rectified a little. The greatest value of energy constant at which
the orbits of this class were detected is C' = 3.2, with corresponding
zp = 0.6500 and T'/2 = 1.0750.

Let’s pass to the description of the detected classes of symmetrical
periodic orbits, closing after four intersections of the axis Ox. Let’s re-
mark, that such orbits were found only for system with equal attracting
masses p = 0.5. For value p = 0.1 such orbits were not revealed.

3.3 Class (b)

Fig. 3. Class (b)

The class (b) is formed from direct periodic orbits, which are cir-
cumscribed around M; and My (fig.3). These orbits form each two
closed loops, so that every closed loop is described round one of the
attracting centres, and the intermediate intersection of the axis Ox
happens in the libration point. The class (b) begins in the point
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C = 0.78, xg = 2.4422. The value of a halfcycle for this orbit is equal
T/2 = 8.8552. At the increase of the constant C the class (b) orbit
do not change their configuration, and only decrease in sizes, coming
nearer to the attracting centres.

The greatest value C at which orbits of this class is C = 3.47

were still detected to which there corresponds value x¢ = 0.5121 and
halfcycle T'/2 = 0.8239.

3.4 Class (f)
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Fig. 4. Class (f)

Direct periodic orbits (fig. 4) circumscribed by the mass point M3
in a neighbourhood of the point Ms were included in the class (f).
To the minimum value C' = 0.81, for which orbits of a class (f) were
detected, there correspond the values zg = 2.4710, z; = 0.6838 and
T/2 = 12.9664. Orbits are autointersected and form each two closed
loops. At the increase of the value C' the orbits of this class reduce
their size, moving simultaneously to the left. The maximum value
C, at which orbits of this class were detected, is C' = 3.90 for which
zo = 0.5128, z; = 0.0027 and T'/2 = 1.4612.
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3.5 Class (g)

Fig. 5. Class (g)

The class (g) is composed from direct periodic orbits circumscribed
by the mass point M3 round the points M; and M, (fig. 5). The orbits
of the class (g) are detected for the minimum value of the parameter
C = 1.05, to which corresponds the greatest orbit with initial value
xzo = 0.5112, z; = 1.3936 and halfcycle T//2 = 3.2350. Orbits of the
class (g) have each one internal closed loop. At the increase of value
C the sizes of orbits decrease, practically not changing sizes of internal
closed loops. For the maximum value C' = 1.63 the orbit sizes are
rather close to sizes of an internal closed loop. The motion on the orbit
begins in the point ¢y = 0.5809 and the second intersection of the axis
Oz at the right angle happens in the point z; = 0.6459, and it the
halfcycle is 7'/2 = 1.8079.

By virtue of a symmetry (4), to each of the above described classes
there corresponds a symmetrical class of periodic orbits circumscribed
by a dynamic system in a direction opposite to described motion. The
periods of motion on these orbits also coincide with the periods of
motion on orbits of main classes. These classes were called (c), (d),
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(h), (i) and they are identical to classes (¢) = (a), (d) = (b), (h) = (f),
(i)=(g), correspondingly. In the configuration space (x,y) their orbits
coincide with the orbits of main classes for their mirror map relatively
the axis Oy.
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