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Strong stability and strong quasistability of

vector trajectorial problem of lexicographic

optimization ∗

V.A. Emelichev R.A. Berdysheva

Abstract

Two types of stability of the lexicographic set for the multicri-
teria problem on a system of subsets of a finite set with the vector
criterion of the most general kind are investigated. Lower bounds
of stability radii have been found for the case where Chebyshev
norm was defined in the space of vector criterion parameters.

1 Introduction

J.Hadamard [1] noted that a necessary attribute of a well-defined math-
ematical problem is stability of the problem. This implies that the
solution depends continuously on the problem’s parameters.

In the usual sense [2–7], the stability of an optimization problem is
the property of upper and lower semicontinuity by Hauzdorf (or Berge)
of the point-set mapping, which defines the choice function. If the set
of admissible solutions is finite the property of upper semicontinuity
can be replaced by an equivalent property of nonappearance of new
optimal solutions under small perturbations of the problem’s parame-
ters (see, for example, [8–10] and also the survey [11]). A limit of such
perturbations is called stability radius.

If we go over a single-criterion problem to a vector discrete opti-
mization problem we get the notion of quasistability. The stability
(quasistability) is a discrete analog of upper (lower) semicontinuity by
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Hauzdorf of Pareto-optimal mapping, i.e. is an existence of small per-
turbations of the problem’s parameters such that the Pareto set can
only narrow (extend). Results connected with such interpretation of
the stability were described in detail in [6] (see also the survey [7]).

Papers [12–16] are devoted to study of different aspects of stability
of a vector trajectorial (on a system of subsets of a finite set) problem of
finding Pareto set in assumption that the vector criterion is an arbitrary
combination of partial criteria of the kinds MINSUM, MINMAX and
MINMIN, which are the most common in discrete optimization.

When the partial criteria are ordered with respect to their impor-
tance, a vector problem of lexicographic optimization arises. Different
types of stability, in particular pseudostability and quasistability, of
trajectorial problem of finding lexicographic set were considered in pa-
pers [17–20]. The pseudostability of the problem assumes that new
lexicographic optimal trajectories do not appear under small pertur-
bations of the problem’s parameters. When we relax this demand we
get the concept of the strong pseudostability, which was introduced
first by V.K. Leontev for the single-criterion problem in [9]. This type
of stability means that new lexicographic optimal trajectories can ap-
pear but, under any small perturbations, there exists a lexicographic
optimal trajectory that keeps the lexicographic optimality.

The property of lower semicontinuity by Hauzdorf of our problem
is equivalent to the property of preservation of all the lexicographic
optima of the problem under small perturbations of its parameters.
Following our terminology, we get a notion of quasistability, which has
been investigated in [20]. When we relax this demand, we get the
notion of the strong quasistability, which means that there exists a
stable lexicographic optimal trajectory.

In this paper sufficient and also necessary conditions of strong pseu-
dostability and strong quasistability of the vector trajectorial prob-
lem of lexicographic optimization with partial criteria of the kind Σ-
MINMAX and Σ-MINMIN are obtained. These criteria include well-
known in discrete optimization linear and bottleneck criteria. Lower
bounds of radii of these two kinds of stability have been found for the
case where Chebyshev norm was defined in the space of the vector
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criterion parameters.

2 Statement of the problem

Following [20], (E, T ) is a system of subsets, where

E = {e1, e2, . . . , em}
is a finite set of elements, m > 1, T ⊆ 2E\{∅}, i.e. T is a family of
non-empty subsets of the set E, which are called trajectories; |T | > 1.

On the set E, we define a vector weight function

a(e) = (a1(e), a2(e), . . . , an(e)) ∈ Rn, n ≥ 1,

and, on the set T , a vector criterion

f(t) = (f1(t), f2(t), . . . , fn(t)).

The partial criteria of the vector criterion are functions of the following
two kinds:

Σ-MINMAX fi(t) =

= max{∑
e∈q

ai(e) : q ⊆ t, |q| = min{|t|, ki}} → min
T

, (2.1)

Σ-MINMIN fi(t) =

= min{∑
e∈q

ai(e) : q ⊆ t, |q| = min{|t|, ki}} → min
T

, (2.2)

where ki, i ∈ Nn = {1, 2, . . . , n}, are given natural numbers such that

1 ≤ ki ≤ p = max{|t| : t ∈ T} ∀i ∈ Nn.

When ki = p, i ∈ Nn, both criterion (2.1) and criterion (2.2) turn
into the linear criterion

MINSUM fi(t) =
∑

e∈t

ai(e) → min
T

. (2.3)
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When ki = 1, i ∈ Nn, criterion (2.1) turns into the bottleneck criterion

MINMAX fi(t) = max{ai(e) : e ∈ t} → min
T

and criterion (2.2) turns into the criterion

MINMIN fi(t) = min{ai(e) : e ∈ t} → min
T

.

Note that the problems with Σ-MINMAX and Σ-MINMIN criteria
are related to necessities of optimal distribution [21].

By an n-criteria trajectorial problem, the problem of finding the
lexicographic set is meant. The lexicographic set is a subset of the
Pareto set and is defined as follows [22–26].

Suppose Sn is the set of all n! permutations of the numbers
1, 2, . . . , n. For any permutation s = (s1, s2, . . . , sn) ∈ Sn, we intro-
duce the binary relation of lexicographic order in criterion space Rn:

x ≤s x′,

where x = (x1, x2, . . . , xn) and x′ = (x′1, x′2, . . . , x′n), iff one of the
following conditions holds:

1) x = x′;

2) ∃j ∈ Nn ∀k ∈ Nj−1 (xsj < x′sj
& xsk

= x′sk
).

If k = 1, then the last equalities are absent (No = ∅).
The set Ln = ∪

s∈Sn

Ln(s), where Ln(s) = {t ∈ T : f(t) ≤s f(t′) ∀t′ ∈
T}, is called a lexicographic set and its elements are called lexicographic
optimal trajectories.

The vector weight function a(e) can be represented as the ma-
trix A = {aij}n×m, where aij = ai(ej). Let I1 and I2 be the sets
of those numbers from Nn, which enumerate criteria (2.1) and (2.2)
respectively (I1

⋃
I2 = Nn). If the numbers k1, k2, . . . , kn and the sets

E, T, I1 , I2 are fixed, then the individual n-criteria trajectorial prob-
lem of lexicographic optimization is uniquely determined by the matrix
A. Therefore we denote the problem by Zn(A), the lexicographic set
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by Ln(A), the vector criterion f(t) by f(t, A) and its partial criteria
fi(t) by fi(t, A).

It is evident that the lexicographic optimization problem turns into
the problem of finding the optimal solutions set if n = 1. All the
combinatorial problems (in particular, all the problems on graphs) can
be defined by the scheme of the single-criterion trajectorial problem.

As usual [12–20], we will perturb the matrix A ∈ Rnm by adding
to A matrices from the set

<(ε) = {B ∈ Rnm : ‖B‖ < ε},

where ε > 0, ‖.‖ is the norm l∞ (Chebyshev norm) in Rnm, i.e.

‖B‖ = max{|bij | : (i, j) ∈ Nn ×Nm}, B = {bij}n×m.

Let A,B ∈ Rnm. If we add a matrix B to the matrix A of the
problem Zn(A), we get a perturbed problem Zn(A + B). The matrix
B is called perturbing here.

Following [20], we say that the problem Zn(A) is
– pseudostable if

∃ ε > 0 ∀B ∈ <(ε) Ln(A) ⊇ Ln(A + B);

– quasistable if

∃ ε > 0 ∀B ∈ <(ε) Ln(A) ⊆ Ln(A + B);

– stable if

∃ ε > 0 ∀B ∈ <(ε) Ln(A) = Ln(A + B).

Thus, the value

ρn
i (A) =

{
supΩi(A) if Ωi(A) 6= ∅,
0 if Ωi(A) = ∅,

where

Ω1(A) = {ε > 0 : Ln(A) ⊇ Ln(A + B) ∀B ∈ <(ε)},
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Ω2(A) = {ε > 0 : Ln(A) ⊆ Ln(A + B) ∀B ∈ <(ε)},
Ω3(A) = {ε > 0 : Ln(A) = Ln(A + B) ∀B ∈ <(ε)},

is

– the pseudostability radius of the problem Zn(A), n ≥ 1, where
i = 1,

– the quasistability radius of the problem Zn(A), n ≥ 1, where
i = 2,

– the stability radius of the problem Zn(A), n ≥ 1, where i = 3.

Let Isum be the set of those numbers from Nn that enumerate par-
tial criteria MINSUM (2.3) of the vector criterion f(t, A).

3 Strong pseudostability

As it was pointed out, the problem Zn(A) is said to be strongly pseu-
dostable if

∃ε > 0 ∀B ∈ <(ε) Ln(A) ∩ Ln(A + B) 6= ∅.

Thus, the value

ρn
4 (A) =

{
supΩ4(A) if Ω4(A) 6= ∅,
0 if Ω4(A) = ∅,

where

Ω4(A) = {ε > 0 : ∀B ∈ <(ε) Ln(A) ∩ Ln(A + B) 6= ∅},

is said to be the strong pseudostability radius of the problem Zn(A), n ≥
1.

It is obvious that ρn
4 (A) ≥ ρn

1 (A) ∀n ≥ 1, A ∈ Rnm.

In order to find a lower bound of the strong pseudostability radius,
we will formulate some evident properties and prove a lemma.
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Further, we will use the notion

τi(t, t′, A) = fi(t, A)− fi(t′, A).

The next two properties follow directly from the definition of strong
pseudostability radius. They are true if the vector criterion of the
problem consists of any partial criteria (not only of (2.1) and (2.2)
kinds).

Property 3.1. Let T = T1 ∪ T2, T1 ∩ T2 = ∅. If there exists an
index i ∈ Nn such that for any trajectory t ∈ T1 there is a trajectory
t′ ∈ T2, for which

τi(t, t′, A) > 0,

then
T2 ∩ Ln(A) 6= ∅.

Property 3.2. Let T = T1 ∪ T2, T1 ∩ T2 = ∅. If for any index
i ∈ Nn there exists a trajectory t ∈ T1 such that

τi(t, t′, A) < 0 ∀t′ ∈ T2,

then
T2 ∩ Ln(A) = ∅.

Obviously, if T = Ln(A), then the strong pseudostability radius
ρn
4 (A) is equal to infinity. The problem Zn(A) is called nontrivial if

L̄n(A) = T\Ln(A) 6= ∅.
The next two properties are true for such problems.

Property 3.3. Let ϕ > 0. If

Ln(A) ∩ Ln(A + B) 6= ∅ ∀B ∈ <(ϕ),

then
ρn
4 (A) ≥ ϕ.

Property 3.4. Let ϕ ≥ 0. If, for any number ε > ϕ, there exists
a perturbing matrix B ∈ <(ε) such that

Ln(A) ∩ Ln(A + B) = ∅,
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then
ρn
4 (A) ≤ ϕ.

Let us introduce the following notation for any two different trajec-
tories t, t′:

∆i(t, t′) =
{ |t|+ |t′| − 2|t ⋂

t′| if i ∈ Isum,
min{|t|, ki}+ min{|t′|, ki} if i 6∈ Isum.

It is obvious that the inequality ∆i(t, t′) > 0 holds for any index
i ∈ Nn and any trajectories t 6= t′.

Further, for any subset t ⊆ E, let N(t) be the set of indexes j ∈ Nm

such that ej ∈ t :
N(t) = {j ∈ Nm : ej ∈ t}.

Lemma 3.1 [20]. Let t, t′ ∈ T, t 6= t′, i ∈ Nn, ε > 0. If

τi(t, t′, A) ≥ ε∆i(t, t′),

then
τi(t, t′, A + B) > 0 ∀B ∈ <(ε).

By definition, put

ϕn(A) = max
i∈Nn

min
t∈L̄n(A)

max
t′∈Ln(A)

τi(t, t′, A)
∆i(t, t′)

.

It is obvious that ϕn(A) ≥ 0.

Theorem 3.1. Let A ∈ Rnm. For any combination of partial crite-
ria (2.1) and (2.2) of the nontrivial trajectorial problem Zn(A), n ≥ 1,
we have

ρn
4 (A) ≥ ϕn(A), (3.1)

moreover
ρn
4 (A) = ϕn(A) (3.2)

if Isum = Nn.
Proof. Inequality (3.1) is evident if ϕn(A) = 0.
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Let ϕ = ϕn(A) > 0. Then <(ϕ) 6= ∅ and, by definition of the
number ϕ, there exists an index i ∈ Nn such that for any trajectory
t ∈ L̄n(A) there is a trajectory t′ ∈ Ln(A), for which

τi(t, t′, A) ≥ ϕ∆i(t, t′).

Therefore, by lemma 3.1, we obtain

τi(t, t′, A + B) > 0 ∀B ∈ <(ϕ).

Hence, using property 3.1, we get

Ln(A) ∩ Ln(A + B) 6= ∅ ∀B ∈ <(ϕ).

Consequently, taking into account property 3.3, we have (3.1).
In order to prove equality (3.2) we will show that ρn

4 (A) ≤ ϕ if
Isum = Nn.

By definition of the number ϕ, for any index i ∈ Nn there exists a
trajectory t ∈ L̄n(A) such that

τi(t, t′, A) ≤ ϕ = ∆i(t, t′) ∀t′ ∈ Ln(A). (3.3)

Hence, if for every number ε > ϕ we take the perturbing matrix
B ∈ <(ε) with the elements

bij =
{−b if i ∈ Nn, j ∈ N(t),

b if i ∈ Nn, j 6∈ N(t),

where ϕ < b < ε, and use (3.3) we get

τi(t, t′, A + B) = τi(t, t′, A)− b∆i(t, t′) <

< τi(t, t′, A)− ϕ∆i(t, t′) ≤ 0 ∀t′ ∈ Ln(A).

Thus, by property 3.2 we obtain

Ln(A) ∩ Ln(A + B) = ∅.
Consequently, taking into account property 3.4, we have

ρn
4 (A) ≤ ϕ.
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This inequality combined with inequality (3.1) proves the theorem.
In [18] the next formula for the pseudostability radius of the non-

trivial linear (Isum = Nn) problem Zn(A) was obtained:

ρn
1 (A) = min

i∈Nn

min
t∈L̄n(A)

max
t′∈T\{t}

τi(t, t′, A)
∆i(t, t′)

. (3.4)

The next well-known result follows from this formula and theorem
3.1.

Corollary 3.1 [9]. For any linear single-criterion trajectorial prob-
lem Z1(A) the next equality is true

ρ1
4(A) = ρ1

1(A).

We say that the lexicographic set Ln(A) of the nontrivial problem
Zn(A) is strong if

∃i ∈ Nn ∀t ∈ L̄n(A) ∃t′ ∈ Ln(A) (τi(t, t′, A + B) > 0).

Corollary 3.2. In order that the nontrivial trajectorial problem
Zn(A), n ≥ 1, with any combination of partial criteria (2.1) and (2.2)
be strongly pseudostable it is sufficient, and also necessary in the case
Isum = Nn, for lexicographic set to be strong.

This corollary implies the following well-known result [9]: any linear
problem Z1(A) is strongly stable.

The next example shows that the sufficient condition of corollary
3.2 is not a necessary condition and the radius of strong pseudostability
can be greater than ϕn(A) if Isum 6= Nn.

Example 3.1.

Suppose n = 2, m = 4, A =

(
−1 0 −2 1
−1 1 0 0

)
,

T = {t1, t2, t3}, t1 = {e1, e2}, t2 = {e2, e3}, t3 = {e3, e4},

f1(t, A) = max{a1j : j ∈ N(t)} → min
T

,
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f2(t, A) =
∑

j∈N(t)

a2j → min
T

.

Then L2(A) = {t1}.
As for any matrix B ∈ <(1/2) the expressions

τ1(t1, t2, A + B) = 0, τ2(t1, t2, A + B) < 0, τ1(t1, t3, A + B) < 0

are true, t1 is a lexicographic optimum of a perturbed problem
Z2(A+B) ∀B ∈ <(1/2). Consequently, the problem Z2(A) is strongly
pseudostable and ρ2

4(A) > 0.
On the other hand, we have

τ1(t1, t2, A) = 0, τ2(t1, t3, A) = 0.

Hence, the set L2(A) is not strong and ϕ2(A) = 0, i.e. ρ2
4(A) > ϕ2(A).

4 Strong quasistability

As it was pointed out, the problem Zn(A) is said to be strongly qua-
sistable if

∃ε > 0 ∃t ∈ Ln(A) ∀B ∈ <(ε) (t ∈ Ln(A + B)).

Thus, the value

ρn
5 (A) =

{
supΩ5(A) if Ω5(A) 6= ∅,
0 if Ω5(A) = ∅, ,

where

Ω5(A) = {ε > 0 : ∃t ∈ Ln(A) ∀B ∈ <(ε) (t ∈ Ln(A + B))},

is said to be the strong quasistability radius of the problem Zn(A), n ≥
1.

It is obvious that ρn
5 (A) ≥ ρn

2 (A) ∀n ≥ 1, A ∈ Rnm.
In order to find a lower bound of the strong quasistability radius,

we will formulate some evident properties.
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Property 4.1. A trajectory t is a lexicographic optimal trajectory
of the problem Zn(A) if there exists an index i ∈ Nn such that

τi(t, t′, A) < 0 ∀t′ ∈ T\{t}.

Property 4.2. A trajectory t is not a lexicographic optimal tra-
jectory of the problem Zn(A) if for any index i ∈ Nn there exists a
trajectory t′ 6= t such that

τi(t, t′, A) > 0.

The next properties follow directly from the definition of the strong
quasistability radius.

Property 4.3. Let ψ > 0. If

∃t ∈ Ln(A) ∀B ∈ <(ψ) (t ∈ Ln(A + B)),

then
ρn
5 (A) ≥ ψ.

Property 4.4. Let ψ ≥ 0. If for any number ε > ψ and any
trajectory t ∈ Ln(A) there exists a perturbing matrix B ∈ <(ε) such
that

t ∈ L̄n(A + B),

then
ρn
5 (A) ≤ ψ.

By definition, put

ψn(A) = max
t∈Ln(A)

max
i∈Nn

min
t′∈T\{t}

γi(t, t′, A),

where

γi(t, t′, A) = −τi(t, t′, A)
∆i(t, t′)

. (4.1)

It is obvious that ψn(A) ≥ 0.
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Theorem 4.1. Let A ∈ Rnm. For any combination of partial
criteria (2.1) and (2.2) of the trajectorial problem Zn(A), n ≥ 1, we
have

ρn
5 (A) ≥ ψn(A), (4.2)

moreover
ρn
5 (A) = ψn(A) (4.3)

if Isum = Nn.
Proof. First we prove inequality (4.2). If ψn(A) = 0, then (4.2) is

evident. Let ψ = ψn(A) > 0. Then <(ψ) 6= ∅ and by definition of the
number ψ there exist a trajectory t ∈ Ln(A) and an index k ∈ Nn such
that for any trajectory t′ 6= t we have

ψ ≤ γk(t, t′, A),

i.e.
τk(t′, t, A) ≥ ψ∆k(t, t′).

Therefore, by lemma 3.1, we obtain

τk(t, t′, A + B) < 0 ∀B ∈ <(ψ) ∀t′ ∈ T\{t}.
Hence, using property 4.1, we get

t ∈ Ln(A + B) ∀B ∈ <(ψ).

Consequently, taking into account property 4.3, we have (4.2).
Now we prove that

ρn
5 (A) ≤ ψ if Isum = Nn.

By definition of the number ψ for any trajectory t ∈ Ln(A) and for
any index i ∈ Nn there exists a trajectory t′ 6= t such that

γi(t, t′, A) ≤ ψ.

Hence, getting ψ < α < ε and taking the perturbing matrix B ∈
<(ε) with elements

bij =
{

α, where i ∈ Nn, j ∈ N(t),
−α, where i ∈ Nn, j 6∈ N(t),
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by virtue of linearity of the function τi(t, t′, A) we have

τi(t, t′, A + B) = τi(t, t′, A) + α∆i(t, t′) >

> τi(t, t′, A) + γi(t, t′, A)∆i(t, t′) = 0

∀i ∈ Nn.

Thus by property 4.2 the trajectory t is not a lexicographic optimum
of the perturbed problem Zn(A+B). Consequently, taking into account
property 4.4, we obtain

ρn
5 (A) ≤ ψ.

Combining this with (4.2) we get theorem 4.1.
In [20] the statement of theorem 4.1 was formulated and proved in

terms of the stability kernel radius of the problem Zn(A).
Let us introduce the set of all strict lexicographic optimal trajecto-

ries of the trajectorial problem Zn(A). By definition, put

Sn(A) = {t ∈ Ln(A) : ∃i ∈ Nn ∀t′ ∈ T, t′ 6= t (τi(t, t′, A) < 0)}.

The next corollary follows from theorem 4.1.

Corollary 4.1. In order that the trajectorial problem Zn(A), n ≥ 1,
be strongly quasistable it is sufficient, and also necessary in the case
Isum = Nn, to have

Sn(A) 6= ∅.
In [18] the next formula for the quasistability radius of the linear

(Isum = Nn) problem Zn(A) was obtained:

ρn
2 (A) = min

t∈Ln(A)
max
i∈Nn

min
t′∈T\{t}

γi(t, t′, A),

where γi(t, t′, A) is calculated according to formula (4.1).
By the above, formula (3.4) and corollary 4.1 we get the next well-

known result.
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Corollary 4.2. [9] Linear single-criterion problem Z1(A) is
strongly quasistable iff it has a single optimal trajectory. In this case

ρ1
1(A) = ρ1

2(A) = ρ1
3(A) = ρ1

4(A) = ρ1
5(A).

The next example shows that the condition Sn(A) 6= ∅ is not a
necessary condition of the strong quasistability and the strong qua-
sistability radius can be greater than the value ψn(A) if Isum 6= Nn.

Example 4.1.

Suppose n = 2, m = 4, A =

(
0 2 0 3
0 0 2 0

)
,

T = {t1, t2, t3}, t1 = {e1, e2}, t2 = {e2, e3}, t3 = {e2, e4},

f1(t, A) = max{a1j : j ∈ N(t)} → min
T

,

f2(t, A) =
∑

j∈N(t)

a2j → min
T

.

Then L2(A) = {t1}.
As for any matrix B ∈ <(1/2) the expressions

τ1(t1, t2, A + B) = 0, τ2(t1, t2, A + B) < 0, τ1(t1, t3, A + B) < 0

are true, t1 ∈ L2(A + B) ∀B ∈ <(1/2). Consequently, the problem
Z2(A) is strongly quasistable, i.e. ρ2

5(A) > 0.
On the other hand, we have τ1(t1, t2, A) = 0 and τ2(t1, t2, A) = 0.

Hence
Sn(A) = ∅, ψ2(A) = 0,

i.e.
ρ2
5(A) > ψ2(A).

Remark 4.1. By virtue of equivalence of all the norms in a finite-
dimentsional space (see [27]) corollaries 3.2, 4.1 and the first part of
corollary 4.2 are valid for any norm in the space Rnm of perturbing
matrices.
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