
Computer Science Journal of Moldova, vol.6, no.2(17), 1998

Arithmetically Controlled H Systems

V. Manca Gh. Păun

Abstract

We consider two classes of restricted H systems, both dealing
with numbers associated to the terms of splicing operations. In
one of them, these numbers indicate the age of the strings (the
generation when the strings are produced), in the second one the
numbers can be interpreted as valences of the strings. Restricting
the splicing to strings of “a similar age”, or accepting as complete
splicing processes only those processes which produce strings with
a null valence increase the generative power of H systems (with
finite sets of rules).

1 Introduction

The present paper is a contribution to the recently emerging and highly
promising area of DNA Computing; we deal here with the possibility
of computing by splicing.

The splicing operation was introduced in [4], as a formal counterpart
of the recombination of DNA molecules, which are cut by restriction
enzymes and, when their sticky ends match, the obtained fragments
are ligated in order to produce new molecules. For motivations and
for discussions about the abstraction steps made when passing from
the biochemical operation to the formal language one, we refer to [4],
[5]. Based on this operation, the so-called extended H systems were
introduced in [8]. They are generative mechanisms which start from
a given set of strings (axioms) and produce a language by iterated
splicing according to a given set of splicing rules.

Because H systems with finite sets of axioms and of rules generate
only regular languages, [1], [10], many restrictions in the use of splicing

c©1998 by V.Manca, Gh.Păun

103

V.Manca, Gh.Păun

rules were considered, in the aim to increase the generative power. In
all cases investigated so far, characterizations of recursively enumerable
languages are obtained, see [9]. This is important from the point of view
of DNA computing: controlled H systems can be viewed as theoretical
models of universal programmable DNA based computers.

In usual H systems, strings produced at various “generations” can
be spliced together; for instance, we can splice x, y producing w and
then we can splice w with any of x and y. Restricting the splicing to
strings of “a similar age” is both natural and a possible new control on
the work of H systems. As it is expected, such a restriction increases
the power of H systems with finite sets of axioms and of rules, but we
do not know whether or not this leads again to a characterization of
recursively enumerable languages.

A similar result (and open problem) holds for a variant of such
an “arithmetical” control on the splicing operation, based on valences
associated with the strings: one starts with given valences associated
with the axioms and one accepts a string only if it is “neutral” (its
valence is zero – in the case when the valences are integers and they
are added during the splicing process).

2 H Systems

Consider an alphabet V and two symbols #, $ not in V . A splicing rule
over V is a string r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗ (V ∗ is
the free monoid generated by V under the operation of concatenation;
the empty string is denoted by λ and the length of x ∈ V ∗ is denoted
by |x|). For such a rule r and for x, y, w ∈ V ∗ we define

(x, y) `r w iff x = x1u1u2x2, y = y1u3u4y2,

w = x1u1u4y2, for some x1, x2, y1, y2 ∈ V ∗.

(One cuts the strings x, y in between u1, u2 and u3, u4, respectively, and
one concatenates the “first half” of x with the “second half” of y.) We
say that we splice the strings x, y at the sites u1u2, u3u4, respectively.
When r is understood, we write ` instead of `r. For clarity, we usually

104

Arithmetically Controlled H Systems

indicate by a vertical bar the place of splicing: (x1u1|u2x2, y1u3|u4y2) `
x1u1u4y2.

A pair σ = (V, R), where V is an alphabet and R is a set of splicing
rules over V , is called an H scheme. With respect to an H scheme
σ = (V, R) and a language L ⊆ V ∗ we define

σ(L) = {w ∈ V ∗ | (x, y) `r w, for some x, y ∈ L, r ∈ R},
σ0(L) = L,

σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0,

σ∗(L) =
⋃

i≥0

σi(L).

An extended H system is a construct

γ = (V, T, A,R),

where V is an alphabet, T ⊆ V,A ⊆ V ∗, and R ⊆ V ∗#V ∗$V ∗#V ∗.
(T is the terminal alphabet, A is the set of axioms, and R is the set of
splicing rules.) When T = V , the system is said to be non-extended.
The pair σ = (V, R) is the underlying H scheme of γ.

The language generated by γ is defined by

L(γ) = σ∗(A) ∩ T ∗.

(We iterate the splicing operation according to rules in R, starting
from strings in A, and we keep only the strings composed of terminal
symbols.)

We denote by EH(F1, F2) the family of languages generated by
extended H systems γ = (V, T, A,R), with A ∈ F1, R ∈ F2 (we use
to say that γ is of type (F1, F2)), where F1, F2 are two given families
of languages. (Note that R is a language, hence the definition makes
sense.)

By FIN, REG, CF, CS, RE we denote the families of finite, regu-
lar, context-free, context-sensitive, and of recursively enumerable lan-
guages, respectively; for further elements of formal language theory we
refer to [11].

105

V.Manca, Gh.Păun

In what follows, all families we consider are supposed to belong to
the hierarchy FIN, REG, CF, CS, RE.

Two basic results concerning the power of extended H systems are
the following (see details and references in [9]).

Theorem 1. (i) EH(FIN, FIN) = EH(REG, FIN) = REG. (ii)
EH(CF,FIN) = CF .

Theorem 2. (i) EH(FIN, REG) = RE. (ii) EH(CS, FIN) =
RE.

From the DNA computing point of view, we need finite systems
with a generative power as large as possible (if possibly, characterizing
the power of Turing machines) and also having universality proper-
ties (containing universal systems, that is systems able to simulate any
given system if a code of the particular system is introduced in the
universal one). To this aim, several classes of H systems with a con-
trolled splicing operation were considered, in general inspired from the
regulated rewriting area and from grammar systems area. Details and
complete references can be found in [9]. Two further restrictions, of a
new type, are introduced here.

3 H Systems with Age Restrictions

In the splicing operation as defined in the previous section, at any step
one can splice strings of different “ages”, for instance, a string with a
string obtained from the same string after an arbitrarily long sequence
of splicings. It is, however, natural to restrict this freedom in choosing
the terms of a splicing operation, by bounding the “age difference” by
a given constant. This leads to the following definition.

Let γ = (V, T,A, R) be an extended H system. For a rule r ∈ R and
for (x, i1), (y, i2), (w, i3) ∈ V ∗ ×N (N is the set of natural numbers)
we define

[(x, i1), (y, i2)] `r (w, i3) iff (x, y) `r w, and i3 = max(i1, i2) + 1.

106

Arithmetically Controlled H Systems

Let us associate the integer 0 to each string x ∈ A, thus considering the
set {(x, 0) | x ∈ A}. By iteratively applying this kind of splicing, we
obtain pairs (w, i) ∈ V ∗ ×N. We say that w in such a pair (w, i) has
been generated in γ. A splicing [(x, i1), (y, i2)] `r (w, i3) with |i1−i2| ≤
k, for some k ∈ N, is said to be k-restricted.

For k ∈ N, the k-restricted language generated by γ, denoted by
Lk(γ), consists of all strings in L(γ) which are generated by using only
k-restricted splicing steps.

Obviously, we have L0(γ) ⊆ L1(γ) ⊆ . . . ⊆ L(γ). It is also easy to
see that L(γ) =

⋃
i≥0 Li(γ).

We denote by EHk(F1, F2), k ≥ 0, the family of languages Lk(γ),
for γ an extended H system of type (F1, F2).

Lemma 1. For all families F1, F2 and for all k ≥ 0, we have
EH(F1, F2) ⊆ EHk(F1, F2).

Proof. Let γ = (V, T, A,R) be an extended H system. Consider two
new symbols Z1, Z2 and construct the H system

γ′ = (V ∪ {Z1, Z2}, T, A′, R′),

where

A′ = {Z1x, xZ2 | x ∈ A},
R′ = R ∪ {Z1#$Z1#, #Z1$Z1#, #Z2$#Z2, #Z2$Z2#}.

The axioms of γ′ are of the forms Z1x, xZ2, while the strings obtained
by using the splicing rules in R are of the forms Z1x, xZ2, Z1xZ2. Any
string of this form can be carried unchanged from a generation to an-
other one by using the rules Z1#$Z1#, #Z2$#Z2. In this way, any
splicing operation with respect to the system γ, irrespective which are
the ages of the involved strings, can be reproduced in γ′ as a splic-
ing among strings of ages as close as necessary (equal, if k = 0).
From a string of the form Z1wZ2 (maybe, one of Z1, Z2 is missing)
we can pass to w by using the rules #Z1$Z1#, #Z2$Z2# (for instance,

107

V.Manca, Gh.Păun

[(|Z1wZ2, i), (Z1|wZ2, i)] ` (wZ2, i + 1), [(w|Z2, i + 1), (w|Z2, i + 1)] `
(w, i + 2)). Therefore, L(γ) ⊆ Lk(γ′), for all k ≥ 0. The converse
inclusions are obvious (due to the use of different symbols Z1, Z2, the
splicing rules in R′ − R do not lead to strings in V ∗ which are not in
L(γ).

Lemma 2. EH0(FIN, FIN)− CF 6= ∅.
Proof. Consider the (non-extended) H system

γ = ({a, b}, {a, b}, {bab}, {a#b$b#a}).

We start with a splicing [(ba|b, 0), (b|ab, 0)] ` (baab, 1); we have to
continue by splicing baab with itself (and we get (baaaab, 2)). At any
step, we have only one string of that age. By splicing it with itself, in a
unique possible way, the number of a occurrences is doubled. Therefore,

L0(γ) = {ba2n
b | n ≥ 0}.

This language is not context-free.

Note that the language L0(γ) is not only non-context-free, but it
is not even in the family MAT λ, of languages generated by matrix
grammars with arbitrary context-free rules (but without appearance
checking): use the result in [3] (the one-letter languages in MAT λ are
regular) and the closure of MAT λ under arbitrary morphisms, [2].

We were not able to obtain a similarly strong result for k ≥ 1, but
still we have an increase in power with respect to the non-restricted H
systems:

Lemma 3. For all k ≥ 1 we have EHk(FIN, FIN)−REG 6= ∅.
Proof. Consider the extended H system

γ = ({a, b, c, d}, {a, b, c}, {cad, dbc}, {a#d$c#a, b#c$d#b, a#d$d#b}).

Let us examine the k-restricted splicings with respect to γ. The
strings cad and dbc can be spliced separately with themselves, by

108

Arithmetically Controlled H Systems

the rules a#d$c#a, b#c$d#b, respectively, and we get the strings
caad, dbbc. So, we can continue by splicings which use the same rules.
Let us consider only the case of strings of the form cand. Because at
each step we can use as terms of a splicing the strings of the last genera-
tion together with strings of a generation which is with at most k steps
older, we have several possibilities. The shortest string which can be
obtained at a given generation is that produced by splicing the shortest
available strings, fulfilling these conditions. This means that we have
to splice the shortest string of the current generation with the shortest
string not older than this one with more than k steps. In turn, the
longest string which can be obtained at a given generation is produced
by splicing the longest string available (at the current generation) with
itself. Let us denote by ϕ(i) the number n such that cand is the short-
est string produced at the i-th generation, and by µ(i) the number n
such that cand is the longest string produced at the i-th generation.

The next table indicates the initial values of these parameters:

i ϕ(i) µ(i)
0 1 1
1 2 2
2 3 4
3 4 8
.
k k + 1 2k

k + 1 (k + 1) + 2 2k+1

k + 2 ((k + 1) + 2) + 3 2k+2

.

So, we have:

ϕ(i) = i + 1, for i = 0, 1, 2, . . . , k,

ϕ(k + i) = ϕ(k + i− 1) + ϕ(i− 1), for i ≥ 1,

µ(i) = 2i, for i ≥ 0.

(Note that for k = 1 the values of ϕ(i) are the elements in a Fi-
bonacci sequence.)

109

V.Manca, Gh.Păun

Identical results are obtained for the shortest and longest strings of
the form dbmc.

Now, consider the use of the rule a#d$d#b. We can perform

[(can|d, i), (d|bmc, j)] ` (canbmc, max(i, j) + 1)

only if |i− j| ≤ k. This imposes a restriction on the possible values of
n and m. Specifically, for a given n, denote

i1 = min{i | n ≤ µ(i)},
i2 = max{i | n ≥ ϕ(i)}.

This means that we have

ϕ(i1) ≤ n ≤ µ(i2).

(Note that we can have ϕ(i) ≤ n ≤ µ(i) for several values of i, hence
we can have i1 < i2.) In other terms, cand can be produced at any
generation between i1 and i2.

Because the string dbmc must be produced at most k generations
before or after producing the string cand, we must have

ϕ(i1 − k) ≤ m ≤ µ(i2 + k).

Consequently, L(γ) is an infinite set of strings of the form canbmc,
with n,m subject to the restriction discussed above. Such a language
is not a regular one (for example, pump a substring of bm; we obtain
strings of the form canbtc with arbitrarily large t, hence not depending
on n; such strings are not in L(γ), a contradiction).

Theorem 3. (i) For all k ≥ 0 and all families F1, F2 such
that (F1, F2) /∈ {(FIN, FIN), (REG,FIN), (CF, FIN)}, we have
EH(F1, F2) = EHk(F1, F2) = RE. (ii) For all k ≥ 0 and for
F1 ∈ {FIN,REG}, we have REG = EH(F1, F IN) ⊂ EHk(F1, F IN);
moreover, CF = EH(CF, FIN) ⊂ EH0(CF, FIN).

Proof. Combine the equalities in Theorems 1 and 2 with the results
in Lemmas 1, 3, and 3.

110

Arithmetically Controlled H Systems

It remains as an open problem to find a precise characterization
of the size of the families EHk(F1, F IN), F1 ∈ {FIN, REG, CF}, for
k ≥ 0. For instance, all controlled extended H systems with finite
sets of axioms and of splicing rules considered so far characterize the
family of recursively enumerable languages, [9]; is this the case also for
k-restricted H systems ?

In the systems discussed above, the restriction on the strings age
is the same for all splicing rules and it is formulated in terms of the
inequation |i− j| ≤ k. We can consider a more general variant, in the
form of an extended H system with age selection by means of predicates.

Such a system is a construct γ = (V, T, A, R), where V and T are
as in a usual H system, A is a finite subset of V ∗ × {0}, and R is a
finite set of pairs (r, πr), where r is a splicing rule over V and πr is a
predicate on N×N. For (x, i1), (y, i2), (w, i3) ∈ V ∗ ×N and (r, πr) in
R we write

[(x, i1), (y, i2)] `r (w, i3) iff (x, y) `r w, i3 = max(i1, i2) + 1,

and πr(i1, i2) = 1.

(We compute the ages as above, but we apply a splicing rule only to
strings whose ages satisfy the predicate associated with the rule.)

The language generated by γ is defined in the usual way. By
EHls(F1, F2) we denote the family of languages generated by H systems
with age selection by means of predicates and of type (F1, F2).

If all (r, πr) ∈ R have the same predicate (there is π such that
πr = π for all (r, πr) ∈ R), then we say that γ has a global age selection.
The corresponding families of languages are denoted by EHgs(F1, F2)
(thus, ls stands for “local selection” and gs for “global selection”).

Directly from the definitions we obtain:

Lemma 4. For all families F1, F2 and for all k ≥ 0 we have
EHk(F1, F2) ⊆ EHgs(F1, F2) ⊆ EHls(F1, F2).

Consequently, the assertions in Theorem 3 hold true also for ex-
tended H systems with (local or global) age selection by means of
predicates.

111

V.Manca, Gh.Păun

The control by predicates, especially in the local mode, seems to be
rather powerful; still, we do not know whether or not a characterization
of RE can be found by using such H systems with finite sets of axioms
and of rules.

4 H Systems with Valences

A natural variant of the previous restriction in the work of H systems
is to consider integer numbers associated with strings and to compute
the integers associated with the results of splicing steps in a specified
way (in the style of valence grammars introduced in [6]).

Let (M, ¦, e) be a group (with the operation ¦ and the identity e).
An extended valence H system over M is a construct γ = (V, T,A, R),
where V, T,R are as in a usual extended H system and A is a finite
subset of V ∗ ×M .

For (x, v1), (y, v2), (w, v3) ∈ V ∗ × M and r ∈ R we write
[(x, v1), (y, v2)] `r (w, v3) if and only if (x, y) `r w and v3 = v1 ¦ v2.
(For a pair (x, v) ∈ V ∗ ×M we say that v is the valence of x.) Then,

L(γ) = {x ∈ T ∗ | (x, e) ∈ σ∗(A)}.

(We accept all terminal strings whose valence is equal to the identity
of the group.)

We work here with the groups of integers and of positive rational
numbers, (Z, +, 0), (Q+, ·, 1). Accordingly, we call the corresponding H
systems additive and multiplicative H systems, respectively. We denote
by EHa(F1, F2), EHm(F1, F2) the families of languages generated by
such systems of type (F1, F2), respectively (a stands for “additive”, m
stands for “multiplicative”).

Remark 1. Let us note here the similarities and the differences
between H systems with age restrictions and those with valences: In
both cases we associate numbers with strings and we compute the num-
bers associated with new produced strings depending on the numbers
associated with the strings entering the splicing (in general, we may

112

Arithmetically Controlled H Systems

consider a mapping f(n, m), which is max(n,m) + 1 in the case of H
systems with age restriction, n ¦ m in the case of valence H systems,
or might be a more complex one). However, the age restriction acts
as a selection criterion on the terms of the splicing (the input strings),
while the valence restriction is used in choosing the strings which are
accepted in the generated language (they must be “neutral” from a
“chemical” point of view, which fits very much the biochemical nature
of DNA).

Example 1. Consider the system

γ = ({a, b, c, d}, {a, b, c}, {(cad,−1), (dbc, 1)},

{a#d$c#ad, db#c$d#b, a#d$d#b}).
We obtain

L(γ) = {canbnc | n ≥ 1}.
Indeed, the only way to obtain a string with a null valence is by per-
forming a splicing [(can|d,−n), (d|bnc, n)] ` (canbnc, 0), by using the
rule a#d$d#b; strings of the forms (cand,−n), (dbmc,m), n, m ≥ 1,
can be obtained by using the other two rules in R. No splicing can
involve a string of the form canbnc.

The language L(γ) is not regular. Therefore, as in the case of H
systems with age restrictions, the use of valences increases the power
of systems with finite components.

By associating to axioms valences which are equal to the identity of
the group, each usual H system can be considered a valence H system;
thus, we obtain:

Lemma 5. For all families F1, F2 we have EH(F1, F2) ⊆
EHα(F1, F2), α ∈ {a,m}.

As in the case of valence grammars, [6], the multiplicative valences
are at least as powerful as the additive ones.

Lemma 6. EHa(F1, F2) ⊆ EHm(F1, F2), for all families F1, F2.

113

V.Manca, Gh.Păun

Proof. Consider an extended H system γ = (V, T, A,R) with addi-
tive valences and construct the H system γ′ = (V, T, A′, R) with multi-
plicative valences, where

A′ = {(x, 2i) | (x, i) ∈ A}.

If, in order to generate a string (w, k) in γ, we use the strings
(x1, i1), . . . , (xn, in) as terms of a sequence of splicings (that is,∑n

j=1 ij = 0), then in γ′ we can perform the same splicings, for the

strings (x1, 2i1), . . . , (xn, 2in). Therefore, Πn
j=12

ij = 2
∑n

j=1
ij = 20 = 1.

Conversely, a sequence of splicing steps in γ′ which leads to a string
with the valence equal to 1 corresponds to a sequence of splicing steps
in γ producing the same string with the valence 0. That is, L(γ) =
L(γ′).

Combining these results and the relations in Theorems 1, 2, we
obtain:

Theorem 4. (i) For all families F1, F2 such that (F1, F2) /∈
{(FIN, FIN), (REG, FIN), (CF,FIN)}, we have EH(F1, F2) =
EHa(F1, F2) = EHm(F1, F2) = RE. (ii) REG = EH(F1, F IN) ⊂
EHa(F1, F IN) ⊆ EHm(F1, F IN), F1 ∈ {FIN, REG}.

For the case (CF,FIN) we only have

CF = EH(CF,FIN) ⊆ EHa(CF,FIN) ⊆ EHm(CF, FIN),

but we do not know whether or not these inclusions are proper. How-
ever, at least one of them is proper (and probably also the inclusions

EHa(F1, F IN) ⊆ EHm(F1, F IN), F1 ∈ {FIN, REG},

are proper); this follows from the results below, which relate valence
grammars and valence H systems.

A (context-free) valence grammar is a construct G = (N,T, S, P),
where N is the nonterminal alphabet, T is the terminal alphabet, S ∈

114

Arithmetically Controlled H Systems

N (the axiom), and P is a finite set of pairs (A → x, i), with A → x a
(context-free) rule over N ∪T and i the valence of this rule; in the case
of additive valence grammars we have i ∈ Z, in the multiplicative case
we have i ∈ Q+. A derivation step in such a grammar is of the form
(u, i1) =⇒ (v, i2), such that u = u1Au2, v = u1xu2 for (A → x, i) ∈ P ,
and i2 = i1 ¦ i (¦ is the operation of the considered group). We start
from (S, 0) in the additive case an from (S, 1) in the multiplicative case;
a string is included in the generated language only if its valence is 0 in
the additive case and 1 in the multiplicative case.

We denote by V REGa, V REGm the families of the languages ob-
tained in this way, using regular grammars with additive and multi-
plicative valences, respectively. (We do not consider here also context-
free valence grammars; they are much more powerful than the regular
ones and not useful for our study.)

Here are some results about these families, [6]:

V REGa −REG 6= ∅, V REGa ⊂ CF,

V REGa ⊂ V REGm,

V REGm is incomparable with CF.

For instance,

{anbn | n ≥ 1} ∈ V REGa −REG,

{anbnan | n ≥ 1} ∈ V REGm − CF,

{anbn | n ≥ 1}2 ∈ (V REGm ∩ CF)− V REGa.

Lemma 7.
V REGa ⊆ EHa(FIN, FIN), V REGm ⊆ EHm(FIN, FIN).

Proof. Consider a regular valence grammar G = (N, T, S, P) (so,
the rules in the pairs of P are of the forms r : X → aY, r : X → a, r :
X → λ, for X, Y ∈ N, a ∈ T ; we assume the rules labeled in a one-to-
one manner), with valences over a group (M, ¦, e). We construct the
valence H system

γ = (V, T, A,R),

115

V.Manca, Gh.Păun

where

V = N ∪ T ∪ {Zr | r : X → x is a rule in P},
A = {(S, e)}
∪ {(Zrx, ir) | (r : X → x, ir) ∈ P},

R = {#X$Zr#aY | r : X → aY is a rule in P}
∪ {#X$Zr#a | r : X → a is a rule in P}
∪ {#X$Zr# | r : X → λ is a rule in P}.

It is easy to see that any derivation in G can be simulated by a
sequence of splicings in γ, using the axioms associated to the rules in
G, and, conversely, each splicing step in γ corresponds to a derivation
step in G. A terminal derivation in G starts from S and ends by using
a terminal rule; a sequence of splicings in γ leads to a terminal string in
the same conditions: we have to start by using S at the first step and
we stop by using a splicing corresponding to a terminal rule at the last
step. Moreover, because the symbols Zr precisely identify the rules
of G (hence also their valences), the valences of rules of G precisely
correspond to the valences of the associated axioms of γ. This ensures
that the total valence of a derivation in G (in the sense of the operation
¦) is equal to the total valence of the corresponding sequence of splicings
in γ. In conclusion, L(G) = L(γ).

This lemma transfers to valence H systems the power of valence
regular grammars. In particular, we obtain:

Theorem 5. EHm(FIN, FIN)− CF 6= ∅.

5 Final Remarks

We emphasize the fact that both types of “arithmetical” controls con-
sidered above, the age restriction and the valence restriction, increase
the generative power of extended H systems with finite sets of axioms
and of splicing rules, but, most probably, we do not obtain in this way
characterizations of recursively enumerable languages. An observation

116

Arithmetically Controlled H Systems

supporting this conjecture concerns the fact that our restrictions do
not improve the context-sensitivity of H systems, but they induce ad-
ditional properties to the generated strings, somewhat supplementary
to the properties inherently induced by the splicing rules themselves.

Note. The work of the second author has been supported by CNR,
Gruppo Nazionale per l’Informatica Matematica, Italy.

References

[1] K. Culik II, T. Harju, Splicing semigroups of dominoes and DNA,
Discrete Appl. Math., 31 (1991), pp.261–277.

[2] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language
Theory, Springer-Verlag, Berlin, Heidelberg, 1989.

[3] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of
matrix grammars, Acta Informatica, 31 (1994), pp.719–728.

[4] T. Head, Formal language theory and DNA: an analysis of the
generative capacity of specific recombinant behaviors, Bull. Math.
Biology, 49 (1987), pp.737–759.

[5] T. Head, Gh. Păun, D. Pixton, Language theory and molecular ge-
netics. Generative mechanisms suggested by DNA recombination,
chapter 7 in vol.2 of [11], pp.295–360.

[6] Gh. Păun, A new type of generative devices: valence grammars,
Rev. Roum. Math. Pures Appl., 25, 6 (1980), pp.911–924.

[7] Gh. Păun, Regular extended H systems are computationally uni-
versal, J. Automata, Languages, Combinatorics, 1, 1 (1996),
pp.27–36.

[8] Gh. Păun, G. Rozenberg, A. Salomaa, Computing by splicing,
Theoretical Computer Sci., 168, 2 (1996), pp.321–336.

117

V.Manca, Gh.Păun

[9] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New
Computing Paradigms, Springer-Verlag, Heidelberg, 1998.

[10] D. Pixton, Regularity of splicing languages, Discrete Appl. Math.,
69 (1996), pp.101–124.

[11] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages,
3 volumes, Springer-Verlag, Heidelberg, 1997.

Vincenzo Manca, Gheorghe Păun, Received February 26, 1998

Vincenzo Manca
Università degli Studi di Pisa,
Dipartimento di Informatica
Corso Italia 40, 56125 Pisa,
Italy

Gheorghe Păun
Institute of Mathematics
of the Romanian Academy
PO Box 1-764, 70700 Bucureşti,
Romania

118

