Computer Science Journal of Moldova, vol.6, no.3(18), 1998

The concept of training device
and task description language
for teaching programming

Dat Ph. Phan

Abstract

In this paper we consider conceptual bases of construction
of training device on programming (TDP) and give theoretical
grounds of task description language (TADELA). TDP is a spe-
cialized training system of algorithmic approach which allows the
student work with real tasks under conditions of his/her super-
ficial acquaintance with the programming language. TADELA
is designed to describe solving plans of class of educational com-
puting tasks. On the basis of plans the student can get flow
charts of algorithms and fragments of programs in the studied
programming language. TADELA is designed on the basis of
algorithmic operator models. Being close to algebraic notation,
TADELA provides simplicity of its use as the entry language
of TDP. Approaches to formalization of syntax, model and al-
gorithmic semantics of TADELA and its implementation were
considered.

Introduction

From the point of view of teaching methods of programming one can
pick out three approaches to the construction of computer-aided learn-
ing (CAL) systems: linguistic, algorithmic and combined [9]. In CAL
systems of linguistic approach [13] the instruction begins with study of
programming tools and is accompanied by artificially selected exam-
ples, illustrating those or other operational functions of the language

(©1998 by Dat Ph.Phan

231

Dat Ph.Phan

[6]. The learning process goes from the statement of ready knowledge
to excercises. At this process the student learns some concrete material,
not going out of the produced framework. Thus, the creative condi-
tions, necessary for promoting independent obtaining of knowledge are
not fully created.

In CAL systems of algorithmic approach the language and pro-
gramming methods are learned by solving various problems. At first
the student trains the skills of drawing up solving algorithms of prob-
lems, the language is studied only as far as it is necessary to program
these algorithms. The algorithmic approach has some variations in
implementation, caused by distribution of functions between the man
and the machine during the process of problem solving. Depending on
this, they can be divided into 3 types: DIPRO (conversational pro-
gramming) [5], ASSISTANTS [2] and COACHES [1,3].

The combined approach contains both considered methods. Infor-
mation-training environments [9] are of this approach. They contain
subsystems of linguistic and algorithmic approaches, used at different
stages of training.

Training devices on programming (TDP) [10] relate to CAL system
of algorithmic approach. TDP are the least investigated area, though
in all above-considered systems we can find out elements of drill in
one or other form. Those elements are used to develop and strengthen
practical skills of programming. There is a number of computer pro-
grams for developing motor skills, e.g. for working with keyboards.
But in this case we are interested in training devices on developing
skills of intelligent activity in the area of problem algorithmization and
programming. Among the above-considered systems for teaching pro-
gramming the systems of the types DIPRO and COACHES are most
close to training devices on intelligent activity. At the same time they
do not relate to TDP as some of them requires from the trainee a de-
tailed description of the solving algorithm for the problem and does
not control the process of its creation. The other can do it, but only
with problems of a limited set included in its knowledge base, imposing
a determined solving technique. Thus, we pick out training devices on
teaching problem algorithmization and programming as an independent

232

The concept of training device and ...

type of CAL systems, providing trainees with following opportunities:

e work with arbitrary problems of a certain domain on the basis of
description of their solving plans;

e receive a graphic representation of flow chart of the algorithm on
the basis of the given solving plan;

e investigate execution of the algorithm in dynamics on various sets
of initial data to evaluate the correctness of the solution;

e receive text of program in the studied programming language;

e reveal correspondence between the solving plan, the algorithm
and the program to analyse the algorithmic techniques used in
the solution and ways of their implementation in the studied pro-
gramming language.

These opportunities provide the trainee with learning on own ex-
perience, in an experimentation mode, on real problems. The most
effective use of TDP is in the complex approach to preparing base-
level programmers, when conventional and computer-aided methods of
teaching are combined at various stages. In this paper, our objective
is to consider the conceptual bases of coustruction of TDP, to give
the theoretical grounds of the description language for solving plans of
tasks and to describe the mechanism of its implementation.

2 Conceptual bases of TDP

The concept of TDP construction offered in this paper is considered
on the basis of problem concept accepted in systemology and artificial
intelligence [4,8]. A problem is submitted by a set of four elements
Z = (80,5, Sk,Y), where S is an abstract set of states of the domain,
So C §: set of initial states, Sy C S: set of final states and Y is set of
operators (mappings), transforming states.

We shall give an interpretation of Z applied to the class of program-
ming tasks (ZP). Assume a ZP is formulated as follows: given a vector

233

Dat Ph.Phan

M of n elements, place the elements of the vector in the increasing or-
der of their values. In this case, the set of states of domain S includes
all intermediate vectors generated by using operators Y on each step
of transformation from Sy into S;. Sy includes set of initial vectors of
n elements, and Sy, includes set of corresponding results

M:{mk|mk<mk+1; k:1,2,...,n—1}.

The transformation from the initial state Sy into the final state Sj
is named a process of problem solving. For ZP solution, the solving
system [4] should have a set of operators Y = Q U D, where Q = {¢;}
is the set of planning operators, providing formation of solving plan of
the problem, and D = {d;} is the set of executive operators, providing
formation of solving program. Accordingly, the plan is presented by a
pair P = ({¢;}, Rq), where R, is a sequence relation setting execution
order of {¢;}, and the program is presented as G = ({d;}, Rq), where
R, is a sequence relation on {d;}. An intuitive concept of plan and
program as a solving method of mathematical problems comes out in
widely known works of the outstanding mathematician and teacher G.
Polya [7]. We use these concepts for ZP here.

The formalized presentations of plan P and program G are iden-
tical down to operations and an essential difference between them is
contained just in it. For above-formulated ZP, we shall consider the dif-
ference between an element of the plan and the corresponding fragment
of the program:

Element of plan P Fragment of program G
gi : exchange d; o t:=mlk];
the values djy1 : ml[k] :=ml[k+1];
of of my and myq djyo : m[k+1]:=t;

Obviously, the planning operators {g;} are not formalized and are
submitted at high level, while the executive operators {d;} are strictly
formalized and are low-level in respect of the plan, for a single operation
g; in the plan P corresponds to a group of executive operations d; in
the program G.

234

The concept of training device and ...

The complications of the initial stage of programming learning are
related mainly to the lack of student’s algorithmic thinking. Problems
arise even when the obvious solution of a problem is to be presented
in the form of algorithm. Therefore, it is necessary to find a method
effectively showing how the solution of a problem is remapping to al-
gorithm and how the algorithm is transformed into program, e.g. in
Pascal. This goal defines two ideas lying in the conceptual basis of TDP
construction: the idea of re-coding of algorithmic techniques used in
ZP solving by forming algorithmic operator models (operators g;) of
the plan of large information density, and the idea of decoding aris-
ing forms, transforming them into corresponding system of elementary
algorithmic actions (operators d;) and generating a program of ZP solv-
ing.

3 Algorithmic operator models

Any educational ZP can be divided into subtasks, requiring certain
algorithmic techniques to be solved. Each of them is presented in com-
pact formalized form of algorithmic operator model. Due to various
interpretations of model concept and the lack of completely satisfying
definition, we shall specify the properties which we assign to algorith-
mic operator model (henceforth model):

e a model is a method reflecting similarity of plan P and program
G in the form of isomorphic correspondence between operators
of the plan {¢;} and operators of the program {d;} and relations
R, and Ry;

e a model allows to transform states of ZP without direct study
and use of operators {d;}:

e the structure and rules of model functioning is easier to study
than structure and rules of program functioning.

Let us consider the stage of mastering principles of problem algo-
rithmization and learning grounds of programming. The analysis of

235

Dat Ph.Phan

operational necessities [6] appearing in this stage allows to pick out a
set of basic algorithmic techniques used in solving of computing ZP:
computation of sums, products, functions, iterative computations, def-
inition of maximum and minimum, etc. These algorithmic techniques
are represented in solving plans in the form of corresponding models:
sum, product, function, iteration, maximum, minimum, etc. We con-
sider an example of how an algorithmic technique is “folded” to model:
assume that in a ZP it is necessary to find the maximum element of
a vector among those elements lying in interval 7.5 < b[i] < 25.5;
1 =1,...,10. The model maximum in this case has the form:

C = max(b[i] : (b[¢] > 7.5) and (b[i] < 27.5)) i from 1 to 10;

The model contains all necessary information for its automatic de-
coding by “rolling” into a program. The program is not trivial. Here
an algorithmic idiom of defining the maximum element of a vector is
transformed: first, variable C should be originally initialized not by
the value of the first element of the vector but by the value of the first
one in the sequence which belongs to the given interval. Second, for all
subsequent elements before using this algorithmic idiom, it is necessary
to check up whether an element belongs to the given interval.

The fragment of the program isomorphic with the indicated model
has the following form:

Search an element belonging to interval
1:=1;
while not ((b[7] > 7.5) and (b[i] < 27.5) or (: = 10)) do i := i+1;
if (b[¢] > 7.5) and (b[i] < 27.5)
then element is found
begin C := bli]; Initialization
repeat
if ((b[¢] > 7.5) and (b[i] < 27.5))
then element belongs to interval
if o[i] > C
then C := b[i]; current max. value

236

The concept of training device and ...

1:=i+1;
until ¢ > 10;
end

else element not found
writeln ("There is no element (b[¢] > 7.5)and(b[7] < 27.5)’);

The comparison of the model of this algorithmic technique and the
program implementing this technique makes obvious the capacious in-
formation content of models and illustrates their above-stated proper-
ties. On the basis of models the description language for solving plans
of ZP (shortly TAsk DEscription LAnguage — TADELA) is designed.
Being close to algebraic notation, TADELA provides simplicity of its
use as the entry language of TDP.

4 Description of solving plans

We shall consider the structure and an example of the description of
plan P. Let us consider an educational ZP: given an integer square
matrix 10*10, compute the norm of the matrix. We can pick out in the
solving plan 2 subtasks described by models: (1) computing vector, the
i-th element of which is the sum of modules of elements of the i-th line
of matrix (algorithm of summation) and (2) finding maximum element
of this vector (algorithm of finding maximum), which is the norm of
the matrix. We submmit a generalized structure of plans and the solving
plan of this ZP in TADELA:

237

Dat Ph.Phan

Task _taskname_; Task norma_of matrix;
Defines Defines
{substitutions} domenl = j from 1 to 10;
domen2 = i from 1 to 10;
Objects Objects
{ definition a: array [1..10,1..10] of integer;
of objects} s,norma, i, j: integer;
Models Models
{description of models} s = sum(abs(a[i, j]))domenl;
e norma = max(s)domen2;
Actions Actions
{actions} input(ali,j])domenl,domen2;
do(norma);
output(norma);
End End

The description of solving plan of a problem in TADELA consists
of heading and 4 sections. Section Defines contains substitutions and
is used to shorten the text of the plan. In section Objects all objects
of the task are declared. The feature of this section is that the objects
are given in accordance with the syntax of the studied programming
language. Within this paper we shall consider that it is Pascal. Section
Models contains algorithmic techniques necessary for problem solving.
Actions of data input-output and launching of models are specified in
section Actions.

The implementation of TADELA requires a strict description of
syntax and semantics of models. Problems of syntax description of
formal languages are reflected in the known publications. It is more
complex with semantics description. The known ways of semantics
description [11] are oriented to compilation of high-level languages to
machine code. In the case of TDP there is a basic difference: by de-
scription of the solving plan the trainee should get (1) flow chart of the
algorithm, (2) opportunity to research dynamic properties of the algo-
rithm and (3) commented text of the program in Pascal implementing
the plan.

238

The concept of training device and ...

Thus, we put the problem to develop a mechanism for formaliza-
tion of TADELA, on the basis of which we can generate flow charts
of algorithms, construct an algorithm interpreter and receive texts of
programs.

5 Formalization of models

For each model of TADELA we shall describe syntax Syn(model),
model semantics Sem(model) and algorithmic semantics Alg(model):

e Syn(model) defines the set of correctly constructed models.
Syn(model) is set by general forms of notation, complemented
with Wirth syntactic diagrams [12] exposed up to metalinguistic
variables of Pascal. In our case metalinguistic variables of Pascal
are considered as terminal symbols of TADELA.

e Sem(model) defines the correctness of use of task objects of the
model in accordance with its functional essence. Sem(model) is
set by logic equations, derived for correctly in syntax constructed
models. The infringement of the verity of these equations allows
to diagnose errors connected with incorrect use of task objects.

e Alg(model) defines algorithmic actions of model in processing
task objects with the purpose to implement its functional essence.
Alg(model) is set by operator description, derived from correctly
constructed Syn(model) and Sem(model).

Due to the limitation of this paper we shall consider the basic ap-

proaches to formalization of algorithmic operator models of TADELA
on model sum, corresponding to operator) in algebraic notation.

5.1 Syntax
We shall define Syn(sum):

R = sum(A)D, where

239

Dat Ph.Phan

R is < simple variable > or < indexed variable >.
R defines the returned value;

A is the argument of model. A is set as E or E : C. Thus, the
model sum can be given as:

R = sum(E)D or R = sum(E : C)D, where

E is < arithmetic expression >; FE defines the addend of the
sum C'is < logic expression >; C defines condition of inclusion
E to R.

When C is absent, E is certainly included in R; D is definition area of
R. D is given by list Dy, Ds,..., Dy, in which the i-th element of the
list D; defines vector of values of the i-th variable of sum;

D= | D; | ;

3

D;::=— V;— from — B; -~ to — FiJ—»by+S<1>

7

Vi i=— < wvariable name > —

B; :=— < arithmetic expression > —

— false —
F; :::E < logic expression > — : —— true j—r

< arithmetic expression >

S; i=— < arithmetic expression > —

In syntactic diagrams for D we have:
V; — the i-th variable of sum; B; — initial value of the i-th variable; F;
— final value or final condition of the i-th variable; S; — step of change
of the i-th variable of sum. If the statement by .S;” is absent the step
=1.

Thus, Syn(sum) is defined up to metalinguistic variables of Pascal,
which are considered as terminals of TADELA and are not further

240

The concept of training device and ...

exposed as they correspond to the syntax of Pascal. In the description
of Syn(sum) the key words and separators of TADELA are in bold
type, and the terminals are in italics.

We shall show the use of model sum: in matrix algebra multiplica-
tion of a matrix on a vector is expressed by operator >_:

5
cZ-:Zaij*bj izl,...,5.
j=1

If a problem has a subtask of multiplication of a matrix on a vec-
tor, according to defined Syn(sum) the subtask is described in section
Models as:

i) = (ali,] *blj]) j from 1 to 5;

Obviously, the syntax of models is reasonably close to algebraic
notation, which is one of the requirements of TADELA.

5.2 Model semantics

We shall define Sem(sum) step by step:

1. Let M be set of all task objects. Each object m; € M is
characterized by a unique identifier, type and dimension. For the class
of computing tasks the type is chosen from T={int, real, bool}, and the
dimension is defined as n € N°. If n = 0, the object is a scalar, if n > 1
the object is a n-dimensional array. Thus, M is a set of tuples

M ={m;| m; == cort < ident, type, dim >},

where the designation cort< ... > is introduced to distinguish a tuple
from a metalinguistic variable. Actually, M is a relation with the
domains ident, type and dim. The set M is generated by processing
section Objects. The set M is necessary to define of semantics of all
models.

2. We shall introduce concept of structural set: If Z, X and
Y are finite sets, then Z(X,Y) is the structural set Z, calculated
as Z = X UY through the direct descendants X and Y. Structural

241

Dat Ph.Phan

set transforms context-free Syn(model) to a hierarchic tree, on which
the context-sensitive limitations given in accordance with functional
essence of the model are computed.

Let Q = {qi| ¢; == cort < ident, dim >} be set of task objects of
a model sum. Using symbolics accepted for Syn(sum) we define Q in
the form of structural set:

Q = (RuA(E7C)7D (-Dl (VvluBhFlﬂsl)w" 7Dk (Vk7Bk7Fk7Sk)))7

where each set of the lowest level of hierarchic tree has only one direct
descendant, which is a terminal (here and henceforth if a non-terminal
of model is in bold type, it is considered as a structural set). Thus, the
structural set Q is mapped to following hierarchical tree:

| | |
R A D
| |
‘ [| | |
<wvariable> E C D, I Dy,

| |
<a_expr> <l_expr>

I I T | l I I I
Vi By F 5 Vi By Fr, Sk

<ident> <ident>
<a-_expr>|<a_expr> <a_expr>|<a_exrpr>
<a_expr>| <a_expr>|
<l_expr>:true] <l_expr>:true|
<l_expr>:false <l_expr >:false

The context-sensitive limitations are calculated on the sets at the
lowest level of tree Q, considered as semantic terminals of the model.
The elements of these sets are generated by processing direct descen-
dants (terminals of Syn(sum)) picking out task objects of them in the
form cort<ident, dim>. We also note that because tree Q is given on
correctly in syntax constructed model, it does not contain terminals of

242

The concept of training device and ...

Syn(sum) which are inessential for computing context-sensitive limita-
tions: from, to, by, etc. Besides, the sets V; consist of only one tuple,
which follows from Syn(sum). Thus, Q not only defines set of tuples of
task objects of model, but also divides them in accordance with their
belonging to one or another semantic terminal of model.

3. We shall introduce functions for computing context-sensitive
limitations of Sem(sum):

(a) num(P): calculates cardinality of set P:

number of descendants of P, if P is a structural
num(P) = set,
number of elements of P, if P is a usual set.

(b) zond(P,X): defines the entry of set X in the set P

true, If X CP,

zond(P, X) = { false, else.

(c) type(P): calculates type of terminal which is the descendant of
set P, where P is a set at the lowest level of tree Q. The type is
chosen from T={int, real, bool}.

4. On sets M and Q, using functions calculating context-
sensitive limitations, we shall record logic equations of Sem(sum), ac-
companying them by informal comments (most of equations is right
not only for model sum, but also for any model of TADELA).

(1) Ounly those task objects defined in section Objects can be used
in model:

zond(M. < ident,dim >, Q) = true,

where M. < ident,dim > is projection of set M on domains
< ident, dim >.

243

Dat Ph.Phan

(2)

The variables of definition area of model should have different
identifiers:

<num (U V) = num(D)> = true.

veD

The addend and the condition of inclusion can not be expressed
through the result of summation:

zond(A,R) = (zond(E,R) or zond(,R)) = false.

The variables of sum should be included in addend:
num(D)
zond | E, U Vi | = true.
i=1
Initial values of variables of sum can not be expressed through
themselves and/or the result of summation:
(zond(B;,V;) or zond(B;,R)) =false Vi=1,... ,num(D).

Final values of variables of definition area can not be expressed

through themselves and/or the result of summation, if they are
arithmetic expressions:

(zond(F;, V;) or zond(F;,R)) = false
Vi=1,...,num(D), type(F;) <> boolean.

The type of result of summation should coincide with the type of
addend:
(type(R) = type(E)) = true.

The list of definition area is executed from the right on the left:
variable of the i-th element of the list cannot be present at any
element lying on the right from it:

zond(D;,V;) =false, Vj>i, i,5=1,...,num(D).

244

The concept of training device and ...

The infringement of verity of even one of equations (1)-(8) entails
diagnostics of a semantic error in the record of model sum. E.g. model:

S = Z (ali,j] : ali,j] > 0) j from 1 to 5, i from S to 6;

is correct in syntax, but is not correct in semantics, because the initial
value of variable j is expressed through the result .S, i.e. logic equation
(5) is infringed.

5.3 Algorithmic semantics

Having a model correctly constructed in syntax and semantics, it is
necessary to represent its algorithmic actions in a formal form. On the
basis of this form the flow chart of the algorithm and the corresponding
fragment of program are to be generated.

We shall consider an example for revealing algorithmic actions of
model sum: given a real vector {a;}, 1 < ¢ < 20, find the sum of all
positive elements of it.

The solving plan contains only one model sum:

5= (ali] : ali] > 0) i from 1 to 20;

We shall make the flow chart, the fragment of program for it and
we shall introduce designations for algorithmic actions:

245

Dat Ph.Phan

Vs S:=0 S = 0;
Vd i=1 i=1
Ld <i1<=20> while (7 <= 20) do
+‘ — begin
C <ali] >0> — if (a[7] > 0)
+‘ then
Ws S:=8+1/(i*1) S:=8+1/(i*i);
I end;

We consider algorithmic actions in detail:

e V is initialization of a variable. In this case we have Vs and
V'd — initializations of the result S = 0 and of the variable of
definition area ¢ = 1;

e W is increment of a variable. Similarly as well as for V' we have
W s for the result and Wd for the counter;

e (C is checking of a condition;

e L is checking of exit condition of a cycle. In our example it is Ld.
The actions Vd, Ld and Wd define the cycle parameters.

We can see from the example that each algorithmic action can have
an index specifying model or cycle which it belongs to: s is for sum, d
is for cycle, etc. Taking into account that num(D) may be > 1 (i.e.
number of cycles is > 1), each algorithmic action may have a number
besides the index. Hence, any algorithmic action is recorded as:

< letter > [< index >] [< number >].

We call this record an action identifier.

246

The concept of training device and ...

Thus, the algorithmic technique of calculation of sum can be ex-
pressed through its operator description in the form of a string of action
identifiers:

Vs Vd Ld(C(Ws,) Wd).

We notice that, in the operator description the action C has the
form
C (< T_part >, < F_part >),

where < T_part > and < F_part > are action identifiers. < T_part >
is to be executed if the value of the logic expression for C' is true,
< F_part > — if it is false. One of them can be empty. In such case,
if the logic expression for C' has corresponding value, the action after C
is to be jumped to. Action Ld is recorded as Ld (< cycle_body > Wd),
where < cycle_body > is a sequence of action identifiers.

We shall define Alg(sum) in the form of operator description for
model R from section 5.1. It will be defined recursively by number
of cycles k = num(D). Now we shall consider that the condition of
inclusion exists, otherwise we need only to replace the action C(W's,)
with the action W's.

1. k=1
Alg(sum) = Vs Vdl Ld1 (C (Ws,) Wdl)

We denote it as Vs Al, where Al is Vdl Ldl (C (Ws,) Wdl).
Then
Alg(sum) =Vs Al

2. If for kK = n we have
Alg(sum) =Vs An
then for £k = n + 1 we have

Alg(sum) =VsVdn+1 Ldn+1(An Wdn+1) =Vs An+1
Here algorithmic actions have corresponding forms:

247

Dat Ph.Phan

Vs: R :=0;

C(Ws,): if C then Ws;
Ws: R: =R+ E;
Vdi: Vi = By;

Ldi (< cycle_body > Wdi) :
while F; do begin < cycle_body >; Wdi end;
Wdsi : Vi=V;+ S5

Thus, we set the algorithmic semantics of model sum Alg(sum) in
general case.

Now we shall consider an example of definition Alg(sum) on a con-
crete model by constructing its operator description. Further we shall
“roll” this operator description into flow chart and fragment of pro-
gram. Let the following ZP be defined: given an integer square matrix
10%10, find sum of those elements of matrix, which are > 1. In this
case syntactically and semanticly correct model sum has the form:

S = sum (a[i, j] : ai, j] > 1) i, j from 1 to 10;

We have num(D) = 2. Let us define operator description of S:

k=1: VsVdl Ldl(C(Ws,) Wdl) = Vs Al

k=2: VsVd2 Ld2(Al Wd2) =
= Vs Vd2 Ld2(Vdl Ldl (C (Ws,) Wdl) Wd2)

We get from this operator description the flow chart and the frag-
ment of program:

248

The concept of training device and ...

Operator Flow chart Fragment
description of program
Vs: S :=0; S :=0;
Vdl : 1:=1; for 7:=1 to 10 do
Ld1 : <i<=10> ———
| +
Vd2 : 7 :=1; for j :=1 to 10 do
Ld2 : <j<=10> —
v -
C: <afi,i] >1> — if (ali, 3] > 1)
‘ + then
Ws: S =S8 +ali,j]; S =S8+ ali,j];
Wd2 : Ji=J+L
L
[
Wdl : 1:=1+1;
|

Thus, having Sem(sum) in the form of structural set Q and
Alg(sum) in the form of operator description the system can gener-
ate flow chart of the algorithm and fragment of program of calculation
of a sum given by a concrete model.

6 Conclusion

In this paper the conceptual bases of training devices on programming
and the description language for solving plans of educational computing
tasks were considered.

Being simple and close in syntax to algebraic notation, TADELA as
the entry language of TDP provides trainee with faster move to com-
puter for problem solving under conditions of his/her superficial ac-

249

Dat Ph.Phan

quaintance with the programming language. The study of algorithmic
techniques expressed in the form of models is carried out on student’s
real problems, which essentially increases motivation of learning.

The student’s work with TDP acquires research character: solv-
ing various problems, the student investigates and learns algorithmic
techniques and methods of their software implementation. TADELA
has built-in models of 12 basic algorithmic techniques, covering a wide
class of computing problems. If the student needs models which are
absent, he can expand TADELA, adding to it his/her own models. In
this case the student acts as an expert on algorithms and programs.

References

[1] Anderson J.R., Reiser B. The LISP Tutor // Byte. 1985. Vol.10.

[2] Atkinson L., North D. COPAS — a conversational Pascal system
// Software — practice and experience. 1981. Vol.11, N.8

[3] Bonar J., Cunningham R., Schultz J. An object-oriented architec-
ture for intelligent tutoring system // ACM SIGPLAN notices.
1986. Vol.21, N.14

[4] Dovgyallo A.M. Dialogue between the user and the computer.
Bases of designing and implementation. Kiev, Naukova dumka,
1981 (Russian)

[5] Dovgyallo A.M., Yushenko E.L. An introduction to computer-
based conversational programming // Control systems and ma-
chines. 1974, N.1 (Russian)

6] Fooksman A.L. An operational approach to algorithmic languages
g guag
// N.3155-75 Dep. in VINITI — Rostov-on-Don, 1975 (Russian)

[7] Polya G. Mathematical discovery. New York-London, Vol.1, 1962,
Vol.2, 1965

[8] Popov E.V., Firdman G.R. The algorithmic bases of intellectual
robots and artificial intelligence. Moscow: Nauka, 1976 (Russian)

250

The concept of training device and ...

[9]

[10]

[11]

[12]

[13]

Ryngach V.D. and al. Computer-based systems for teaching pro-
gramming. Designing and implementation. Chisinau, Shtiintsa,
1989 (Russian)

Ryngach V.D. Training device on programming // Computer tech-
nology of training. Hand-book. Kiev: Naukova dumka, 1992 (Rus-
sian)

Semantics of programming languages. Collected articles. Moscow:
Mir, 1980 (Russian)

Wirth N. Systematic programming. An introduction. Prentice
Hall, Englewood Cliffs, New Jersey, 1973.

Yushenko E.A. and al. The computer-based system for learning
Cobol language // Cybernetics, N.4, 1973 (Russian)

Phuong Dat Phan, Received Martch 10, 1998
Dept. of Mathematics and Informatics

Moldavian State University

60, Mateevici str., Kishinev

MD-2009 Moldova

E-mail: datQusm.md

251

