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Fuzzy Multi-dimensional Analysis and
Resolution Operation

Alexandr Savinov

Abstract

In this paper a new original approach to the analysis of fuzzy
multi-dimensional distributions is described. A uniform method
for representing fuzzy multi-dimensional distributions by means
of sectioned vectors and matrices is proposed. Sectioned ma-
trix is interpreted as fuzzy conjunctive normal form, while its
line vectors are interpreted as fuzzy disjunctions. Several useful
characteristics of fuzzy distributions and disjunctions are defined
and studied. The main operation for manipulating fuzzy multi-
dimensional distributions is an original fuzzy resolution which is
applied to any two disjunctions on some variable and results in
a third disjunction called resolvent. The property of adjacency
of two disjunctions is defined and the criterion of adjacency is
formulated. It is shown that the proposed resolution operation
is a generalization of the conventional resolution and the whole
approach can be viewed as a generalization of propositional logic.
Methods for finding prime disjunctions, projection on a variable
(thus solving the satisfiability problem) and transforming into
the dual form are proposed.

Introduction

Let us consider the following problem. Given an n-dimensional space
called the universe of discourse which is equal to the Cartesian product
of n variables. There is some (global) distribution over this space which
is supposed to be represented by means of a combination of elementary
(local) distributions over individual variables. A global characteristic
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of the distribution is said to be some quantity which depends on the
values in all (or almost all) points of the universe of discourse. The
problem cousists in calculating a global characteristic of the distribu-
tion without the necessity to access values in all points of the universe
of discourse, i.e., taking into account only local distributions over indi-
vidual variables by means of which the multi-dimensional distribution
is represented.

Such a formulation is obviously too general. Therefore, to obtain
councrete results we have to reduce it to more concrete case by specifying
more exactly types of variables, their sets of values, operations used to
combine distributions, global characteristics to find.

One such particular but probably the most important case has been
paid a lot of attention in Logic, Algebra, Switching Theory, Cybernet-
ics, Artificial Intelligence, and other fields where it usually has its own
name and is described in special terms depending on the problem being
solved. The main assumptions for this case are as follows:

e all variables have only two values 0 and 1,
e distributions take values from the set {0, 1},

e logical connectives A and V are used to combine elementary dis-
tributions, and

e the maximal or minimal value is usually a global characteristic
to search for.

There are only 4 different two-valued distributions over two-valued
variables which are called elementary propositions in propositional logic

(Fig. 1):

truth constant 0,

truth constant 1,

proposition P, and

proposition —P.
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1 1 1 1

0 0, 0, 0
0 1 0 1 0 1 0 1

truth constant 0 truth constant 1 proposition P proposition-P

Fig. 1. Four Boolean propositions. Both the variable and the
distribution are two-valued.

Combining different local distributions by logical connectives A and
V which are interpreted with the help of conventional truth tables, we
can represent different global distributions over n-dimensional hyper-
cube. Oue traditional problem that many other theoretical and applied
problems are reduced to, is the problem of satisfiability which is obvi-
ously equivalent to finding the maximal value of the global distribution
over the n-dimensional universe of discourse. There is a lot of different
methods and their modifications for solving this problem, e.g.., based
on the operation of consensus (resolution in the Artificial Intelligence),
transformation into the dual form, covering techniques, etc.

In this paper it is supposed that

e all variables take their values in finite sets,

e all distributions are fuzzy membership functions from the do-
main of definition (values of individual variables or their Carte-
sian product) to the unit interval [0,1], and

e logical connectives A and V interpreted with the help of the min-
imum and maximum operations are used for combining distribu-
tions.

Maximal value of the global distribution over the universe of dis-
course is considered as a global characteristic to be found. We also
consider a more general problem of finding a projection of the global
distribution on some variable which allows us to solve more efficiently
the problem of logical inference. Other useful problems can be also
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formulated, e.g., finding a global entropy of a multi-dimensional fuzzy
distribution.

Currently exact methods for solving this problem do not exist.
However, a lot of inexact methods have been proposed in the field
of approximate reasoning (mainly for application to knowledge based
systems). Perhaps the most well-known of them is the Zadeh’s combi-
nation and projection principle [1, 2] which can formulated as follows:

e cach statement is translated into a possibility distribution,

e all possibility distributions are conjunctively (with the help of
minimum operation) combined into an overall possibility distri-
bution ,

e the distribution 7 is projected on various variables of interest (e.g.,
using the generalized modus ponens).

Unfortunately, it is only a principle and it does not provide us a
concrete procedure for finding projections. The main disadvantage of
other approaches (see, e.g., [3]) is that they do not guarantee that
the conclusion (projection) obtained is correct like similar methods in
the Boolean fields (Switching Theory, Boolean functions, Propositional
Logic etc.). In other words, we do not know whether the projection
resulted from the procedure is equal to the real projection of our dis-
tribution.

In this paper we propose a new original operation of fuzzy resolu-
tion which can be used to solve this problem. We will suppose that
the global distribution is represented by means of a number of fuzzy
disjunctions combined with the connective A (minimum). Each fuzzy
disjunction consists of n local distributions (possibly trivial) combined
by the connective V. The operation of fuzzy resolution is applied to
any two disjunctions on some variable and results in a third disjunc-
tion called resolvent (consensus). The resolvent possesses several useful
properties (described below in the paper) which allow us to say that
this operation is a generalization of the conventional resolution. Thus
having this fuzzy resolution we can more or less easily transfer onto
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fuzzy case almost all resolution (consensus) based methods developed
for the boolean case.

This paper originates from an original approach of A. Zakrevsky [4]
called the logic of finite predicates where a new technique of sectioned
boolean vectors for representing disjunctions and the corresponding
consensus operation was proposed. On the basis of the technique of
Boolean sectioned vectors and matrices an EDIP diagnostic expert sys-
tem shell was implemented [6, 7, 8]. An inference process in the EDIP
system is based on the procedure of finding all prime vector disjunctions
by means of the operation of generalized consensus.

Later [9, 10, 11, 14] the formalism of A. Zakrevsky including the
technique of sectioned vectors and the operation of consensus was gen-
eralized on fuzzy case where the components take their values from
the unit interval [0,1]. In addition some new properties degenerated in
the crisp case were studied, as well as new procedures of logical infer-
ence were developed which underlie an EDIP for Windows 3.x expert
system shell [13]. In this generalization of the Zakrevsky’s formalism
instead of the term ’consensus’ the term ’‘resolution’ was used, which
is conventional in the Artificial Intelligence.

This approach to fuzzy multi-dimensional analysis was reformulated
in logical terms as a generalized fuzzy propositional logic [14, 15] and a
logic of possibility distributions [16]. It was also applied to such fields
as diagnosis [17], fuzzy control [18], aggregation of information [19, 20]
and decision making [21].

2 Method of Sectioned Vectors and Matrices

Let x1,x9,...,2, be elementary logical variables taking their values
from the sets X1, Xo,..., X, called (elementary) domains respectively.
In general, domains are supposed to be any continuos interval but in
our examples we will only consider for simplicity the case of domains
consisting of a finite number of values a;;, where 7 = 1,2,...,n, and
7 =1,2,...,n; The Cartesian product of all domains X; X XoXx...x X,
forms the universe of discourse {2 with the power n1 X no X ... X ny,
in the finite case. Each element w = (x1,x9,...,2,) € Q is an ordered
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n-tuple of values of all variables.

Below in this section we describe a technique which we use to
write fuzzy disjunctions. This technique was originally proposed by
Zakrevsky for the case of multi-valued variables and two-valued dis-
tributions. Later it was generalized by Savinov onto the case of fuzzy
distributions. In the method of sectioned vectors we use the following
terminology:

e component v;; of the vector v is the number which is equal to the
local distribution value in one point of the domain; in the case
of crisp distributions it is equal either 0 or 1; in the fuzzy case it
takes values from the interval [0,1]; in other words, the component
v;j is equal to the local distribution value in the point z; = a;j,
where a;; is the j-th value of the i-th variable;

e section v; is a sequence of n; components for all values of a local
distribution, e.g., if v; = {0.7,1,0.2,0} then v;; = 0.7, vjo = 1,
vig = 0.2, viy = 0;

e vector v consists of n sections v; separated by points (when the
operation is implicitely implied) or explicitely by the name of
operation, e.g., {0.7,1,0.2,0}.{1,0.4,0}.{1,0}, where n; = 4,
Nng = 3, ng = 2;

e matriz is made up of a number of vectors each of them represent-
ing one line.

An interpretation of fuzzy vector is a rule by means of which we can
compute the global distribution this vector defines over the universe of
discourse proceeding from the local distributions the vector is made
up. There are two interpretations of fuzzy vectors: as disjunctions and
as conjunctions. If the vector d is interpreted as disjunction then the
value of its global distribution in some point is equal to the maximum
of n corresponding components (Fig. 2).
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maximal component

OR

'\j OR

point of the universe of discourse

Fig. 2. Interpretation of the vector as disjunction by means of the
maximum of n corresponding components.

For example, the disjunction
{0.7,1,0.2,0} {1,0.4,0} {1,0}

defines the distribution which in the point (a13,a99,ass) is equal to
max(0.2,0.4,0) = 0.4.

The interpretation of sectioned vectors as conjunctions is dual, i.e.,
it uses the operation of minimumn.

Sectioned matrices have two interpretations: as conjunctive normal
form (CNF), and as disjunctive normal form (DNF). The interpretation
as CNF means that the value in some point of the universe of discourse
is equal to the minimum of the values which are assigned to this point
by its lines. The lines of the CNF are interpreted as disjunctions.

It can be easily proved that any fuzzy distribution over the universe
of discourse can be represented in the form of fuzzy CNF. Such a CNF
is made up of || = 1y X ny X ... X n, line disjunctions each of which
represents a fuzzy distribution value in the corresponding point of the
universe of discourse. In other words, one line of this matrix is respon-
sible for representing the distribution value in some point and it does
not influence any other points. Each section of the disjunction satis-
fying this condition has to consist of all 1’s except of one component
which is equal to the corresponding distribution value. We say that it
pricks a hole down to the necessary level in the distribution surface. Of
course, it is not a procedure for building and representing fuzzy multi-
dimensional distributions — it demonstrates only that for any arbitrary
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fuzzy distribution there exists a sectioned matrix interpreted as CNF
which represents it (i.e., with the same semantics).

3 Characteristics of Disjunctions

In this section we define three global characteristics of fuzzy distri-
butions. Here ’'global’ means that to calculate the characteristic one
needs to access all elements of the domain of definition and correspond-
ing fuzzy distribution values.

The maximal value that the fuzzy distribution takes over the do-
main of definition is said to be the consistency (Fig. 3). For example,
the local distribution {0,0.1,0.3,0.7} has the consistency 0.7, and the
counsistency of the disjunction {0,0.5}.{1,0,0} is equal to 1.

The minimal value that fuzzy distribution takes over the domain
of definition is said to be the constant (Fig. 3). For example, the local
distribution {0.1,0.5,1} and the disjunction {0,0.5}.{1,0,0} have the
constants 0.1 and 0 respectively.

constant - \/\ ~ consistency

Fig. 3. Consistency and constant of the distribution.

We will need a quantity called a degree of incomparability of two
distributions. Let us define at first a relative degree of incomparability.
The degree of incomparability of the distribution P in relation to @
is equal to the maximal value of the distribution P which is exactly
greater than the corresponding (i.e., in the same point of the universe)
value of the proposition Q:

incompg, (P) = P(ggg(w)(P(x))
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Thus in order to compute this quantity one at first needs to select
in P all the values which are exactly greater than the corresponding
values in (), and then to choose among them the maximal value (Fig. 4).

>
e incomp., (P)

interval of taking the maximum

Fig. 4. Relative degree of incomparability.

If the condition VzP(z) < Q(z) holds, i.e., there is nothing to
choose the maximal value from (the distribution P is included into
Q), it is supposed by definition that incompg () = 0. For example,
degree of incomparability of the proposition P = {0,0.5,0.7,1} in rela-
tion to the proposition @ = {0.2,0.4,0.6,1} is equal to incomp,(P) =
max(0.5,0.7) = 0.7, whereas incompp(Q) = max(0.2) = 0.2.

The (mutual) degree of incomparability is equal to the minimal of
two relative degrees of incomparability:

incomp(P, ) = min(incompg, (P), incomp»(Q))

Note that it is important that the degree of incomparability is de-
fined not from informal interpretation of the word “incomparable” but
from the formal requirements of the fuzzy resolution what will be shown
below.

Consequence relation on fuzzy distributions is defined in a tradi-
tional way. Namely, the distribution () is said to be a logical conse-
quence of the distribution P iff the condition

VaP(z) < Q(z)
holds, i.e., P is included into Q).

260



Fuzzy Multi-dimensional Analysis and Resolution Operation

Obviously, if @ is a logical consequence of P then ) can be removed
from a set axioms or theorems. In particular, disjunction which is a
consequence of another disjunction can be removed from the matrix.
The process of removing such disjunctions is called absorption.

4 Reduced Forms of Disjunctions
Let us consider the following example. Three disjunctions

{1,0,1,1}  {0.5,1}
{1,0.5,1,1} {0,1}
{1,0.5,1,1} {0.2,1}

are semantically equivalent, i.e., they represent the same distribution
over the universe of discourse. Thus in general case disjunctions rep-
resent semantics not uniquely, i.e., several different in the form dis-
junctions can represent the same in the meaning proposition about
the universe. The uniqueness of representation takes place only for
disjunctions with the constant equal to 0, when there is at least one
element from the universe with the distribution value 0. If the disjunc-
tion constant (the minimal value of the corresponding distribution) is
not equal to 0, then its representation is not unique because the com-
ponents which are between 0 and the disjunction constant may vary in
this interval (provided that this does not change the constant itself).
So it is clear that in the disjunction

{1,0,1,1} {0.5,1}

with the constant 0.5 the second component of the first section may be
changed between 0 and 0.5, e.g.,

{1,0.27,1,1} {0.5, 1}

To overcome this non-uniqueness of representation let us introduce a
so called reduced forms of disjunction. The disjunction d is said to be
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in k-th reduced form iff the constants of all its sections d; except for
the k-th section dy are equal to 0

COnSt(dZ’) = min(dij) =0

and all the rest of components are exactly greater than const(dy).

In other words, disjunction in k-th reduced form may not contain
components in the interval [0, const(dg)], i.e., any component is either
equal to 0 or is greater than const(dy), and, in addition, each propo-
sition must include at least one component equal to 0 except for the
k-th section. For example, the disjunction

{1,0.2,0.9,1} {1, 0}
is in its 1st reduced form, whereas the disjunctions

{1,0.2,0.9,1} {1,0.2}
{1,0.2,0.9,1} {1,0.1}
{1,0.2,0.9,1} {0.2,0.2}

are not reduced.

This definition does not say how to reduce disjunctions. Now we
will propose a procedure for reducing disjunctions which is based on
operations of subtraction/addition of the value p from/to the section
d;. These operations result in a new local distribution d; — p/d; + p

such that
di—p— { i, ifd; >

, otherwise

and
d;, ifd; >p

p, otherwise

d¢+p={

Thus to compute d; —p (d; + p) we have to change onto 0 (p) all
the components which are less than or equal to p (Fig. 5).
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Fig. 5. Operation of subtraction/addition of the value from/to the
section.

The whole procedure for reducing disjunctions is as follows:
e find the disjunction constant:
const(d) = max(min(dy;), ..., min(dy;))

(The disjunction constant is equal to the maximum of all local
constants.)

e subtract the disjunction constant from all non-k-th propositions
e add the disjunction constant to the k-th proposition

For example, the constant of the disjunction
{0,0.2,0.3,1} {0.3,1}
is equal to 0.3, therefore its 1st reduced form is the following:
{0.3,0.3,0.3,1} {0, 1}

According to this approach if a disjunction is in a reduced form then
it involves a section which is responsible for storing the disjunction
constant value. We can transfer the constant from one section to an-
other but such a section will always exist and thus we have n different
reduced forms.

Another approach [14, 15, 16] consists in introducing one special
component which is responsible for storing the disjunction constant
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value and is also said to be the disjunction constant (or constant propo-
sition in logical terms). For simplicity such a representation is not used
in this paper but it is really useful in many situations (e.g., when rep-
resenting disjunctions in knowledge base) since the reduced form is
defined uniquely and the disjunction constant value is represented ex-
plicitly.

5 Resolution Principle

5.1 General Definition

Logical inference usually cousists in building new disjunctions from the
source disjunctions. Then they are added to the CNF and can serve as
premises to continue the inference process. Here we will not touch the
question what logical inference is needed for and what requirements it
have to meet. We will only consider how disjunctions can be generated.
The main operation for generating disjunctions can be fuzzy reso-
lution. It is applied to two disjunctions on some section (variable) and
results in a third disjunction called a resolvent. If u and v are two
disjunctions and w is their resolvent on k-th variable, then we write:

u(zg)v=w

where (zj) denotes the resolution on k-th variable.

Now let us consider how given two premises the resolvent is built.
Each section of the resolvent depends on (is constructed from) only
two corresponding sections of the premises. k-th proposition of the
resolvent (which the resolution is applied to) is equal to the conjunction
of the two corresponding propositions from the source disjunctions;
every non-k-th proposition of the resolvent is equal to the disjunction
of the two corresponding propositions:

W — u; A vy, Wijzmin(uij,vij), ifi=k 7=1,2,...,nk
! u; V v;, w;; = max (u;j,v;;), otherwise
Conjunction and disjunction of elementary propositions about the

same variable are equal to the componentwise minimum and maximum,
respectively.
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The resolution operation can be represented in the form of the
following pattern (Fig. 6):

T Ty T
Max min max
u up e ug e un
v v ... Vi ... Vi
w lwmVvy|...|lugAvg|...|u, Vv,

1
agma j max
OR | or | &%

min

X, Xy Xn

disjunction v — resolvent w

disjunction u

Fig. 6. Operation of fuzzy resolution.

Here are two examples of applying the resolution:

u {0,0.1,0.2,1} | {0,1}
v {1,0.3,0.5,0} | {0,0}
w =u(z)v | {0,0.1,0.2,0} | {0,1}

u 10,11 [{0,1,0.7) [ {1,0.2,1}
v (1,0} | {1,1,0.2} [{0,0.1,0}
w =u(z)v | {1,1} | {0,1,0.2} | {1,0.2,1}

The main property of the resolvent is that it is a consequence of its
two premises:

If w=u(zg)v, thenu Av Ew.

It means that we can add any resolvent to the CNF containing its
two premises and the whole semantics will not change.

If there is only one variable, then we obtain extensional case and
the resolution is reduced to ordinary conjunction. Thus the resolution
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operation in some sense can be viewed as a generalization of conjunction
onto multidimensional case.

In the case of two-valued variables and two-valued distributions the
behavior of this resolution coincides with that for the classical case of
boolean propositions except of the fact that our resolution can be ap-
plied to any two disjunctions even if their k-th propositions are not
contrary and/or there exist non-k-th contrary propositions. It is obvi-
ous that in the first case the resolvent will be a consequence of one of
its premises, while in the second case it will be valid, i.e., involve the
constant proposition (truth constant 1).

Let us consider the following example.

u {0,1} =21 | {0,1} =25 | {0,0} =0
v {0,0} =0 {1,0} = I {0,1} = I3
w=u(zg)v | {0,1} =z; | {0,0} =0 {0,1} = z3

In this classical example of the boolean resolution we obtain “good”
resolvent since sections uy and vg are contrary, while other sections are
not. Each section is written in sectioned form and conventional form
with the help of boolean propositions.

In the following example we obtain the resolvent which is a con-
sequence of (weaker than) both premises since the sections uy and vy
are not contrary. Note that classical resolution is not applied to such
disjunctions.

u {0,1} =27 | {0,1} = x5 | {0,0} =0
v {0,0} =0 {0, 1} = I {0, 1} = I3
w=u(zo)v | {0,1} =1 | {0,1} =z | {0,1} =3

In this example we also obtain “bad” resolvent since two premises
involve contrary non-k-th propositions which result in the constant

proposition (truth value 1) in the resolvent.

u {0,1} ==z, |{0,1} ==z2 | {0,0} =0
A4 {1,0} = T {1,0} = X9 {0, 1} = I3
w=u(z)v | {1,1} =1 {0,0} =0 {0,1} = z3
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5.2 Resolution on Reduced Disjunctions

If the resolution is considered as a generalization of conjunction (mul-
tidimensional conjunction), then it is natural to suppose that its goal
is to infer the disjunction which is equivalent to the conjunction of
two source disjunctions. In that case the resolvent would represent
just both source premises in one clause, and consequently the source
disjunctions could be removed as superfluous. However, such ideal vari-
ant is impossible because the conjunction of two disjunctions in general
case cannot be represented in the form of only one disjunction. Never-
theless, it is possible to formulate the criterion of “quality” of one or
another resolution operation: the closer the semantics of two disjunc-
tions is approximated by their resolvent, the better is the resolution
rule.

It is a characteristic property of the general definition of the res-
olution formulated in the previous section that the resolvent content
(semantics, i.e., the corresponding fuzzy distribution) depends on the
premises form. In the following two examples the premises have dif-
ferent forms but the semantics is the same, while the resolvents have
different semantics:

u 11,0.3) [ {0,0}
v {0,1} | {1,0}
w =u(zi)v | {0,0.3} | {1,0}

u {1,0} [ {0.3,0.3}

v {0,1} | {1,0}
w =u(z)v | {0,0} | {1,0.3}

Thus a question arises: which form of premises is the best from
the point of view of the above formulated criterion, or which form of
premises generates the strongest resolvent.

The resolvent components are decreased only in k-th section when
conjuncting two source sections (in the rest of sections the components
can be only increased), i.e., it is exactly k-th section that is responsible
for non-trivial semantical properties of the resolvent. The higher are
component values in disjunctive (non-k-th) sections, the weaker is the
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resolvent. In the ideal case when all non-k-th sections consist only of
zero components the resolvent is exactly equal to the conjunction of
two premises, for example:

u 10,0,07 [ {1,0.5,0.3} | {0,0}
v {0,0,0} | {0,0.5,1} | {0,0}
w = u(z2)v | {0,0,0} | {0,0.5,0.3} | {0,0}

Here the constant of the first disjunction is equal to 0.3, and the
constant of the second disjunction is equal to 0. If in this example the
constant of the first disjunction is transferred from the second sections
(ug = uy — 0.3) into any other disjunctive section (e.g., the third one,
i.e., ug = uz+0.3), then the resolvent becomes worse, i.e., weaker than
that in the ideal case:

u {0,0,0} [{1,0.5,0} | {0.3,0.3}
v £0,0,0} [ {0,0.5,1} | {0, 0}
w = u(z3)v | {0,0,0} | {0,0.5,0} | {0.3,0.3}

It becomes more clear if transform the obtained resolvent into the
following equivalent form (2nd reduced form):

| w =u(z2)v | {0,0,0} [ {0.3,0.5,0.3} | {0,0} |

Thus our conclusion is that in order to infer the strongest resolvent
on k-th section, the premises have to be transformed into the k-th
reduced form. However all properties of the resolution described below
will be formulated for the general definition independent of the premises
form.

5.3 Adjacency of Disjunctions

Although the goal of the application of resolution is to obtain a new
non-trivial disjunction differing from both the first premise and the
second premise, this requirement cannot always be satisfied (it is not
satisfied for the majority of disjunction pairs and variables). More
exactly, two disjunctions u and v are said to be adjacent on the variable
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xy if their resolvent on k-th variable is not a logical consequence of
the disjunction u and disjunction v, i.e., it cannot be absorbed by its
premises.

Now it is clear that it makes sense to apply the resolution to adja-
cent disjunctions only, otherwise the resolvent is a consequence of one
of two premises and it does not contain new information. For example,
the following two disjunctions are adjacent on the first variable and
they are not adjacent on the second variable:

u 10,0.5,0.2] [ {L,0]
v 1,02,17 | {0,0}
w =u(zy)v | {0,0.2,0.2} | {1,0}

u 11,0.5,01 | {1,0.2)
v {0,0.2,1} | {0,0}
w = u(z9)v | {1,0.5,1} | {0,0}

In this context the problem can be formulated as follows:

how to find out whether two disjunctions are adjacent or
not, using only their form, and not constructing the resol-
vent

This problem can be solved with the help of the following criterion.
Disjunctions u and v are adjacent on the variable z iff Vi = 1,....n
except for 1 = k

const (u; V v;) < incomp (ug, vg)

In other words, the minimal value of the disjunction of two sections
u; and v; has to be strictly less than the degree of incomparability of
the sections ug and vg. Informally, two disjunctions are adjacent iff
the mutual degree of incomparability of two sections u and vy (which
the resolution is applied to) is high enough to compensate the validity
resulted from the disjunction of non-k-th sections.

Thus the adjacency of two disjunctions is influenced by the following
two factors:
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1. too low degree of incomparability of the propositions about the
k-th variable;

2. too high constant (degree of validity) in non-k-th sections.

The first factor is a generalization of the conventional condition (see,
e.g., [22]) that the resolution is applied only to disjunctions involving
contrary literals. It is natural that in fuzzy case the contrariety of two
literals is also fuzzy (the degree of incomparability). Note that the con-
trariety and incomparability coincide only in two-valued non-fuzzy case
(classical propositional calculus); in any other case the incomparability
condition is weaker.

The second factor influencing the adjacency of two disjunctions is
a generalization of the conventional condition which counsists in the
absence of the second pair of contrary literals in disjunctions.

When computing the value constant(u; V v;) we have to construct
the i-th section of the resolvent w; = u; V v;, i.e., in fact, to find out
if two disjunctions are adjacent or not with the help of this criterion
it is necessary to construct n — 1 sections of the resolvent. Thus it
could be easier to counstruct the resolvent and then to check if it is a
consequence of one of its premises. However it is not so, since for the
majority of disjunction pairs the condition incomp(ug,vy) = 0 holds,
and therefore the criterion constant(u; V v;) < incomp (uy, vg) cannot
be satisfied in any case. In addition, even if incomp (ug,vg) > 0 it
makes sense to check the criterion for each new section of the resolvent
rather than to check the adjacency after building all sections. Thus the
whole procedure for generating resolvents is as follows:

1. build the k-the section of the resolvent: wi = ug A vi;
2. find the value incomp (ug, v);

3. if incomp (ug, vi) = 0 then goto 9;

W

fori=1,2,...,n (except for i = k);

5. build the 4-th section of the resolvent: w; = u; V vy;
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6. if constant(w;) > incomp (ug, vx) then goto 9;
7. next i (goto 5);
8. the disjunctions u and v are adjacent and the resolvent w is built;

9. the disjunctions u and v are not adjacent.

6 Equivalent Transformations of
Fuzzy Sectioned Matrices

6.1 Finding Prime Disjunctions

The problem of finding prime disjunctions has the same significance as
that in the boolean case since once we have found prime disjunctions we
can solve many other problems. In this section we consider a method
for generating prime disjunctions which is based on the operation of
fuzzy resolution.

Prime disjunctions are always defined in relation to some fuzzy dis-
tribution which is supposed to be represented by a fuzzy CNF. In other
words, a disjunction may be prime in relation to one fuzzy distribution
and it may be not prime in relation to another fuzzy distribution. Prime
disjunction is a disjunction which is a consequence of the correspond-
ing fuzzy distribution but is not a consequence of any other disjunction
(among those which are a consequence of this distribution). Thus prime
disjunction is in a certain sense the strongest disjunction among those
which can represent the corresponding fuzzy distribution, i.e., those
which can be added to the CNF not changing the distribution. If a
prime disjunction is in a reduced form then it can be shown that if
any its component is decreased then new disjunction is already not a
consequence of the corresponding distribution, i.e., no one component
of a prime disjunction in a reduced form can be decreased.

The method of finding prime disjunctions based on the resolution
operation consists in applying the resolution to different disjunctions
from the CNF on different variables, adding the obtained resolvents to
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the CNF and absorbing disjunctions which follow from other disjunc-
tions in this CNF. The process is stopped when any new resolvent is
absorbed, i.e., no new resolvent can be generated. The main problem
of this method is an order of applying the resolution. According to the
breadth first approach the resolution is applied to all disjunction pairs
in the current CNF and new resolvents are added to the end of this
CNF but the resolution is not applied to them. After the generation
phase the process of absorption is carried out when all disjunctions
which follow from any other are removed from the CNF. After that
new generation-absorption pass is started until no new resolvents can
be generated. Obviously, before generating each new resolvent we check
if two disjunctions are adjacent and if yes then after the resolvent is
built we check if it is not a consequence of some disjunction already in
the CNF. The whole process is shown in Fig. 7.

Fig. 7. Breadth first strategy of generating prime disjunctions.

For example, if we have a fuzzy CNF represented by means of the
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sectioned matrix (1, 2 and 3 are disjunctions)

{0.3,0} {1,0.5,0} {0,0,0,0} 1
D=|1{0,00 {0,04,1} {0,0.2,0.7,1} |2
{0,1}  {0,0,0}  {1,0.3,0,0} |3

then the generation of resolvents at the first pass results in the matrix

{0.3,0} {1,0.5,0} {0,0,0,0} 1
{0,0}  {0,04,1} {0,0.2,0.7,1} | 2
{0,1}  {0,0,0}  {1,0.3,0,0} |3
{0.3,0} {0,0.4,0} {0,0.2,0.7,1} | 4 = 1(z2)2
{0,0}  {1,05,0} {1,0.3,0,0} |5=1(z,)3
{0,1}  {0,04,1} {0,0.2,0,0} |6 =2(x3)3

No one disjunction in this matrix can be absorbed therefore it is taken
as an input of the pass 2. During the pass 2 we generate only one
disjunction 7; other generated disjunctions are absorbed by the dis-
junctions which are already in the matrix. For example, the resolvent
2(x9)5 is absorbed by the disjunction 4 and is not added to the matrix.
The disjunction 7 does not absorbs previous disjunctions 1-6 and the
pass 2 is finished with the matrix

{0.3,0} {1,0.5,0} {0,0,0,0} 1
{0,0}  {0,04,1} {0,0.2,0.7,1} | 2
{0,1}  {0,0,0}  {1,0.3,0,0} |3
{0.3,0} {0,0.4,0} {0,0.2,0.7,1} | 4
5
6
7

D,

D2 = - 1<$2)2
{0,0}  {1,0.5,0} {1,0.3,0,0} =1(z1)3
{0,1}  {0,0.4,1} {0,0.2,0,0} = 2(x3)3
{0.3,1} {0,0.4,0} {0,0.2,0,0} = 3(x3)4

During the pass 3 we generate only one disjunction (the disjunction 7
has to be transformed to its 2-nd reduced form)

{0,1} {0,0.4,0.3} {0,0.2,0,0} 8= 6(x3)7

which absorbs its premises, disjunctions 6 and 7. Thus we obtain the
matrix
{0.3,0} {1,0.5,0}  {0,0,0,0} 1
{0,0}  {0,04,1}  {0,0.2,0.7,1} | 2
b, _ | {01} {0,001 {1,03,0,0} |3
27 140.3,0} {0,0.4,0}  {0,0.2,0.7,1} | 4 = 1{x2)2
{0,0}  {1,05,0} {1,0.3,0,0} |5=1(z,)3
{0,1}  {0,0.4,0.3} {0,0.2,0,0} |8 =6(x,)7
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Each pair of disjunctions from this matrix generates a resolvent which
is absorbed by some other disjunction. So we cannot generate more dis-
junctions and the process is stopped. Thus we obtain the final matrix
D3 which consists of 6 prime disjunctions.

6.2 Transforming Matrix into the Dual Form

Let us consider only transformation of DNF into CNF. The backward
transformation is carried out in the dual way. This problem is for-
mulated as follows. There is a sectioned matrix C counsisting of fuzzy
conjunctions and representing a fuzzy DNF. It is necessary to trans-
form it into the matrix of disjunctions D interpreted as a CNF and
characterized by the same fuzzy distribution.

This procedure is based on the operation of adding the conjunction
¢ to the disjunction d which results in the CNF D:

(01/\CQ/\.../\Cn)V(d1Vd2V...\/dn) =D
It can be proved that this operation results in n disjunctions:

((dl\/Cl)\/dQ\/...\/dn)/\
(dl\/(dQVCl)\/...Vdn)/\

(dl\/dQ\/...V(ng01))

or in the form of sectioned matrix

(diver) do ... d,
D= d1 (dgVCl) dn
d1 d2 (dn\/Cl)

Thus to add the conjunction ¢ to the disjunction d we have to copy d
n times and for each i-th copy d* fulfill the transformation

di=d!vec;

Note that if the disjunction d consists of only 0 (complete incon-
sistency) then we obtain the procedure for transforming the DNF con-
sisting from a single conjunction into the CNF.
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For example the conjunction
{1,1} {0,0.5,1} {1,0.7,0.2,0}
being added to the disjunction
{1,0} {0,0.8,0} {0,0.4,0.9,1}
results in the matrix
{1,1} {0,0.8,0} {0,0.4,0.9,1}

D= {1,0} {0,08,1} {0,0.4,0.9,1}
{1,0} {0,0.8,0} {1,0.7,0.9,1}

Obviously the first disjunction can be removed from the matrix since
it is absolutely valid (its constant is equal to 1).

In general, before generating i-th disjunction d’ at the i-th step it
is natural to check whether the section ¢; is present (i.e., it is not equal
to the constant 1) and whether the disjunction d; V ¢; is not valid.

The procedure of transforming DNF into CNF is based on the op-
eration of adding a conjunction to a disjunction. At each step of this
procedure we add new conjunction from the DNF to all disjunctions
from the CNF. At the beginning we add the first conjunction from
the DNF to the empty CNF which involves only one disjunction con-
sisting of all 0’s. The number of disjunctions in the matrix D grows
very quickly. Therefore it is necessary to carry out periodically the

procedure of absorption.
For example, let us suppose that we have to transform the matrix
of DNF

{0.3,1} {1,0.5,0} {0,1,1,0} |c!
c=|{0,1} {0,04,1} {0,0,0,1} |2
{10} {1,1,0}  {1,03,0,0}|c?

consisting of three conjunctions ¢!, ¢? and ¢? into the matrix of CNF.
The whole procedure consists of 3 steps. At each step we add to the
DNF one conjunction from C. Thus at the first step we transform the
conjunction ¢! into the matrix of DNF, i.e., we add this conjunction
to the initial disjunction consisting of all 0. This results in the matrix

{0.3,1} {0,0,0}  {0,0,0,0} | 1
D=|{0,0} {1,050} {0,0,0,0} |2
{0,0+  {0,0,0}  {0,1,1,0} |3
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At the second step we have to add the conjunction ¢? to the matrix
D, i.e., this conjunction have to be added to each disjunction from
D,. First, we make 3 copies of each of our disjunctions

{0.3,1} {0,0,0}  {0,0,0,0} | 1
{0.3,1} {0,0,0}  {0,0,0,0} | 1
{03.1} {0,0,0}  {0,0,0,0} | 1
{0,0  {1,05,0} {0,0,0,0} |2
D; = {070} {170570} {05070;0} 2
{0,0}  {1,05,0} {0,0,0,0} |2
{0,0}  {0,0,0}  {0,1,1,0} |3
{0,0}  {0,0,0} {0,1,1,0} |3
{0,0}  {0,0,0}  {0,1,1,0} |3

Then we impose on them the corresponding section of the conjunction
c? by the operation V

{0.3,1}v{0,1} {0,0,0} {0,0,0,0} 1.1
{0.3,1} {0,0,0} v {0,0.4,1}  {0,0,0,0} 1.2
{0.3,1} {0,0,0} {0,0,0,0}v {0,0,0,1} | 1.3
{0,0}v{0,1}  {1,0.5,0} {0,0,0,0} 2.1
D, = | {0,0} {1,0.5,0} v {0,0.4,1} {0,0,0,0} 2.2
{0,0} {1,0.5,0} {0,0,0,0}v {0,0,0,1} | 2.3
{0,0} v {0,1}  {0,0,0} {0,1,1,0} 3.1
{0,0} {0,0,0} v {0,04,1}  {0,1,1,0} 3.2
{0,0} {0,0,0} {0,1,1,0} v {0,0,0,1} | 3.3

and finally we obtain the following matrix (disjunctions 1.2, 1.3 are
absorbed by the disjunction 1.1, i.e., the disjunction 1 has not changed)

{0.3,1} {0,0,0}  {0,0,0,0} | 1.1
{0,1}  {1,0.5,0} {0,0,0,0} | 2.1
{0,0}  {1,05,1} {0,0,0,0} | 2.2
D, = {0,0} {1,0.5,0} {0,0,0,1} | 2.3
{0,1}  {0,0,0}  {0,1,1,0} | 3.1
{0,0}  {0,0.4,1} {0,1,1,0} | 3.2
{0,0}  {0,0,0} {0,1,1,1}|3.3

After adding to the matrix Dy the third conjunction ¢ we obtain the
final matrix D3 which is equivalent to the source matrix of conjunctions
C:
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{0.3,1} {1,1,0}  {0,0,0,0} |1.1.2
{0.3,1} {0,0,0}  {1,0.3,0,0}|1.1.3
{0,1}  {1,1,0}  {0,0,0,0} |2.1.2
{0,1}  {1,0.5,0} {1,0.3,0,0}|2.1.3
{1,0}  {1,0.5,1} {0,0,0,0} |2.2.1
{0,0}  {1,05,1} {1,0.3,0,0} | 2.2.3
{1,0}  {1,0.5,0} {0,0,0,1} |2.3.1
{0,0}  {1,1,0}  {0,0,0,1} |2.3.2
{0,0}  {1,0.5,0} {1,0.3,0,1}|2.3.3
{0,1}  {1,1,0} {0,1,1,0} |3.1.2

D3

{0,1}  {0,0,0}  {1,1,1,0} |3.1.3
{1,0}  {0,04,1} {0,1,1,0} |3.2.1
{0,0}  {0,0.4,1} {1,1,1,0} |3.2.3
{1,0}  {0,0,0}  {0,1,1,1} |3.3.1
{0,0}  {1,1,0} {0,1,1,1} |3.3.2

This matrix can be further transformed, e.g., disjunction 1.1.2 is ab-
sobed by 2.1.2 and should be removed.

7 Finding Projections on Variables

The problem of finding projections on variables is one of the most im-
portant in multi-dimensional analysis. With the help of this operation
we obtain a local distribution over the values of one variable from a
multi-dimensional distribution. Let us suppose that it is required to
find a projection of the distribution represented by the matrix of CNF
D onto the variable x. Generally, projection can be defined in different
ways but we will suppose that it is defined by means of the operation
of maximum. Namely, j-th value of the projection on the variable xy,
i.e., its value in the point ay; is equal to

max (D (z1,..., 25 = agj,...,Tn))
on all values of all variables except for zy = ay;. In other words, we

take maximum in all points which have the k-th component (k-th di-
mension) equal to ag;. Thus to calculate the whole projection in 7y
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points of k-th domain we have to take maximum in all points of the uni-
verse of discourse. Obviously, the maximum of the projection on any
variable is equal to the maximum of the whole multi-dimensional dis-
tribution and therefore we can solve the satisfiability problem (finding
the consistency) by finding any projection.

We can also redefine the projection by means of the logical conse-
quence relation. Let us suppose that n projections on all variables are
represented by the conjunction c, i.e., each section c; of this conjunc-
tion represents a projection on ¢-th variable. Then all its components
¢;; must be minimal provided that it is still a consequence of D. In
other words, to find the conjunction of projections ¢ we have to take
the trivial conjunction counsisting of all 1 and gradually decrease its
components untill we reach the border where it ceases to be a conse-
quence of D.

One procedure for finding projections is based on a theorem [10]
which affirms that disjunction u is a consequence of the matrix of CNF
D iff there exists such a prime disjunction p of this matrix that the
disjunction d is its consequence:

D | u & there exists prime p: p = u

Using this criterion, we can check whether a disjunction follows from
the matrix, and we can also find minimal disjunctions which satisfy this
condition. It can be shown that the projection on the k-th variable of
the distribution represented by the matrix of CNF D is equal to the
minimum of projections of all prime disjunctions on this variable. Note
that we have to have all prime disjunctions to carry out this procedure.

Projection on the k-th variable of one disjunction is equal to the
k-th section of this disjunction plus constant M which is equal to the
maximal value in all remaining sections (i.e., M is equal to the maxi-
mum of all non-4-th section components). For example, projection of
the disjunction

{0.3,0} {0,0.4,0} {0,0.2,0.7,1}

on the 3rd variable is equal to {0,0.2,0.7,1} + 0.4 = {0.4,0.4,0.7,1}
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while its projections on the variables 1 and x is equal to the constant
1 (we say that the projection is absent).

Let us consider an example of the matrix consisting of all prime
disjunctions from the previous section

{0.3,0} {1,0.5,0}  {0,0,0,0}

{0,0}  {0,04,1}  {0,0.2,0.7,1}
{0,1}  {0,0,0} {1,0.3,0,0}
{0.3,0} {0,04,0} {0,0.2,0.7,1}
{0,0}  {1,05,0} {1,0.3,0,0}
{0,1}  {0,0.4,0.3} {0,0.2,0,0}

[0 SIS B NIVURE

The projection of this matrix on the variable z; is equal to {0.4,1}
(disjunction 8), on variable zo — {1,0.5,0.3} (disjunction 1), and on
variable z3 — {0.4,0.4,0.7,1} (disjunction 4).

8 Conclusion

Distribution as logical proposition

The notion of fuzzy relation or fuzzy multi-dimensional distribu-
tion which has been studied in the paper is certainly not new
and has been paid a lot of attention in fuzzy literature. On the
other hand, one traditional direction of fuzzy research has con-
sisted in fuzzifying classical logics. These two approaches have
been developed in great extent independently. Fuzzy relations
are usually described in algebraic terms (e.g., as fuzzy relational
algebra) while fuzzy logics are usually obtained from some clas-
sical logic by introducing fuzzy parameters (in fact, there are
two big approaches to fuzzifying classical logics: (i) fuzzifying in-
terpretations (e.g., [23, 24]) and fuzzifying formulas themselves,
e.g., introducing weights to propositions (e.g., [25])). One general
result of this paper is that we have established a connection be-
tween these two directions. Now we know that any local (fuzzy)
distribution can be viewed as a proposition in logical sense and
we can combine them just as ordinary propositions by means of
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connections A and V to build more complex propositions [14], par-
ticularly, fuzzy CNF and fuzzy DNF. Of course, it is not enough
to declare that the distribution (relation) is a proposition and in
the paper we have shown that the whole behavior of our formal
system is analogous to and even more general then that of the
propositional logic.

Inference as equivalent transformation

Traditionally, logical inference has been thought of as applying
inference rules to axioms and theorems which have been already
proved and obtaining new theorems (deduction process). As a re-
sult we could infer logical statements which express in an explicit
form different properties of the formal system hidden in the origi-
nal representation by means of axioms. Although we have showed
in the paper that our approach to logical inference is analogous
to this one, we also give another interpretation for it. Accord-
ing to this view inference process is considered as an equivalent
transformation of our representation of the semantics by means
of axioms to some other representation which is more appropri-
ate in the sense of explicit representation of necessary properties.
In this case a consequence relation is only one of many possible
equivalent transformations which allows us to remove unnecessary
statements. This interpretation of logical inference seems more
general especially when considering non-minimax operations for
composing distributions.

Values of variables and values of distributions

Onune general result of the approach described in the paper is that
we clearly distinguish two notions, values of variables and values
of distributions, which are often mixed in traditional formalisms.
The values of individual logical variables can be associated with
the syntax or objective part of the problem domain. They define
the matter of propositions, i.e., what the proposition is about,
e.g., it can be a state space. On the other hand, values of dis-
tributions are associated with the semantics or subjective part
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of the problem domain. They define the proposition itself, e.g.,
what we think or know about possible states. However in the case
of superpositions the same set of values can represent both syn-
tactic and semantic values. For example, when we negate some
proposition we in essence apply the proposition (negation) to the
set of values which are semantical for the negated proposition but
syntactic for the negation.

Inference as finding projections

Suppose we know that inference process is an equivalent transfor-
mation of our representation to some form, i.e., to infer something
we have to change the form of representation in such a way that
the semantics remain the same. Then a question arises: What
form of representation we have to seek for, and why it is bet-
ter than other forms, i.e., what is the goal of inference process?
An answer is the following. Our general goal is to reveal inter-
esting in some sense (global) properties of a multi-dimensional
distribution, i.e., to find the form of representation where these
properties would be explicit. Usually explicit form of represen-
tation assumes that the property is expressed in one statement.
The property which is looked for in most cases is the projection
of the whole distribution on some variable(s) or the proposition
about one variable. Although there may be also other properties
(e.g., correlations between individual variables) this one is sup-
posed to be the most important and is considered to be the goal
of general inference process.

Fuzzy resolution operation and its properties

Perhaps the most important result described in the paper is a
new fuzzy resolution operation. It generalizes traditional consen-
sus operation and resolution in logic in two directions: (i) values
of variables are supposed to be many-valued [4] and even contin-
uos, and (ii) distributions are supposed to take values from the
interval [0,1] [9]. The criterion of adjacency formulated in the
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paper enforces the analogy with crisp case since it allows us to
determine when the resolvent is not trivial. To define correctly
the resolution operation and the criterion of adjacency we had to
introduce such new notions as reduced forms, degree of incompa-
rability, and constant of disjunction.

Negation as proposition

Although it is not described in this paper, it can be easily shown
that we do not need an operation of negation [14]. Instead of
it we can use more general operation of superposition (propo-
sition about proposition), a particular case of which represents
negation.

References

[1]

2]

[3]

[4]

[5]

Zadeh L.A. (1975), The concept of a linguistic variable and its
application to approximate reasoning — Part I. — Information Sci-
ences, v.8, pp.301-357.

Zadeh L.A. (1979), A theory of approximate reasoning, In: Ma-
chine Intelligence, v.9 (Hayes J.E., Michie D. and Mikulich L.IL.,
Eds.). — New York: Elsevier, pp.149-194.

Kruse R. and Schwecke E. (1990), Fuzzy Reasoning in a Multidi-
mensional Space of Hypotheses, Int. J. of Approximate Reasoning
4, 47-68.

Zakrevsky A.D. (1989), Logical inference in finite predicates,
Preprint No.6, Institute of Technical Cybernetics, AS Belorussia,
Minsk (Russian).

Zakrevsky A.D. (1994), Logical recognition in the space of multi-
valued attributes, Computer Sci. J. of Moldova 2(2), 169-184.

282



Fuzzy Multi-dimensional Analysis and Resolution Operation

[6]

7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Levchenko V.I. (1990), Diagnostic system based on finite predi-
cates, Preprint, Institute of Mathematics and CC AS Moldova,
Kishinev, Shtiintsa, (Russian).

Levchenko V.I. and Savinov A.A. (1991), Dialog control and logical
inference in finite predicates, In: Applied Systems of Artificial
Intelligence, Kishinev, Shtiintsa, 40-46 (Russian).

Levchenko V.I. and Savinov A.A. (1992), The representation of
fuzzy knowledge in the diagnostic expert system shell EDIP, Proc.
2nd Int. Conf. on Fuzzy Logic and Neural Networks—IIZUKA’92,
lizuka, Japan, July 17-22.

A.A. Savinov (1991), Matrix representation of fuzzy knowledge in
attribute models, Preprint, Institute of Mathematics and CC, AS
Moldova, Kishinev, Shtiintsa, (Russian).

A.A. Savinov (1993), Matrix representation of fuzzy knowledge
in expert systems, C.Sc. thesis, Technical University of Moldova
(Russian).

V.I. Levchenko and A.A. Savinov (1993), The matrix representa-
tion of fuzzy knowledge and its application to the expert systems
design, Computer Sci. J. of Moldova 1(1), 62-84.

V.I. Levchenko and A.A. Savinov (1993), Matrix representation
of fuzzy predicates and its application in expert systems, Izvestia
RAN, Tehnicheskaia kibernetika No.5, 1993, 126-140 (Russian).

Savinov A.A. (1996), Inference in the Fuzzy Knowledge Manager
EDIP, International Workshop “Soft Computing—-SC’96”, Kazan,
Russia, October 3-5.

Savinov A.A. (1993), Fuzzy propositional logic, Fuzzy Sets and
Systems 60(1), 9-17.

283



A. Savinov

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Savinov A.A. (1993), Fuzzy propositional logic for the knowledge
representation, First European Congress on Fuzzy and Intelli-
gent Technologies—EUFIT 93, Aachen, Germany, September 7-10,
1993.

Savinov A.A. (1996), Some properties of new resolution rule in
the logic of possibility distributions, 4th European Congress on
Intelligent Techniques and Soft Computing—EUFIT’96, Aachen,
Germany, September 2-5, 178-182, 1996.

Levchenko V.I. and Savinov A.A. (1994), Diagnosis by fuzzy
constraints in attribute model, 2nd Eur. Congr. on Intelligent
Techniques and Soft Computing—EUFIT’94, Aachen, Germany,
September 20-23, 382-385, 1994.

Levchenko V.I. and Savinov A.A. (1994), Using the fuzzy inference
engine EDIP for real time control, Symp. on Artificial Intelligence
in Real Time Control, Valencia, Spain, October 3-5, 1994.

Levchenko V.I. and Savinov A.A., Qualitative aggregation of in-
formation in fuzzy attribute model, Computer Sci. J. of Moldova
2(2), 215-225.

Levchenko V.I. and Savinov A.A. (1996), Aggregation in fuzzy at-
tribute models, 5th National Conference on Artificial Intelligence,
Kazan, Russia, October 7-11, 1996 (Russian).

Savinov A.A., Application of multi-dimensional fuzzy analysis
to decision making, In: Advances in Soft Computing — Engi-
neering Design and Manufacturing, R. Roy, T. Furuhashi and
P.K. Chawdhry (eds.), Springer-Verlag, 1999.

Chang C.L. and Lee R.C.T. (1973), Symbolic logic and mechanical
theorem proving, Academic press, New York, 1973.

R.C.T. Lee and C.L. Chang (1971), Some properties of fuzzy logic,
Inform and Control 19, 417-431.

284



Fuzzy Multi-dimensional Analysis and Resolution Operation

[24] R.C.T. Lee (1972), Fuzzy logic and the resolution principle, J.
Assoc. Comput. Mach. 19, 109-119.

[25] D. Dubois, J. Lang, H. Prade (1991), Possibilistic logic, Rapport
IRIT/91-98/R, Institut de Recherche en Informatique de Toulouse,
December 1991.

A.A. Savinov, Received November 10, 1998
Institute of Mathematics

Moldovian Academy of Sciences

5, Academiei str., Kishinev

MD-2028, Moldova

Phone: 3732-73-81-30,

E-mail: savinov@math.md, savinovQusa.net
http://www.geocities.com/ResearchTriangle/7220/

285



