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Canonical bases for subalgebras

of factor algebras

P. Nordbeck

Abstract

We introduce canonical bases for subalgebras of quotients of
the commutative and non-commutative polynomial ring. The
usual theory for Gröbner bases and its counterpart for subalge-
bras of polynomial rings, also called SAGBI bases, are combined
to obtain a tool for computation in subalgebras of factor algebras.

1 Introduction

Canonical bases for subalgebras of the commutative polynomial ring
were introduced by Kapur and Madlener (see [5]), and independently
by Robbiano and Sweedler ([9]). Some notes on the non-commutative
case can be found in [8]. Using the language of Robbiano and Sweedler,
we will refer to these “non-quotient” cases as SAGBI bases theory
(Subalgebra Analog to Gröbner Bases for Ideals). In consequence,
we will call the canonical bases in our factor algebra setting Factor-
SAGBI bases, or simply FS-bases.

SAGBI bases theory is (as the previous parenthesis indicates) strong-
ly influenced by the theory of Gröbner bases, introduced by Bruno
Buchberger in his thesis [3]; in e.g. [9] we find the notion of (subalgebra)
reduction, the characterization (test) theorem using critical pairs (gen-
eralized S-polynomials), and the completion procedure of constructing
bases. To make the theory work in our factor algebra setting, we need
just complete the SAGBI theory at a few points. We try, as far as
possible, to work in the normal complements of the ideals we factor
out, so e.g. our subalgebra reduction also includes the usual Gröbner
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basis reduction (called normalization below). In the test and construc-
tion of our bases we are forced to consider, besides critical pairs, one
additional type of element.

Some problems concerning subalgebras, e.g. subalgebra member-
ship, can be reduced to Gröbner basis problems. This has been per-
formed for commutative polynomial rings by Shannon and Sweedler
([10]), and generalizations to quotients of polynomial rings and to
the non-commutative case are straightforward (see [1] and [7] respec-
tively). In the commutative case, FS-bases, like SAGBI bases, differ
from Gröbner bases at one essential point; they may be infinite even for
finitely generated subalgebras. This implies that the Factor-SAGBI ap-
proach, in contrast to the generalized method of Shannon and Sweedler
mentioned above, is not necessarily algorithmic1. However, it is easy
to provide examples where the FS-basis computation is almost free
whereas it is impossible, from the practical point of view, to apply
the method of Shannon and Sweedler (due to the high complexity of
Gröbner bases). Passing to the non-commutative case, Gröbner bases
are no longer in general finite, and we can easily find examples where
Factor-SAGBI theory answers questions that would not be algorith-
mic using the approach of Shannon and Sweedler. Non-commutative
FS-bases have also shown to be applicable for solving systems of non-
commutative polynomial equations, in an approach under development
by Victor Ufnarovski.

Finally we mention that there is a general theory for rewriting mod-
ulo congruences, see e.g. [2].

The author expresses his thanks to Victor Ufnarovski for helpful
discussions.

2 Basic Definitions and Notation

Let X = {x1, x2, . . . , xn} be a finite alphabet. As usual, K[X] is the
commutative polynomial ring and K〈X〉 the non-commutative one (i.e.

1By an algorithmic problem we will here mean a problem that can be solved
by a terminating procedure, assuming that the field-operations in K are effectively
computable.
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the free associative algebra), both over the arbitrary field K. Since al-
most all of the theory in the sequel will be the same for the commutative
and the non-commutative case, we will denote both K[X] and K〈X〉
by A, meaning that both cases are present. Also, when we speak of the
quotient A/I, we will of course mean that I is an ideal in the respective
polynomial ring (always two-sided in the non-commutative case).

Denote by W the set of all words, commuting and non-commuting
respectively, in X, including the empty word 1. In other words, W
is the free (commutative alt. non-commutative) monoid X∗ generated
by X. We will always in what follows assume that W is given an
admissible order , i.e. a well-order preserving multiplication: f < g
implies hfk < hgk for all f, g, h, k ∈ W (hf < hg is of course sufficient
in the commutative case), such that the smallest word is the unity 1.
Note that, by definition, every infinite sequence u1 ≥ u2 ≥ . . . ui ≥ . . .
in W stabilizes.

In the examples below we will use the following admissible order
called deglex (degree lexicographical): If |u| denotes the length of u ∈
W , we let u > v if either |u| > |v| or |u| = |v| but u is larger than v
lexicographically (commutative and non-commutative respectively).

When we have chosen an admissible order we can, if terms with
identical words are collected together using the operations over K,
with every non-zero element s ∈ A associate its leading word LWs.
Moreover, the leading term LT s of s is the leading word times its
coefficient. We also define, for a subset A of A, LW(A) = {LWa | a ∈
A}.

If u, v ∈ W , and u is a (not necessarily proper) factor of v (in the
commutative and non-commutative sense respectively), we write u | v.
A word u ∈ W is called normal modulo an ideal I if for every f ∈ I,
LWf - u. If N denotes the K-span of the normal words (mod I), then
we have A = N ⊕ I as direct sum of vector spaces (see e.g. [11]). For
every f ∈ A, its image by the projection A → N will be called its
normal form, and be denoted f̄ . It is now clear that N (together with
the multiplication f ∗ g = fg) is isomorphic to the factor algebra A/I.

The tools for the normalization f → f̄ are Gröbner bases. For the
theory of Gröbner bases we refer to [4] in the commutative case, and
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[6] for the non-commutative generalization. However, we here give the
definition and a few remarks we will need.

Definition 1 A subset G of the ideal I (in A) is called a Gröbner basis
for I if for every f ∈ I, f 6= 0, there is g ∈ G such that LWg | LWf .

In the commutative case every ideal has (for every order) a finite
Gröbner basis. This is unfortunately not true in the non-commutative
case. Clearly an element f ∈ A is normal (i.e. f = f̄) if and only
if none of its words are divisible by any leading word of the Gröbner
basis. Finally, the normalization f → f̄ is always algorithmic when we
have a finite Gröbner basis at hand.

Let H = {h1, h2, . . . , hl} be a subset of A. The subalgebra S of
A/I generated by H consists of the cosets modulo I of all elements
p(h1, h2, . . . , hl), where p is any polynomial in l commuting alt. non-
commuting indeterminates. To be formally correct, we should have
used the images in the factor algebra of the hi. But since we prefer to
work in the polynomial ring, we will allow ourselves to use H, or as
below, the normal forms of the elements of H (recall that A/I ' N).
Since we allow constant polynomials, the image of K lies in S.

For a given subalgebra S of A/I, the inverse image in A of S will
be denoted Sc (the contraction2 of S). Clearly an element of A belongs
to Sc if and only if its image lies in S, and if S is generated by H =
{h1, . . . , hl}, then every element s ∈ Sc is of form

s = p(h1, . . . , hl) + g, g ∈ I, (1)

for some polynomial p. In view of the isomorphism A/I ' N we also
see that s ∈ Sc represents the zero element in the factor algebra if and
only if s̄ = 0.

Now let H̄ = {h̄1, . . . , h̄l}, i.e. we take the normal form of each
element in H. Since hi = h̄i − (h̄i − hi) and h̄i − hi ∈ I, we can, by

2Maybe not the most descriptive name in our case, but this is the term used
by Atiyah and MacDonald in their classical text-book Introduction to Commutative
Algebra.
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replacing every occurrence of hi in (1) by h̄i, rewrite (1) as

s = p(h̄1, . . . , h̄l) + g′ = p(H̄) + g′, g′ ∈ I, (2)

with the same polynomial p. We conclude that every element s ∈ Sc

can be written in form (2).
We will use K[H̄] (K〈H̄〉) to denote the polynomials in the formal

commuting (non-commuting) H̄-variables. We are particularly inter-
ested in the monomials in K[H̄] (K〈H̄〉), i.e. the monomials in the
formal variables H̄; the set of these monomials will be denoted M. (So
M ⊂ K[H̄] alt. M ⊂ K〈H̄〉. In particular, M depends on H̄.) Con-
trary to common practice, we will always assume that the coefficient
of such a monomial is 1. (So the elements in M are words in H̄, but
we want to reserve the name word for W .) Note that the elements in
M are not (in general) words when viewed as elements of A.

Remark 1 In the existing literature on commutative SAGBI theory,
the role of monomials is played by exponent functions; for a mono-
mial hα1

1 hα2
2 · · ·hαl

l , αi ∈ N, we then speak of the exponent vector
α = (α1, . . . , αl). Since this approach is not possible in the non-
commutative case, and since we want an uniform exposition, we here,
as in [8], use monomials.

When we mention the leading word or term of an element in K[H̄] (alt.
K〈H̄〉), we will always mean the leading word or term of the element
viewed as an element of K[X] (K〈X〉), relative to the order here.

Following Robbiano and Sweedler we introduce the notions of height
and breadth.

Definition 2 Let
∑t

i=1 kimi(H̄), ki ∈ K, mi ∈M, be a K-linear com-
bination of monomials. The height of the sum is max{LWmi(H̄) | 1 ≤
i ≤ t}, where the maximum is taken relative to the order in A. The
breadth of the sum is the number of i such that LWmi(H̄) is equal to
the height.

Note that the leading word of s =
∑

kimi(H̄) can be smaller than
the height of

∑
kimi(H̄). This is the case if (and only if) all words
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larger than LWs cancel in the sum, and the breadth of the sum is then
necessarily at least two.

Now to our main definition.

Definition 3 Let S be a subalgebra of A/I. A subset H ⊂ Sc is called
a Factor-SAGBI basis for S, or simply a FS-basis for S, if for every
s ∈ Sc with s̄ 6= 0 there exists a monomial m ∈ M such that LWs̄ =
LWm(H̄).

Remark 2 Since orders are preserved after multiplication we have,
if m(H̄) = h̄i1 h̄i2 · · · h̄it, h̄ij ∈ H̄, LWm(H̄) = LWh̄i1LWh̄i2 · · ·LWh̄it.
Thus an equivalent formulation of the definition is that H is a FS-basis
for S if LW(S̄) is contained in the (commutative alt. non-commutative)
monoid LW(H̄)∗ generated by LW(H̄) (here S̄ = {s̄ | s ∈ Sc}). We note
that in general LW(S̄) 6= LW(H̄)∗.

In the case I = {0} the definition becomes the same as in ordinary
SAGBI theory.

Finally we note that, for an arbitrary subalgebra S of A/I, Sc

clearly is a FS-basis for S, so every subalgebra has a FS-basis.

3 IH-reduction

Next we define the process of IH-reduction. (We call it IH-reduction
since we want to stress the dependence on both I and H.) If I = {0},
then we can omit step 2 below, and the reduction becomes the same
as in [8] and [9].

IH-reduction. The IH-reduction of s ∈ A with respect to an ideal
I and a subset H of A is performed as follows:

1. s0 = s.

2. Compute the normal form s̄i of si (w.r.t. I).

3. If s̄i = 0, or if LWs̄i /∈ LW(H̄)∗, then terminate. In case of ter-
mination, this s̄i will be referred as the result of the IH-reduction.
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4. Find a monomial mi ∈M and ki ∈ K such that
LT s̄i = LT kimi(H̄). (This is possible since we have not termi-
nated in step 3.) Now let si+1 = s̄i − kimi(H̄).

5. Go to step 2 (i + 1 7→ i).

We note that when step 4 has been performed, then the leading
word of si+1 is strictly smaller than the leading word of s̄i (by the choice
of mi and ki). Moreover, the normalization in step 2 does not yield
a larger leading word (possibly a smaller one though). We conclude,
since the order is well-founded, that the IH-reduction always terminates
after a finite number of steps.

Having at hand a finite set H̄, it is a constructive matter (in both
the commutative and the non-commutative case) to determine whether
a given word is a product of elements in LW(H̄). It follows that if H
is a finite set, and if the normalization f → f̄ is algorithmic (see the
discussion after Definition 1), then also the IH-reduction is algorithmic.

If the result of an IH-reduction of s is denoted sIH, and if the re-
duction terminated after t iterations of step 4 above, then it is easy to
see that we have, with the notation above,

s =
t−1∑

i=0

kimi(H̄) + g + sIH, g ∈ I. (3)

If t = 0, then the right hand side of (3) is of course just g + s̄. But if
step 4 is performed at least once we have, by above,

LWs̄ = LWm0(H̄) > LWm1(H̄) > . . . > LWmt−1(H̄), (4)

so the monomial sum in the right hand side of (3) is clearly of breadth
one and height equal to LWs̄. We will use these facts several times in
the sequel (in particular when sIH = 0).

There may of course be several different possibilities to choose the
mi in step 4, so the result of the reduction depends (in general) on how
we choose these monomials.

We will be particularly interested in the case sIH = 0 above. We
say that s IH-reduces to zero weakly if there exists one IH-reduction
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(i.e. one choice of the mi) with sIH = 0, and that s IH-reduces to zero
strongly if every IH-reduction (every choice) yields sIH = 0. However,
in most cases it does not matter which formulation we use. We will
then simply say that s IH-reduces to zero, and write s

IH−→ 0. Note
that s

IH−→ 0 if s̄ = 0, i.e. if the image of s in A/I is zero.
As in ordinary SAGBI theory, we can now (having a FS-basis at

hand) solve the Subalgebra Membership Problem.

Proposition 1 Let H ⊂ A be a FS-basis for the subalgebra S of A/I,
and let s ∈ A. Then s ∈ Sc, i.e. the image of s is in S, if and only if
s

IH−→ 0.

Proof. First assume s ∈ Sc. By (3) we have sIH = s−∑t−1
i=1 kimi(H̄)−

g, which is also an element in Sc. The only possibility of termination
in step 3 of the IH-reduction is sIH = 0. Otherwise, if sIH 6= 0 there
is, since sIH clearly is normal modulo I, by Definition 3 a monomial
m ∈M with LWsIH = LWm(H̄), and this contradicts the termination.

Conversely, it follows directly from (3) that sIH = 0 implies s ∈ Sc.

Corollary 1 If H is a FS-basis for the subalgebra S of A/I, then H
generates S.

Proof. Clear from Proposition 1 and (3) (since replacing H̄ by H
in (3) only yields another element of I).
In view of Corollary 1 we may (and will) simply say that H is a FS-
basis, meaning that H is a FS-basis for the subalgebra of A/I generated
by H.

4 Test and Construction of FS-bases

Proposition 2 H ⊂ Sc is a FS-basis for the subalgebra S of A/I if
and only if every s ∈ Sc IH-reduces to zero.

Proof. If H is a FS-basis, then every s ∈ Sc IH-reduces to zero by
Proposition 1.
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Conversely, let s ∈ Sc, s̄ 6= 0, be arbitrary. Since the IH-reduction
of s ends up with zero, step 4 in the algorithm must be executed at
least once. By (4) we then have LWs̄ = LWm0(H̄), so H is a FS-basis
by Definition 3.
Fortunately we need not check every element of the subalgebra. The
following definition is a generalization of one of the cornerstones in
Buchberger theory.

Definition 4 Let I, H, H̄ and M be as above. An I-critical pair
(m,m′) of H is a pair of monomials m,m′ ∈ M with LWm(H̄) =
LWm′(H̄). If k ∈ K is such that LTm(H̄) = LT km′(H̄), then we
define the T-polynomial3 of (m,m′) as T (m,m′) = m(H̄)− km′(H̄).

Remark 3 The constant is chosen such that the leading words cancel
in T (m,m′), and thus we have LWT (m,m′) < LWm(H̄) = LWm′(H̄).
In particular, if T (m,m′) IH−→ 0 we get T (m,m′) =

∑
kimi(H̄) + g,

g ∈ I, where the height of the monomial sum is less than LWm(H̄) =
LWm′(H̄).

In SAGBI theory (I = {0}, H̄ = H) we now have a proposition saying:
SAGBI Test. H is a SAGBI basis if and only if the T-polynomials

of all (I-)critical pairs of H (I)H-reduce to zero.
The proof is standard in Buchberger theory, and is included as part

of the proof of Theorem 1 below. See also [8] and [9].
In our case when I is arbitrary, the use of critical pairs is not suffi-

cient. We also need to consider the elements in the following definition.

Definition 5 Let I, H, H̄ and M be as above. We call a monomial
m ∈M an I-monomial of H if LWm(H̄) = LWg for some g ∈ I.

Remark 4 Since the leading word of an I-monomial m is not normal
we have LWm(H̄) < LWm(H̄). If m(H̄) IH−→ 0 we thus get m(H̄) =∑

kimi(H̄) + g, g ∈ I, where the height of the monomial sum is less
than LWm(H̄) (since the IH-reduction begins with the normalization
m → m̄).

3The Gröbner bases term is S-polynomial . We here use the T since the counter-
part of an I-critical pair in [9] is called a tête-a-tête.
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Theorem 1 (Test) H is a FS-basis in A/I if and only if all T-poly-
nomials (of all I-critical pairs) and I-monomials of H IH-reduce to
zero.

Proof. Let S be the subalgebra of A/I generated by H.
If H is a FS-basis, then, since all T-polynomials and I-monomials

of H clearly are elements of Sc, they IH-reduce to zero by Proposition
1.

Conversely, let s ∈ Sc, s̄ 6= 0, be arbitrary. Since then also s̄ ∈ Sc,
we can by (2) write (after expanding p(H̄) to monomials)

s̄ =
∑

kimi(H̄) + g, ki ∈ K, mi ∈M, g ∈ I. (5)

Now choose, among all representations of form (5), one with minimal
height of the sum Σ =

∑
kimi(H̄). Since all T-polynomials IH-reduce

to zero we can assume that Σ has breadth one. This follows from Re-
mark 3 since if mi (= mi(H̄)) and mj are two of the largest monomials,
with T (mi, mj) = mi − kmj , then we can write

kimi + kjmj = ki(mi − kmj) + (kj + kik)mj = kiT (mi,mj) + k′mj ,

allowing us to reduce the breadth of Σ by (at least) one. (Alternatively,
lower the height in the special case when k′ = kj + kik = 0 and the
breadth from the beginning was two.)

If LWs̄ = LWΣ, then, since Σ has breadth one, we must have
LWs̄ = LWmj(H̄) for some monomial (the largest) mj in Σ. This must
clearly be the case when LWΣ > LWg, and the case LWg > LWΣ is
impossible since it implies LWg = LWs̄, contradicting the normality of
s̄.

The only case remaining is LWΣ = LWg (> LWs̄), which as above
implies LWmj(H̄) = LWg for the largest monomial mj in Σ. But this
means that mj is an I-monomial. By Remark 4 we can then write mj

as a monomial sum of height less than LWmj(H̄) (plus an element of
I), and this clearly contradicts the minimality of Σ.

We conclude that we must have LWs̄ = LWmj(H̄) for some mono-
mial mj in Σ, and since s was arbitrary, H is a FS-basis by definition
3.
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Example 1. Consider the subset H = {h1 = x, h2 = xy+y}(= H̄)
of K[x, y] (x > y), and let I = (x2 − y2). It is obvious that we do not
have any I-critical pairs (except the trivial ones where m = m′). But
e.g. the I-monomial m(H̄) = h2

1 = x2 IH-reduces to y2 6= 0, so H is
not a FS-basis in K[x, y]/(x2 − y2).

Remark 5 We see that not even H = {x} would be a FS-basis above.
This is in strong contrast to ordinary SAGBI theory (I = {0}) where a
singleton element always constitutes a SAGBI basis (in both the com-
mutative and the non-commutative case).

Since the concept of (I-)critical pairs is the same as in SAGBI theory,
we can use the methods in [8] and [9] to obtain them.

In commutative SAGBI theory, the problem of finding critical pairs
comes down to solving a system of linear Diophantine equations over
the non-negative integers. We can find a finite number of solutions
“generating” the set of all solutions. The number of critical pairs is
of course in general infinite, but it is possible to show that we in the
SAGBI test above only need to consider the critical pairs corresponding
to the generating solutions just mentioned. For the details we refer to
[9].

The results in [9] allowing us to consider only a finite number of
critical pairs can easily be transformed to our factor algebra setting.
(Going through the proofs, we need just note that the element g ∈
I in Remark 3 only will give rise to elements that can be collected
in I, thus not affecting the coset belonging). Since the IH-reduction
always is algorithmic in the commutative case, we conclude that the
part concerning the T-polynomials in Theorem 1 can be taken care of
algorithmically.

In the non-commutative case, the algorithmicity of the SAGBI test
is left as an open question in [8]. However, partial results, which are
valid also in our factor algebra setting, are provided. We also remind
that the IH-reduction not necessarily is algorithmic now.

Our factor algebra setting allows us to exclude more T-polynomials
from Theorem 1. In both the commutative and the non-commutative
case, we do not need to reduce the T-polynomial of an I-critical pair
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where the two monomials are I-monomials; if these I-monomials can
be written as monomial sums of less height (which is the case if they
IH-reduce to zero), then the same is clearly true for the T-polynomial.
(Recall the proof of Theorem 1.)

It remains to find all I-monomials. Recalling Definition 1, we see
that m ∈ M is an I-monomial if and only if LWg | LWm(H̄) for
some g in the Gröbner basis. Moreover, we need in Theorem 1 only
consider those I-monomials that are minimal in the sense that they
do not contain any submonomial which is also an I-monomial. This is
clear since every I-monomial must contain some minimal I-monomial
as a submonomial, and if a submonomial can be written as a sum of
smaller monomials, then the same is true for our original monomial.
(Again, recall the proof of Theorem 1.) Finally, if the Gröbner basis is
finite (which is always possible in the commutative case), then it is easy
to see that it is a constructive matter to find all minimal I-monomials.

Summarizing, we conclude that the FS-basis test always is algo-
rithmic in the commutative case, while we may have problems in the
non-commutative case. (Even if the non-commutative SAGBI basis
test would appear algorithmic, we may still have problem with the
normalization.)

As in Buchberger theory, the completion procedure of constructing
a FS-basis is now straightforward.
FS-Basis Construction Let I, H and H̄ be as above.

1. H0 = H̄.

2. Find the set Mi of all T-polynomials and I-monomials of Hi nec-
essary for the FS-basis test (Theorem 1).

3. Hi+1 = Hi
⋃ { sIHi | s ∈ Mi, sIHi 6= 0}. Here sIHi of course de-

notes a result of reduction w.r.t. Hi (and I).

4. If Hi+1 6= Hi then go to step 2 (i + 1 7→ i).

5. H∞ =
⋃

Hi.
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We note that, since every result of a reduction is normal, we have
Hi = H̄i for all i (and thus H∞ = H̄∞).

Proposition 3 H∞ is a FS-basis for the subalgebra S of A/I generated
by H.

Proof. Since sIH ∈ Sc for every s ∈ H = H0 we have H1 ⊂ Sc. By
induction is Hi ⊂ Sc for all i, and thus H∞ ⊂ Sc.

If Hi = Hi+1 for some i, then Hi is a FS-basis (by the Test theorem).
Otherwise, let s be a T-polynomial or I-monomial of H∞ necessary for
the FS-basis test. Take j so large that all elements of H∞ occurring
in s are in Hj . It is then clear that s reduces to zero (weakly) w.r.t.
Hj+1, and thus of course also w.r.t. H∞, so H∞ is a FS-basis (again
by the Test theorem).

Example 2. Continuing Example 1, we let H0 = H̄ = {h1 =
x, h2 = xy + y}. Since I = (x2 − y2) is principal, its only generator
must constitute the Gröbner basis (this is only true in the commutative
case). As mentioned before, H0 does not give rise to any T-polynomial,
but we need to consider the minimal I-monomials h2

1 = x2 IH0−→ y2,

h1h2 = x2y+xy
IH0−→ y3+xy and h2

2 = x2y2+2xy2+y2 IH0−→ y4+2xy2+y2.
But since y4 + 2xy2 + y2 reduces to zero over H0 and y2, it is easy to
see that we can spare this element in step 3 of the algorithm.

We thus get H1 = H0 ∪ {h3 = y2, h4 = y3 + xy}, and the T-
polynomials we need to check (the ones not containing I-monomials)
are h2

4 − h3
3 = 2xy4 − x2y2 IH1−→ 0, h1h4 − h2h3 = x2y − y3 IH1−→ 0

and h1h
2
3 − h2h4 = −x2y2 − y4 − 2xy2 IH1−→ 0. Since there are no new

I-monomials we conclude that H1 = H2, so H1 is our FS-basis.
We have, for clarity, written the algorithm without optimizations; in
the example above we saw one possibility (the exclusion of y4 +2xy2 +
y2). It is also clear that we could have used h2 to replace y3 + xy by
y3 − y. This would be automatic if we in the “H-part” (step 4) of the
IH-reduction considered all words of an element instead of, as in our
case, only reducing the leading one (see [8] for further details).

As in SAGBI theory, the construction algorithm will in general not
terminate (even for a finite set H). However, our factor algebra setting,
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where the reduction is also w.r.t. an ideal, imposes new finiteness
conditions.

Example 3. In [9] it is shown that the subalgebra of K[x, y]
(x > y) generated by H = {x, xy− y2, xy2} has no finite SAGBI basis.
But the reader can check that H is a FS-basis in e.g. K[x, y]/(y3−x2).

One case for which the algorithm always terminates is when I has
dimension zero, i.e. when A/I is finite dimensional. (In the commuta-
tive case, is zero dimensional simply by inspecting the Gröbner we can
decide whether an ideal basis.) This rests on the fact that every ele-
ment added to Hi in step 3 has a leading word not lying in LW(Hi), so
an infinite procedure requires an infinite number of normal words. (Re-
call that our factor algebra is isomorphic to N , the K-span of normal
words.)

Finally we mention that the construction of a “partial” SAGBI basis
from a set H of homogeneous elements, described in [8] and [9], applies
to our factor algebra setting if also I is generated by homogeneous
elements. This means that we can find, for d ∈ N, a partial FS-basis
H(d) = {h ∈ H∞| deg h ≤ d} (H∞ as above), and at least the IH-
reduction, and thus the Subalgebra Membership Problem (Proposition
1), is then algorithmic. (See [8] and [9] for the details. In the non-
commutative case, we must now also use the fact that the normalization
f → f̄ is algorithmic for homogeneous ideals.)
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