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Experimental results on quadratic

assignment problem

N.P. Nikolov

Abstract

The paper presents experimental results on quadratic assign-
ment problem. The “scanning area” method formulated for ra-
dioelectronic equipment design is applied. For all more complex
tests ours results are better or coincident with the ones known
in literature. Conclusion concerning the effectiveness of method
are given.

1 Introduction

The quadratic assignment problem belongs to the discrete program-
ming for which still there are no exact effective algorithms. Its exact
solution is connected with explicit or implicit full numbering and eval-
uation of all variants for assignment of objects to locations. At present
the optimum displacement of n object on n positions is possible in case
n ≤ 15 [3]. The increase of productivity of computing systems shifts
unsignificantly up this limit. Most of the real problems have signifi-
cantly large area and for the solution, heuristic (suboptimal) algorithms
are used.

2 Statement of the problem

A set of objects E = {e1, e2, . . . , em}, is given which should be located
on a set of fixed positions P = {p1, p2, . . . , pn} where m > 1, n > 1,
m ≤ n. Any object could take one position.
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An area of the distances between elements of P is given. The dis-
tance between objects is computed usually as Euclid’s (euk)

Dij =
√

(xi − xj)2 + (yi − yj)2

where x and y are coordinates of positions pi and pj .
The orthogonal distance (ort) is also used

Dij = |xi − xj |+ |yi − yj |

There are also other more complex systems for evaluations of distances
among three or more objects.

The matrix for binary relations between objects from E is given Fij

(j = 1, 2, . . . , m; j = 1, 2, . . . , m). It is accepted that the two matrices
D and F are symmetric, i.e.

Dij = Dji and Fij = Fji.

In the general case the relations F could involve more then two objects.
A correspondence α(E → P ) should be found for which the evalu-

ation for quality of solution

S(α) =
m−1∑

i=1

m∑

j=i+1

FijDkl

gets optimal value.
Here k and l are indexes of positions taken from the object ei and

ej , resp. In most of problems a minimum value for S(α) is looked for.

3 A “scanning area” method

In the solution of problem the “scanning area” method is used, applied
in radioelectronic equipment design [1]. The essence of method consists
in separation of initial problem to a number of smaller problems (areas)
in which the same problem is solved using exact or sufficiently exact
methods. The dimensions of these areas are not fixed and are chosen
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depending on the computing resources available. In practice, areas of
four or six positions are used.

Important peculiarity of method is overlapping of areas. Initially
separated optimization problems are solved subsequently for neigh-
bouring overlapping areas due to which the process is called scanning
(Fig. 1). The total scanning of all areas is one iteration. The iterations
are repeated until better solutions at least in one area are obtained.
The final solution is a local optimum. The method has potentialities
for getting out the local optimum and continuing the optimizations [1].
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Fig. 1. Forming of overlapping areas (scanning)

Sequence for scanning of areas is called strategy of scanning. Part of
possible strategy of scanning is shown in Fig. 2. It is established later
on that the process is not strongly sensitive to strategies of scanning.
Much better results are obtained also in the case of random scanning
of areas.
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Fig. 2. Different strategies of scanning

The overlapping of areas in separated steps of scanning permits
objects to optimize their location not only in the area but also to move
out of it. This peculiarity expands considerably the potentialities of
method for scanning of better local optimum.

4 Method and results of experiments

The “scanning area” method is realized in Pascal. For experiments
computer Compac with Pentium 166 MHz processor is used.
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The data for tests examples are taken from publications by Nugent
and Steinberg [4,5]. Checking of starting solution shown by Nugent
[4] is performed. The results obtained coincide with the ones given in
Nugent [4], which guarantees the correctness of data introduced.

For each of tests by Nugent [4], 100 random initial solutions are
generated which are optimized by the “scanning area” method. It is
supposed that the potentialities of method will permit to find deep
enough local optimum.

The scanning is performed in area of four positions. For getting
out of the local optima in more complex test examples a change of
system for evaluation of distances [1] and scanning with six positions
is used which influences the time for obtaining results. The evaluation
of solutions obtained is shown in Table 1.

Table 1

N Example a b c d e
1. Nugent 12 12 Ort 289 289 (1) 1 sec
2. Nugent 15 15 Ort 575 563 (2) 3 sec
3. Nugent 20 20 Ort ∗ 1285 1287 13 min
4. Nugent 30 30 Ort ∗ 3064 (3) 3079 5 min (4)
5. Steinberg 36 Euk ∗ 4119.7 (5) 4124.97 –
6. Steinberg 36 Euk2 7926 (6) 7926 –
7. Steinberg 36 Ort ∗ 4799 (6) 4802 –

a = dimension, b = distance, c = best value obtained by the “scan-
ning area” method, d = best published value, e = time on Compac
2000 with Pentium 166 MHz processor, ∗ = a result better than the
ones published in literature

Comment to the table:

(1) The evaluation shown is exact solution of problem.

(2) The result can not be checked by the solution shown by Burkard
[3]. Sharp local optimum or inexact data by Burkard are sup-
posed.
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(3) A better result is found of evaluation 3062 (shown in Appendix)
but the time is larger.

(4) The time for optimization by “scanning area” method depends
on the character of relations between objects in different tests
and is not always connected with the scale of test.

(5) The result is published in 1983 [2]. It is obtained through opti-
mization of initial solution.

(6) The result is obtained through optimization of solution of test 5
in Table 1.

Remarks:

1. All evaluations for the existing best result (colon ’d’ in Table
1) are taken from Burkard [3] whereas the evaluation is trans-
formed in the semi-perimeter of rectangle. The solutions given
by Burkard for the tests of Nugent do not contain enough data
for their checking.

2. The test problems of Nugent [4] containing five, six, seven and
eight objects are left. They do not make a problem and confirm
the results obtained.

3. In the test by Nugent [4] with subsequent numbers from 1 to 4
in the above Table, series of 100 random initial solutions are op-
timized. The average time for obtaining the better results shown
is computed by division of the total time for all 100 solutions and
the number of optimum solution obtained.

4. The solution of test for subsequent numbers 3, 4, 5 and 7 in
above Table whose evaluations are better that the known in the
publications referred are given in the Appendix.
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5 Conclusions

The test examples studied by Nugent and Steinberg [4,5] are character-
ized by random element of relations between objects. The new better
results are obtained from a series of random initial placements. Con-
sequently the potentialities of “scanning area” method allow to scan
effectively large area of neighbouring local optima. It can be supposed
that a set of random initial solutions is enough to obtain sufficiently
satisfying local optimum.

For certain problems, having element of organization of relations
between objects (i.e. “planar”) it is worthwhile to find an initial solu-
tion which to be optimized later on.

Appendix

Best solutions

Test example Nugent 20 [4]
Dimension: 20, Dij = |xi − xj |+ |yi − yj |
Best published value: 1287 [3]
New value: 1285

6 1 7 5 17
13 8 20 15 19
16 11 12 2 4
9 3 10 14 18

Test example Nugent 30 [4]
Dimension: 30, Dij = |xi − xj |+ |yi − yj |
Best published value: 3079 [3]
New values: 3064,3067,3068,3071,3073,3076,3077
Best new value: 3062

21 2 13 6 12 5
28 29 9 10 24 26
25 19 7 8 1 17
4 30 16 11 22 23

20 14 3 27 18 15
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Test example Steinberg [5]
Dimension: 36, Dij =

√
(xi − xj)2 + (yi − yj)2

Best published value: 4124.97 [3]
New value: 4119.74 [2]

24 25 26 27 11 6 5 3
22 21 23 14 12 13 4 8 2
33 34 32 19 20 7 10 18 17

31 30 29 28 15 1 9 16

Test example Steinberg [5]
Dimension: 36, Dij = |xi − xj |+ |yi − yj |
Best published value: 4802 [3]
New value: 4799

24 25 26 27 11 6 5 3
22 21 23 14 12 13 4 8 2
33 34 32 19 20 7 1 10 18

31 30 29 28 15 9 16 17
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